AccScience Publishing / IJOCTA / Volume 11 / Issue 1 / DOI: 10.11121/ijocta.01.2021.00843
RESEARCH ARTICLE

Shamanskii method for solving parameterized fuzzy nonlinear equations

Sulaiman Mohammed Ibrahim1 Mustafa Mamat1* Puspa Liza Ghazali2
Show Less
1 Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
2 Faculty of Business and Managemnet Sciences, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
Submitted: 24 July 2019 | Accepted: 12 April 2020 | Published: 10 December 2020
© 2020 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

One of the most significant problems in fuzzy set theory is solving fuzzy nonlinear  equations. Numerous researches have been done on numerical methods for solving these problems, but numerical investigation indicates that most of the methods are  computationally expensive due to computing and storage of Jacobian or  approximate Jacobian at every iteration. This paper presents the Shamanskii  algorithm, a variant of Newton method for solving nonlinear equation with fuzzy  variables. The algorithm begins with Newton’s step at first iteration, followed by  several Chord steps thereby reducing the high cost of Jacobian or approximate  Jacobian evaluation during the iteration process. The fuzzy coefficients of the  nonlinear systems are parameterized before applying the proposed algorithm to  obtain their solutions. Preliminary results of some benchmark problems and  comparisons with existing methods show that the proposed method is promising.

Keywords
Shamanskii method
Fuzzy nonlinear equations
Parameterized fuzzy equations
Numerical experiments
Conflict of interest
The authors declare they have no competing interests.
References

[1] Abbasbandy, S., & Asady, B. (2004). Newton  Method for solving fuzzy nonlinear equations. Applied Mathematics and Computation, 159, 349 – 356.

[2] Zadeh, L.A. (1965). Fuzzy sets. Information and  Control 8, 338-353.

[3] Buckley J.J., & Qu Y. (1991). Solving fuzzy  equations: a new solution concept” Fuzzy Set and  Systems, 39, 291- 301.

[4] Buckley J.J., & Qu Y. (1990). Solving linear and  quadratic fuzzy equations. Fuzzy Sets and Systems 38, 43 - 59.

[5] Chong, E. K. P., & Zak, S. H. (2013). An  introduction to optimization, Wiley series in discrete  mathematics and optimization.

[6] Waziri M.Y., & Moyi A. (2016). An alternative  approach for solving dual fuzzy nonlinear equations. International Journal of Fuzzy Systems, 18, 103 – 107. 

[7] Sulaiman, I. M, Mamat, M, Waziri, M. Y, Fadhilah,  A, & Kamfa, U. K. (2016). Regula Falsi Method for  Solving Fuzzy Nonlinear Equation. Far East  Journal of Math Sci 100(6), 873-884.

[8] Shamanskii, V.E. (1967). “A modification of  Newton's method” Ukrain. Mat. Zh. 19, 133-138.

[9] Kelley C. T. (1995). Iterative Methods for Linear  and Nonlinear Equations. SIAM, Philadelphia.

[10] Dubois, D., & Prade, H. (1980). Fuzzy Sets and  Systems. Theory and Application, Academic Press,  New York, NY, USA.

[11] Goetschel, R., & Voxman, J.W. (1986). Elementary  fuzzy calculus,” Fuzzy set and Systems, 18, 31-43.

[12] Zimmermann H. J. (1991). Fuzzy Set Theory and its  Applications. Third ed., Kluwer Academic, Norwell,  MA.

[13] Hulya, G. C. (2018). On the exact and the  approximate solutions of second-order fuzzy initial  value problems with constant coefficients. Malaya  Journal of Matematik, 6(1), 61-68.

[14] Hulya, G. C. (2019). Comparisons of the exact and  the approximate solutions of second-order fuzzy  linear boundary value problems. Miskolc  Mathematical Note, 20(2), 823–837.

[15] Kelley C. T. (1986). A Shamanskii-Like  Acceleration Scheme for Nonlinear Equations at  Singular Roots. Mathematics of Computation, 47, 609-623.

[16] Traub, J. F. (1964). Iterative Methods for the  Solution of Equations. Prentice Hall, Englewood  Cliffs, NJ.

[17] Sulaiman, I..M. (2018). New iterative methods for  solving fuzzy and dual fuzzy nonlinear equations.  PhD Thesis. Universiti Sultan Zainal Abidin,  Malaysia

[18] Kchouk B, & Dussault J. (2013). The Chebyshev– Shamanskii Method for Solving Systems of  Nonlinear Equations. J Optim Theory Appl 157.  148–167.

[19] Amirah, R., Lazim, M., & Mamat, M. (2010).  Broyden’s method for solving Fuzzy nonlinear  equations. Advances in fuzzy system, Article ID  763270, 6 pages.

[20] Otadi, M., & Mosleh, M. (2011). Solution of  fuzzy equations by adomian decomposition  Method. Soft Computes. 15: 187-192.

[21] Sulaiman, I. M. Yakubu, A. U. & Mamat, M.  (2020). Application of Spectral Conjugate GradientMethods for Solving Unconstrained Optimization  Problems. An International Journal of Optimization  and Control: Theories & Applications. (Accepted  Manuscript)

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing