AccScience Publishing / IJOCTA / Volume 11 / Issue 1 / DOI: 10.11121/ijocta.01.2021.00877
RESEARCH ARTICLE

Simultaneous state and fault estimation for Takagi-Sugeno implicit models with Lipschitz constraints

Manal Ouzaz1* Abdellatif El Assoudi1* Jalal Soulami1* El Hassane El Yaagoubi2*
Show Less
1 Laboratory of High Energy Physics and Condensed Matter, Faculty of Science Hassan II University of Casablanca, B.P 5366, Maarif, Casablanca, Morocco
2 ECPI, Department of Electrical Engineering, ENSEM Hassan II University of Casablanca, B.P 8118, Oasis, Casablanca Morocco
IJOCTA 2021, 11(1), 100–108; https://doi.org/10.11121/ijocta.01.2021.00877
Submitted: 15 October 2019 | Accepted: 10 May 2020 | Published: 3 January 2020
© 2020 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

This paper presents a state and fault observer design for a class of TakagiSugeno implicit models (TSIMs) with unmeasurable premise variables satisfying the Lipschitz constraints. The fault variable is constituted by the actuator and sensor faults. The actuator fault affects the state and the sensor fault affects the output of the system. The approach is based on the separation between dynamic and static relations in the TSIM. Firstly, the method begins by decomposing the dynamic equations of the algebraic equations. Secondly, the fuzzy observer design that satisfies the Lipschitz conditions and permits to estimate simultaneously the unknown states, actuator and sensor faults is developed. The aim of this approach for the observer design is to construct an augmented model where the fault variable is added to the state vector. The exponential convergence of the state estimation error is studied by using the Lyapunov theory and the stability condition is given in term of only one linear matrix inequality (LMI). Finally, numerical simulation results are given to highlight the performances of the proposed method by using a TSIM of a single-link flexible joint robot.

Keywords
Takagi-Sugeno implicit model
Estimation of actuator
and sensor faults
Fuzzy Observer design
Lyapunov method
LMI technique
Lipschitz constraints
References

[1] Isermann, R. (2006). Fault-Diagnosis Systems An Introduction from Fault Detection to Fault Tolerance. Springer-Verlag Berlin Heidelberg.

[2] Ding, S. X. (2008). Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools. Berlin, Germany: Springer-Verlag.

[3] Lendek,Z., Guerra, T. M., Babuˇska, R., & De Schutter, B.(2010). Stability Analysis and Nonlinear Observer Design Using TakagiSugeno Fuzzy Models. Springer-Verlag Berlin Heidelberg .

[4] Witczak, M. (2014).Fault Diagnosis and Fault-Tolerant Control Strategies for NonLinear Systems. Analytical and Soft Computing Approaches. Springer International Publishing Switzerland.

[5] Blanke, M., Kinnaert, M., Lunze, J., & Staroswiecki, M.(2016).Diagnosis,and FaultTolerant Control. Springer-Verlag Berlin Heidelberg.

[6] Li, L. (2016). Fault Detection and FaultTolerant Control for Nonlinear Systems. Springer Fachmedien Wiesbaden.

[7] Takagi, T., Sugeno, M.(1985). Fuzzy identifi- cation of systems and its application to modeling and control, IEEE Trans. Syst., Man and Cybernetics, 15(1), 116-132.

[8] Taniguchi, T., Tanaka, K., Ohtake, H. ,& Wang, H.(2001). Model construction, rule reduction, and robust compensation for generalized form of Takagi-Sugeno fuzzy systems. IEEE Transactions on Fuzzy Systems, 9(4), 525-538.

[9] Tanaka, K., & Wang, H. O. (2001). Fuzzy control systems design and analysis: A Linear Matrix Inequality Approach. John Wiley & Sons.

[10] Lendek, Zs., Guerra, T.M., Babuˇska, R. & De Schutter B. (2011). Stability analysis and nonlinear observer design using TakagiSugeno fuzzy models, Springer Berlin Heidelberg.

[11] Ichalal, D. ,Marx, B., Mammar, S., Maquin, D., & Ragot, J. (2018). How to cope with unmeasurable premise variables in Takagi–Sugeno observer design: Dynamic extension approach. Engineering Applications of Artificial Intelligence, 67, 430-435.

[12] Wang, L., & Lam, H. (2019). Further Study on Observer Design for Continuous-Time Takagi-Sugeno Fuzzy Model With Unknown Premise Variables via Average Dwell Time. IEEE Transactions on Cybernetics, 1-6.

[13] Xie, W.-B., Li, H., Wang, Z.-H., & Zhang, J. (2019). Observer-based Controller Design for A T-S Fuzzy System with Unknown Premise Variables. International Journal of Control, Automation and Systems, 17(4), 907-915.

[14] Dai, L. (1989).Singular Control Systems. Lecture Notes in Control and Information Sciences. Springer-Verlag Berlin.

[15] Kumar, A.,& Daoutidis, P. (1999). Control of nonlinear differential algebraic equation systems. Chapman & Hall CRC.

[16] Kunkel, P., & Mehrmann, V.(2006). Differential-Algebraic Equations-Analysis and Numerical Solution. Textbooks in Mathematics. European Mathematical Society. Zurich, Schweiz.

[17] Duan, G. R. (2010). Analysis and Design of Descriptor Linear Systems. Springer-Verlag New York.

[18] Taniguchi, T., Tanaka, K., Yamafuji, K., & Wang, H. 0. (1999). Fuzzy Descriptor Systems: Stability Analysis and Design via LMIs. Proceedings of the American Control Conference. San Diego, California , 1827-1831.

[19] Taniguchi, T. Tanaka, K. ,& Wang, H. 0. (2000). Fuzzy Descriptor Systems and Nonlinear Model Following Control. IEEE Transactions on Fuzzy Systems, 8(4), 442-452.

[20] Akhenak, A., Chadli, M.,Ragot , J., & Maquin,D.(2009). Design of observers for Takagi-Sugeno fuzzy models for Fault Detection and Isolation. 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, SAFEPROCESS, Barcelona, Spain.

[21] Bouattour, M., Chadli, M., Chaabane, M., & El Hajjaji, A.(2011). Design of Robust Fault Detection Observer for Takagi-Sugeno Models Using the Descriptor Approach. International Journal of Control, Automation, and Systems, 9(5), 973-979.

[22] Ichalal, D., Marx, B., Ragot, J., & Maquin, D.(2012). New fault tolerant control strategies for nonlinear Takagi-Sugeno systems. International Journal of Applied Mathematics and Computer Science, 22(1), 197-210.

[23] Ichalal, D., Marx, B., Ragot, J., & Maquin, D.(2014). Fault detection, isolation and estimation for Takagi-Sugeno nonlinear systems. Journal of the Franklin Institute, 351(7), 3651-3676.

[24] Youssef, T., Chadli, M. Karimi, H.R. ,& Wang, R.(2016). Actuator and sensor faults estimation based on proportional integral observer for TS fuzzy model. Journal of the Franklin Institute, 354(6), 2524-2542.

[25] Ichalal, D., Marx, B. Ragot, J., Mammar, S., & Maquin, D. (2016). Sensor fault tolerant control of nonlinear Takagi-Sugeno systems: Application to vehicle lateral dynamics. Int. J. Robust Nonlinear Control, 26(7), 1376-1394.

[26] Hadi, A. S., Shaker, M. S., & Jawad, Q. A. (2019). Estimation/decoupling approach for robust Takagi–Sugeno UIO-based fault reconstruction in nonlinear systems affected by a simultaneous time-varying actuator and sensor faults. International Journal of Systems Science, 50(13), 2473-2485.

[27] Shaker, M. S. (2019). Hybrid approach to design Takagi–Sugeno observer-based FTC for non-linear systems affected by simultaneous time-varying actuator and sensor faults. IET Control Theory & Applications, 13(5), 632- 641.

[28] Marx, B., Koenig ,D., & Ragot, J. (2007). Design of observers for Takagi-Sugeno descriptor systems with unknown inputs and application to fault diagnosis. IET Control Theory and Applications, 1(5), 1487-1495.

[29] Mechmech, C., Hamdi, H. Rodrigues, M. ,& Benhadj Braiek, N. (2012). State and unknown inputs estimations for multi-models descriptor systems. American Journal of Computational and Applied Mathematics, 2(3), 86-93.

[30] Hamdi, H., Rodrigues, M., Mechmeche, C., Theilliol, D. & BenHadj Braiek, N.(2012).

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing