AccScience Publishing / IJOCTA / Volume 11 / Issue 1 / DOI: 10.11121/ijocta.01.2021.00841
RESEARCH ARTICLE

Exact analytical solutions of the fractional biological population model,  fractional EW and modified EW equations

Meryem Odabasi1,2*
Show Less
1 Tire Kutsan Vocational School, Ege University, Turkey
2 Bioengineering Department, Faculty of Engineering, Ege University, Turkey
Submitted: 8 July 2019 | Accepted: 12 April 2020 | Published: 17 December 2020
© 2020 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

In this paper, exact analytical solutions of the biological population model, the  EW and the modified EW equations with a conformable derivative operator have  been examined by means of the trial solution algorithm and the complete  discrimination system. Dark, bright and singular traveling wave solutions of the  equations have been obtained by algorithm. Also, revealed singular periodic  solutions have been listed. All solutions were verified by substituting them into  their corresponding equation via Mathematica package program.

Keywords
Fractional differential equations
Conformable derivative
Trial solution algorithm
Exact traveling wave solutions
Conflict of interest
The authors declare they have no competing interests.
References

[1] El-Sayed, A.M.A., Rida, S.Z., Arafa, A.A.M.  (2009). Exact solutions of fractional-order  biological population model. Communications in  Theoretical Physics, 52, 992–996.

[2] Bekir, A., Güner, Ö., Cevikel, A.C. (2013).  Fractional complex transform and exp-function  methods for fractional differential equations.  Abstract and Applied Analysis, Article ID 426462,  8 pages, DOI: 10.1155/2013/426462.

[3] Kumar, D., Seadawy, A.R., Joardar, A.K. (2018).  Modified Kudryashov method via new exact  solutions for some conformable fractional  differential equations arising in mathematical  biology. Chinese Journal of Physics, 56, 75–85.

[4] Meng, F. (2013). A New Approach for solving  fractional partial differential equations. Journal of  Applied Mathematics, Article ID 256823, 5 pages,  DOI: 10.1155/2013/256823.

[5] Hosseini, K., Ayati, Z. (2016). Exact solutions of  space-time fractional EW and modified EW  equations using Kudryashov method. Nonlinear  Science Letters A,7 (2), 58–66.

[6] Guner, O., Bekir, A. (2017). A novel method for  nonlinear fractional differential equations using  symbolic computation. Waves in Random and  Complex Media, 27(1), 163–170.

[7] Caputo, M., Fabrizio, M. (2015). A new definition  of fractional derivative without singular kernel.  Progress in Fractional Differentiation and  Applications, 1(2), 73–85.

[8] Shadab, M., Faisal Khan, M., Luis Lopez-Bonilla,  J. (2018). A new Riemann–Liouville type fractional  derivative operator and its application in generating  functions. Advances in Difference Equations, 167.

[9] Khalil, R., Horani, M.A., Sababheh A.M.Y. (2014).  A new definition of fractional derivative. Journal of  Computational and Applied Mathematics ,264, 65–70.

[10] Abdeljawad, T. (2015). On conformable fractional  calculus. Journal of Computational and Applied  Mathematics, 279, 57–66.

[11] Hosseini, K., Korkmaz, A., Bekir, A., Samadani,  F., Zabihi, A., Topsakal, M. (2019). New wave  form solutions of nonlinear conformable timefractional Zoomeron equation in (2 + 1)- dimensions. Waves in Random and Complex  Media, DOI: 10.1080/17455030.2019.1579393.

[12] Hosseini, K., Manafian, J., Samadani, F., Foroutan,  M., Mirzazadeh, M., Zhou, Q. (2018). Resonant  optical solitons with perturbation terms and  fractional temporal evolution using improved tan  (ϕ(η)/2)-expansion method and exp function  approach. Optik, 158, 933–939.

[13] Hosseini, K., Mayeli, P., Bekir, A., Guner, O.  (2018). Density-dependent conformable space-time  fractional diffusion-reaction equation and its exact  solutions. Communications in Theoretical Physics,  69, 1–4.

[14] Odabasi, M., Pinar, Z., Kocak, H. (2020).  Analytical solutions of some nonlinear fractionalorder differential equations by different methods.  Mathematical Methods in the Applied Sciences,  DOI: 10.1002/mma.6313.

[15] Hosseini, K., Bekir, A., Kaplan, M., Guner, O.  (2017). On a new technique for solving the  nonlinear conformable time-fractional differential  equations. Optical and Quantum Electronics, 49,  343.

[16] Hosseini, K., Bekir, A., Ansari, R. (2017). Exact  solutions of nonlinear conformable time-fractional  Boussinesq equations using the exp(−ϕ(ε))- expansion method. Optical and Quantum  Electronics, 49, 131.

[17] Liu, C.S. (2006). Trial equation method tononlinear evolution equations with rank  inhomogeneous: mathematical discussions and its  applications. Communications in Theoretical  Physics, 45, 219–223.

[18] Liu, C.S. (2006). A New trial equation method and  its applications. Communications in Theoretical  Physics, 45, 395–397.

[19] Liu, C.S. (2010). Applications of complete  discrimination system for polynomial for  classifications of traveling wave solutions to  nonlinear differential equations. Computer Physics  Communications, 181, 317–324.

[20] Biswas, A. (2018). Optical solitons with differential  group delay for coupled Fokas–Lenells equation by  extended trial function scheme. Optik, 165, 102– 110.

[21] Odabasi, M., Misirli, E. (2017). A note on the  traveling wave solutions of some nonlinear  evolution equations. Optik, 142, 394–400.

[22] Odabasi, M., Misirli, E. (2018). On the solutions of  the nonlinear fractional differential equations via  the modifed trial equation method. Mathematical  Methods in the Applied Sciences, 41, 904–911.

[23] Odabasi, M. (2020). Traveling wave solutions of  conformable time-fractional Zakharov–Kuznetsov  and Zoomeron equations. Chinese Journal of  Physics, 64, 194–202.

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing