AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025410419
Cite this article
15
Download
431
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW ARTICLE

Three-dimensional bioprinting in tendon/ ligament–bone interface regeneration: From design innovations to performance enhancement

Ying Ji1,2† Zheng Lv3† Hongfu Jin1,2 Jiahui Chen1,2 Xin Tang1,2*
Show Less
1 Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
2 Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
3 Department of Nuclear Medicine, Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
†These authors contributed equally to this work.
Received: 11 October 2025 | Accepted: 7 November 2025 | Published online: 12 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The tendon/ligament–bone (T/L–B) interface represents a critical junction where tendons and ligaments anchor to bone and is characterized by a complex, graded structure. Pathological conditions caused by aging, lifestyle factors, or trauma can severely impair this interface, leading to functional deficits and a significant decline in quality of life. However, replicating the intricate structural and biological features of the native T/L–B interface remains a major challenge with conventional fabrication methods. In this context, three-dimensional (3D) bioprinting has emerged as a promising approach for tissue repair and regeneration. This review aims to summarize the application of 3D bioprinting technologies in the reconstruction of the T/L–B interface. The review first provides a brief overview of the biology of the T/L–B interface. It then examines recent innovations in 3D printing technologies, biomaterials, and gradient structure design applied to interface regeneration. The review also explores strategies for optimizing the mechanical performance and bioactivity of 3D-bioprinted scaffolds for T/L–B interface regeneration. Finally, it highlights current challenges and future directions for advancing 3D bioprinting in this field. This review provides new insights into the clinical translation of 3D-bioprinted T/L–B interface constructs and may inform the future development of next-generation orthopedic implants.  

Graphical abstract
Keywords
Gradient scaffold design
Tendon/ligament–bone interface
Three-dimensional bioprinting
Tissue engineering
Funding
This work was funded by the National Natural Science Foundation of China (Grabt Nos. 82072514 and 82272569).
Conflict of interest
The authors declare that they have no conflicts of interest.
References
  1. Wang D, Zhang X, Huang S, et al. Engineering multi-tissue units for regenerative medicine: Bone-tendon-muscle units of the rotator cuff. Biomaterials. 2021;272:120789. doi: 10.1016/j.biomaterials.2021.120789
  2. Rossetti L, Kuntz LA, Kunold E, et al. The microstructure and micromechanics of the tendon-bone insertion. Nat Mater. 2017;16(6):664–670. doi: 10.1038/nmat4863
  3. Moffat KL, Sun WH, Pena PE, et al. Characterization of the structure-function relationship at the ligament-to-bone interface. Proc. Natl Acad Sci USA. 2008;105(23):7947–7952. doi: 10.1073/pnas.0712150105
  4. Zhu C, Qiu J, Thomopoulos S, Xia Y. Augmenting tendon-to-bone repair with functionally graded scaffolds. Adv. Healthcare Mater. 2021;10(9):e2002269. doi: 10.1002/adhm.202002269
  5. Wang H, He K, Cheng CK. The structure, biology, and mechanical function of tendon/ligament-bone interfaces. Tissue Eng Part B Rev. 2024;30(5):545–558. doi: 10.1089/ten.TEB.2023.0295
  6. Zhong S, Lan Y, Liu J, et al. Advances focusing on the application of decellularization methods in tendon-bone healing. J Adv Res. 2025;67:361–372. doi: 10.1016/j.jare.2024.01.020
  7. Lu HH, Thomopoulos S. Functional attachment of soft tissues to bone: Development, healing, and tissue engineering. Annu Rev Biomed Eng. 2013;15:201–226. doi: 10.1146/annurev-bioeng-071910-124656
  8. Khalak FA, Decuyper JM, Khalak KA, Alonso SR, Saenz- Del-Burgo L, Pedraz Muñoz JL. 3D bioprinting approaches for musculoskeletal interfaces in tissue engineering. Int J Pharm. 2025;682:125939. doi: 10.1016/j.ijpharm.2025.125939
  9. Maffulli N, Longo UG, Gougoulias N, Caine D, Denaro V. Sport injuries: A review of outcomes. Br Med Bull. 2011;97:47–80. doi: 10.1093/bmb/ldq026
  10. Bedi A, Bishop J, Keener J, et al. Rotator cuff tears. Nat Rev Dis Primers. 2024;10(1):8. doi: 10.1038/s41572-024-00492-3
  11. Maniar N, Cole MH, Bryant AL, Opar DA. Muscle force contributions to anterior cruciate ligament loading. Sports Med (Auckland, NZ). 2022;52(8):1737–1750. doi: 10.1007/s40279-022-01674-3
  12. Bram JT, Magee LC, Mehta NN, Patel NM, Ganley TJ. Anterior cruciate ligament injury incidence in adolescent athletes: A systematic review and meta-analysis. Am J Sports Med. 2021;49(7):1962–1972. doi: 10.1177/0363546520959619
  13. Font Tellado S, Balmayor ER, Van Griensven M. Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors. Adv Drug Deliv Rev. 2015;94:126–40. doi: 10.1016/j.addr.2015.03.004
  14. Lei T, Zhang T, Ju W, et al. Biomimetic strategies for tendon/ ligament-to-bone interface regeneration. Bioact Mater. 2021;6(8):2491–2510. doi: 10.1016/j.bioactmat.2021.01.022
  15. Chen S, McCarthy A, John JV, Su Y, Xie J. Converting 2D nanofiber membranes to 3D hierarchical assemblies with structural and compositional gradients regulates cell behavior. Adv Mater (Deerfield Beach, Fla). 2020;32(43):e2003754. doi: 10.1002/adma.202003754
  16. Yang R, Zheng Y, Zhang Y, et al. Bipolar metal flexible electrospun fibrous membrane based on metal-organic framework for gradient healing of tendon-to-bone interface regeneration. Adv Healthc Mater. 2022;11(12):e2200072. doi: 10.1002/adhm.202200072
  17. Chen Y, Li Y, Zhu W, Liu Q. Biomimetic gradient scaffolds for the tissue engineering and regeneration of rotator cuff enthesis. Biofabrication. 2024;16(3). doi: 10.1088/1758-5090/ad467d
  18. Chen K, Liu Z, Zhou X, et al. Hierarchy reproduction: Multiphasic strategies for tendon/ligament-bone junction repair. Biomat Res. 2025;29:0132. doi: 10.34133/bmr.0132
  19. Fang L, Lin X, Xu R, et al. Advances in the development of gradient scaffolds made of nano-micromaterials for musculoskeletal tissue regeneration. Nano-Micro Lett. 2024;17(1):75. doi: 10.1007/s40820-024-01581-4
  20. Ostrovidov S, Salehi S, Costantini M, et al. 3D bioprinting in skeletal muscle tissue engineering. Small (Weinheim an der Bergstrasse, Germany). 2019;15(24):e1805530. doi: 10.1002/smll.201805530
  21. Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016;34(4):422–434. doi: 10.1016/j.biotechadv.2015.12.011
  22. Mei Q, Rao J, Bei HP, Liu Y, Zhao X. 3D bioprinting photo-crosslinkable hydrogels for bone and cartilage repair. Int J Bioprint. 2021;7(3):367. doi: 10.18063/ijb.v7i3.367
  23. Fang W, Yang M, Wang L, et al. Hydrogels for 3D bioprinting in tissue engineering and regenerative medicine: Current progress and challenges. Int J Bioprint. 2023;9(5):759. doi: 10.18063/ijb.759
  24. Park W, Gao G, Cho DW. Tissue-specific decellularized extracellular matrix bioinks for musculoskeletal tissue regeneration and modeling using 3d bioprinting technology. Int J Mol Sci. 2021;22(15). doi: 10.3390/ijms22157837
  25. Altunbek M, Afghah F, Caliskan OS, Yoo JJ, Koc B. Design and bioprinting for tissue interfaces. Biofabrication. 2023;15(2). doi: 10.1088/1758-5090/acb73d
  26. Bai X, Yang Y, Chu J, Deng Y, Li M, Yang H. 3D bioprinting patient-specific grafts for tendon/ligament repair in motion: Emerging trends and challenges. Front Bioeng Biotechnol. 2025;13:1643430. doi: 10.3389/fbioe.2025.1643430
  27. Xu T, Rao J, Mo Y, et al. 3D printing in musculoskeletal interface engineering: Current progress and future directions. Adv Drug Deliv Rev. 2025;219:115552. doi: 10.1016/j.addr.2025.115552
  28. Chae S, Cho DW. Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering. Acta Biomater. 2023;156:4–20. doi: 10.1016/j.actbio.2022.08.004
  29. Chen P, Cui L, Fu SC, et al. The 3D-printed PLGA scaffolds loaded with bone marrow-derived mesenchymal stem cells augment the healing of rotator cuff repair in the rabbits. Cell Transplant. 2020;29:963689720973647. doi: 10.1177/0963689720973647
  30. Micalizzi S, Russo L, Giacomelli C, et al. Multimaterial and multiscale scaffold for engineering enthesis organ. Int J Bioprint. 2023;9(5):763. doi: 10.18063/ijb.763
  31. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–785. doi: 10.1038/nbt.2958
  32. Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J. Printability and shape fidelity of bioinks in 3d bioprinting. Chem Rev. 2020;120(19):11028–11055. doi: 10.1021/acs.chemrev.0c00084
  33. Lee SJ, Jeong W, Atala A. 3D bioprinting for engineered tissue constructs and patient-specific models: Current Progress and prospects in clinical applications. Adv Mater (Deerfield Beach, Fla). 2024;36(49):e2408032. doi: 10.1002/adma.202408032
  34. Malda J, Visser J, Melchels FP, et al. 25th anniversary article: Engineering hydrogels for biofabrication. Adv Mater (Deerfield Beach, Fla). 2013;25(36):5011–5028. doi: 10.1002/adma.201302042
  35. Derby B. Printing and prototyping of tissues and scaffolds. Science (New York, NY). 2012;338(6109):921–926. doi: 10.1126/science.1226340
  36. Li L, Wang P, Liang H, et al. Design of a Haversian system-like gradient porous scaffold based on triply periodic minimal surfaces for promoting bone regeneration. J Adv Res. 2023;54:89–104. doi: 10.1016/j.jare.2023.01.004
  37. Liu X, Hao M, Chen Z, et al. 3D bioprinted neural tissue constructs for spinal cord injury repair. Biomaterials. 2021;272:120771. doi: 10.1016/j.biomaterials.2021.120771
  38. Shapira A, Dvir T. 3D tissue and organ printing-hope and reality. Adv Sci (Weinheim, Baden-Wurttemberg, Germany). 2021;8(10):2003751. doi: 10.1002/advs.202003751
  39. Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/ organ regenerative engineering. Biomaterials. 2020; 226:119536. doi: 10.1016/j.biomaterials.2019.119536
  40. Wang Z, Kapadia W, Li C, et al. Tissue-specific engineering: 3D bioprinting in regenerative medicine. J Control Rel: Offic J Control Rel Soc. 10 2021;329:237–256. doi: 10.1016/j.jconrel.2020.11.044
  41. Akbari M, Khademhosseini A. Tissue bioprinting for biology and medicine. Cell. 2022;185(15):2644–2648. doi: 10.1016/j.cell.2022.06.015
  42. Liu W, Zhang YS, Heinrich MA, et al. Rapid continuous multimaterial extrusion bioprinting. Adv Mater (Deerfield Beach, Fla). 2017;29(3). doi: 10.1002/adma.201604630
  43. Jiang X, Kong Y, Kuss M, et al. 3D bioprinting of multilayered scaffolds with spatially differentiated ADMSCs for rotator cuff tendon-to-bone interface regeneration. Appl Mater Today. 2022;27:101510. doi: 10.1016/j.apmt.2022.101510
  44. Ker ED, Nain AS, Weiss LE, et al. Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment. Biomaterials. 2011;32(32):8097–9107. doi: 10.1016/j.biomaterials.2011.07.025
  45. Miri AK, Nieto D, Iglesias L, et al. Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Adv Mater (Deerfield Beach, Fla). 2018;30(27):e1800242. doi: 10.1002/adma.201800242
  46. Xie X, Wang Y, Li Z, et al. Recent advances in gradient biomimetic scaffolds for tendon-bone interface regeneration. Front Bioeng Biotechnol. 2025;13:1629816. doi: 10.3389/fbioe.2025.1629816
  47. Du L, Qin C, Zhang H, et al. Multicellular Bioprinting of Biomimetic Inks for Tendon-to-Bone Regeneration. Adv Sci (Weinheim, Baden-Wurttemberg, Germany). 2023;10(21):e2301309. doi: 10.1002/advs.202301309
  48. Chae S, Sun Y, Choi YJ, Ha DH, Jeon I, Cho DW. 3D cell-printing of tendon-bone interface using tissue-derived extracellular matrix bioinks for chronic rotator cuff repair. Biofabrication. 2021;13(3). doi: 10.1088/1758-5090/abd159
  49. Zhu Y, Yu X, Liu H, et al. Strategies of functionalized GelMA-based bioinks for bone regeneration: Recent advances and future perspectives. Bioact Mater. 2024;38:346–373. doi: 10.1016/j.bioactmat.2024.04.032
  50. Abbasi N, Ivanovski S, Gulati K, Love RM, Hamlet S. Role of offset and gradient architectures of 3-D melt electrowritten scaffold on differentiation and mineralization of osteoblasts. Biomater Res. 2020;24:2. doi: 10.1186/s40824-019-0180-z
  51. Zhang X, Song W, Han K, et al. Three-dimensional bioprinting of a structure-, composition-, and mechanics-graded biomimetic scaffold coated with specific decellularized extracellular matrix to improve the tendon-to-bone healing. ACS Appl Mater Interfaces. 2023;15(24):28964–28980. doi: 10.1021/acsami.3c03793
  52. Chae S, Yong U, Park W, et al. 3D cell-printing of gradient multi-tissue interfaces for rotator cuff regeneration. Bioact. Mater. 2023;19:611–625. doi: 10.1016/j.bioactmat.2022.05.004
  53. Rak Kwon D, Jung S, Jang J, Park GY, Suk Moon Y, Lee SC. A 3-Dimensional bioprinted scaffold with human umbilical cord blood-mesenchymal stem cells improves regeneration of chronic full-thickness rotator cuff tear in a rabbit model. Am J Sports Med. 2020;48(4):947–958. doi: 10.1177/0363546520904022
  54. Du L, Wu J, Han Y, Wu C. Immunomodulatory multicellular scaffolds for tendon-to-bone regeneration. Sci. Adv. 2024;10(10):eadk6610. doi: 10.1126/sciadv.adk6610
  55. Anjum S, Li T, Saeed M, Ao Q. Exploring polysaccharide and protein-enriched decellularized matrix scaffolds for tendon and ligament repair: A review. Int J Biol Macromol. 2024;254(Pt 2):127891. doi: 10.1016/j.ijbiomac.2023.127891
  56. Cao Y, Yang S, Zhao D, et al. Three-dimensional printed multiphasic scaffolds with stratified cell-laden gelatin methacrylate hydrogels for biomimetic tendon-to-bone interface engineering. J Orthop Transl. 2020;23:89–100. doi: 10.1016/j.jot.2020.01.004
  57. Han J, Han SC, Kim YK, et al. Bioactive scaffold with spatially embedded growth factors promotes bone-to-tendon interface healing of chronic rotator cuff tear in rabbit model. Am J Sports Med. 2023;51(9):2431–2442. doi: 10.1177/03635465231180289
  58. Bai L, Han Q, Meng Z, et al. Bioprinted living tissue constructs with layer-specific, growth factor-loaded microspheres for improved enthesis healing of a rotator cuff. Acta Biomater. 2022;154:275–289. doi: 10.1016/j.actbio.2022.10.058
  59. Tarafder S, Brito JA, Minhas S, Effiong L, Thomopoulos S, Lee CH. In situ tissue engineering of the tendon-to-bone interface by endogenous stem/progenitor cells. Biofabrication. 2019;12(1):015008. doi: 10.1088/1758-5090/ab48ca
  60. Lui H, Bindra R, Baldwin J, Ivanovski S, Vaquette C. Additively manufactured multiphasic bone-ligament-bone scaffold for scapholunate interosseous ligament reconstruction. Adv Healthcare Mater. 2019;8(14):e1900133. doi: 10.1002/adhm.201900133
  61. Feng F, He J, Li J, Mao M, Li D. Multicomponent bioprinting of heterogeneous hydrogel constructs based on microfluidic printheads. Int J Bioprint. 2019;5(2):202. doi: 10.18063/ijb.v5i2.202
  62. Beldjilali-Labro M, Garcia Garcia A, Farhat F, et al. Biomaterials in tendon and skeletal muscle tissue engineering: Current trends and challenges. Materials (Basel, Switzerland). 2018;11(7). doi: 10.3390/ma11071116
  63. Ma D, Wang J, Zheng M, et al. Degradation behavior of ZE21C magnesium alloy suture anchors and their effect on ligament-bone junction repair. Bioact. Mater. 2023;26:128–141. doi: 10.1016/j.bioactmat.2023.02.021
  64. Dong Y, Li J, Jiang Q, et al. Structure, ingredient, and function-based biomimetic scaffolds for accelerated healing of tendon-bone interface. J Orthop Transl. 2024;48:70–88. doi: 10.1016/j.jot.2024.07.007
  65. Zhang X, Li K, Wang C, et al. Facile and rapid fabrication of a novel 3D-printable, visible light-crosslinkable and bioactive polythiourethane for large-to-massive rotator cuff tendon repair. Bioact Mater. 2024;37:439–458. doi: 10.1016/j.bioactmat.2024.03.036
  66. Liu F, Luo S, Li J, et al. Laser-induced 3D graphene enabled polymer composites with improved mechanical and electrical properties toward multifunctional performance. Adv Sci (Weinheim, Baden-Wurttemberg, Germany). 2025:e09039. doi: 10.1002/advs.202509039
  67. Huang W, Zhang J, Singh V, et al. Digital light 3D printing of a polymer composite featuring robustness, self-healing, recyclability and tailorable mechanical properties. Addit Manuf. 2023;61:None. doi: 10.1016/j.addma.2022.103343
  68. Wang J, Wu Y, Li G, et al. Engineering large-scale self-mineralizing bone organoids with bone matrix-inspired hydroxyapatite hybrid bioinks. Adv Mater (Deerfield Beach, Fla). 2024;36(30):e2309875. doi: 10.1002/adma.202309875
  69. Barrera Bernal JL, Gaytán Salvatella Í, Del Campo BIM, Alvarez Perez MA, Masuoka-Ito D. Synthesis of hydroxyapatite-gelatin composite hydrogel for bone tissue application. Gels (Basel, Switzerland). 2025;11(8). doi: 10.3390/gels11080630
  70. Silva M, Gomes S, Correia C, et al. Biocompatible 3D-printed tendon/ligament scaffolds based on polylactic acid/graphite nanoplatelet composites. Nanomaterials (Basel, Switzerland). 2023;13(18). doi: 10.3390/nano13182518
  71. Balestri W, Hickman GJ, Morris RH, Hunt JA, Reinwald Y. Triphasic 3D in vitro model of bone-tendon-muscle interfaces to study their regeneration. Cells. 2023;12(2). doi: 10.3390/cells12020313
  72. Gu J, Zhang Q, Geng M, et al. Construction of nanofibrous scaffolds with interconnected perfusable microchannel networks for engineering of vascularized bone tissue. Bioact. Mater. 2021;6(10):3254–3268. doi: 10.1016/j.bioactmat.2021.02.033
  73. Hann SY, Cui H, Esworthy T, et al. Dual 3D printing for vascularized bone tissue regeneration. Acta Biomater. 2021;123:263–274. doi: 10.1016/j.actbio.2021.01.012
  74. Luo Y, Zhang T, Lin X. 3D printed hydrogel scaffolds with macro pores and interconnected microchannel networks for tissue engineering vascularization. Chem Eng J. 2022;430:132926. doi: 10.1016/j.cej.2021.132926
  75. Kim W, Kwon DR, Lee H, et al. 3D bioprinted multi-layered cell constructs with gradient core-shell interface for tendon-to-bone tissue regeneration. Bioact Mater. 2025; 43:471–490. doi: 10.1016/j.bioactmat.2024.10.002
  76. Zhou B, Jiang X, Zhou X, et al. GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: Therapeutic strategies and recent advances. Biomater Res. 2023;27(1):86. doi: 10.1186/s40824-023-00422-6
  77. Shanto PC, Park S, Fahad MAA, Park M, Lee BT. 3D bio-printed proteinaceous bioactive scaffold loaded with dual growth factor enhanced chondrogenesis and in situ cartilage regeneration. Bioact Mater. 2025;46:365–385. doi: 10.1016/j.bioactmat.2024.12.021
  78. Choe G, Lee M, Oh S, et al. Three-dimensional bioprinting of mesenchymal stem cells using an osteoinductive bioink containing alginate and BMP-2-loaded PLGA nanoparticles for bone tissue engineering. Biomater Adv. 2022; 136:212789. doi: 10.1016/j.bioadv.2022.212789
  79. Lu J, Gao Y, Cao C, et al. 3D bioprinted scaffolds for osteochondral regeneration: advancements and applications. Mater Today Bio. 2025;32:101834. doi: 10.1016/j.mtbio.2025.101834
  80. Yu K, Huangfu H, Qin Q, et al. Application of bone marrow-derived macrophages combined with bone mesenchymal stem cells in dual-channel three-dimensional bioprinting scaffolds for early immune regulation and osteogenic induction in rat calvarial defects. ACS Appl Mater Interf. 2022;14(41):47052–47065. doi: 10.1021/acsami.2c13557
  81. Liang W, Ao R, Xu M, et al. Bifunctional adECM bioscaffold with STIM1-ASCs and IGF-2 promotes functional masseter VML repair via myogenesis and fibrosis suppression. Bioact Mater. 2025;54:466–491. doi: 10.1016/j.bioactmat.2025.08.019
  82. Thattaruparambil Raveendran N, Vaquette C, Meinert C, Samuel Ipe D, Ivanovski S. Optimization of 3D bioprinting of periodontal ligament cells. Dent Mater: Offic Publ Acad Dent Mater. 2019;35(12):1683–1694. doi: 10.1016/j.dental.2019.08.114
  83. Jiang X, Wu S, Kuss M, et al. 3D printing of multilayered scaffolds for rotator cuff tendon regeneration. Bioact Mater. 2020;5(3):636–643. doi: 10.1016/j.bioactmat.2020.04.017
  84. Park SH, Choi YJ, Moon SW, et al. Three-dimensional bio-printed scaffold sleeves with mesenchymal stem cells for enhancement of tendon-to-bone healing in anterior cruciate ligament reconstruction using soft-tissue tendon graft. Arthroscopy. 2018;34(1):166–179. doi: 10.1016/j.arthro.2017.04.016
  85. Ni Y, Tian B, Lv J, et al. 3D-printed PCL scaffolds loaded with bFGF and BMSCs enhance tendon-bone healing in rat rotator cuff tears by immunomodulation and osteogenesis promotion. ACS Biomater Sci Eng. 2025;11(2): 1123–1139. doi: 10.1021/acsbiomaterials.4c02340
  86. Wang L, Wang C, Wu S, Fan Y, Li X. Influence of the mechanical properties of biomaterials on degradability, cell behaviors and signaling pathways: Current progress and challenges. Biomater Sci. 2020;8(10):2714–2733. doi: 10.1039/d0bm00269k
  87. Jia B, Huang H, Dong Z, et al. Degradable biomedical elastomers: Paving the future of tissue repair and regenerative medicine. Chem Soc Rev. 2024;53(8):4086–4153. doi: 10.1039/d3cs00923h
  88. Li C, Guo C, Fitzpatrick V, et al. Design of biodegradable, implantable devices towards clinical translation. Nat Rev Mater. 2020;5(1):61–81. doi: 10.1038/s41578-019-0150-z
  89. L GE, Farias NC, J SC, et al. Designing sustainable polymer blends: Tailoring mechanical properties and degradation behaviour in PHB/PLA/PCL blends in a seawater environment. Polymers. 2023;15(13). doi: 10.3390/polym15132874
  90. Zhang X, Wu Y, Han K, et al. 3-Dimensional bioprinting of a tendon stem cell-derived exosomes loaded scaffold to bridge the unrepairable massive rotator cuff tear. Am J Sports Med. 2024;52(9):2358–2371. doi: 10.1177/03635465241255918
  91. Chen P, Cui L, Chen G, et al. The application of BMP-12- overexpressing mesenchymal stem cells loaded 3D-printed PLGA scaffolds in rabbit rotator cuff repair. Int J Biol Macromol. 2019;138:79–88. doi: 10.1016/j.ijbiomac.2019.07.041
  92. Golafshan N, Castilho M, Daghrery A, et al. Composite graded melt electrowritten scaffolds for regeneration of the periodontal ligament-to-bone interface. ACS Appl Mater Interf. 2023;15(10):12735–12749. doi: 10.1021/acsami.2c21256
  93. Yu C, Chen R, Chen J, et al. Enhancing tendon-bone integration and healing with advanced multi-layer nanofiber-reinforced 3D scaffolds for acellular tendon complexes. Mater Today Bio. 2024;26:101099. doi: 10.1016/j.mtbio.2024.101099
  94. Luo W, Wang Y, Han Q, et al. Advanced strategies for constructing interfacial tissues of bone and tendon/ligament. J Tissue Eng. 2022;13:20417314221144714. doi: 10.1177/20417314221144714
  95. Tang Y, Wang Z, Xiang L, Zhao Z, Cui W. Functional biomaterials for tendon/ligament repair and regeneration. Regener Biomater. 2022;9:rbac062. doi: 10.1093/rb/rbac062
  96. Steltzer SS, Abraham AC, Killian ML. Interfacial tissue regeneration with bone. Curr Osteop Rep. 2024;22(2):290–298. doi: 10.1007/s11914-024-00859-1
  97. Golman M, Abraham AC, Kurtaliaj I, et al. Toughening mechanisms for the attachment of architectured materials: The mechanics of the tendon enthesis. Sci Adv. 2021;7(48):eabi5584. doi: 10.1126/sciadv.abi5584
  98. Li Y, Zhou M, Zheng W, Yang J, Jiang N. Scaffold-based tissue engineering strategies for soft-hard interface regeneration. Regener Biomater. 2023;10:rbac091. doi: 10.1093/rb/rbac091
  99. Chen C, Shi Q, Li M, et al. Engineering an enthesis-like graft for rotator cuff repair: An approach to fabricate highly biomimetic scaffold capable of zone-specifically releasing stem cell differentiation inducers. Bioact Mater. 2022;16:451–471. doi: 10.1016/j.bioactmat.2021.12.021
  100. Sun Han Chang RA, Shanley JF, Kersh ME, Harley BAC. Tough and tunable scaffold-hydrogel composite biomaterial for soft-to-hard musculoskeletal tissue interfaces. Sci Adv. 2020;6(34):eabb6763. doi: 10.1126/sciadv.abb6763
  101. Rose JC, De Laporte L. Hierarchical design of tissue regenerative constructs. Adv Healthc Mater. 2018;7(6):e1701067. doi: 10.1002/adhm.201701067
  102. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34(3):312–319. doi: 10.1038/nbt.3413
  103. Potyondy T, Uquillas JA, Tebon PJ, et al. Recent advances in 3D bioprinting of musculoskeletal tissues. Biofabrication. 2021;13(2). doi: 10.1088/1758-5090/abc8de
  104. Xie X, Cai J, Li D, et al. Multiphasic bone-ligament-bone integrated scaffold enhances ligamentization and graft-bone integration after anterior cruciate ligament reconstruction. Bioact Mater. 2024;31:178–191. doi: 10.1016/j.bioactmat.2023.08.004
  105. Pitta Kruize C, Panahkhahi S, Putra NE, et al. Biomimetic approaches for the design and fabrication of bone-to-soft tissue interfaces. ACS Biomater Sci Eng. 2023;9(7): 3810–3831. doi: 10.1021/acsbiomaterials.1c00620
  106. Aykora D, Taşçı B, Şahin MZ, et al. Tendon regeneration deserves better: Focused review on In vivo models, artificial intelligence and 3D bioprinting approaches. Front Bioeng Biotechnol. 2025;13:1580490. doi: 10.3389/fbioe.2025.1580490
  107. Gracey E, Burssens A, Cambré I, et al. Tendon and ligament mechanical loading in the pathogenesis of inflammatory arthritis. Nat Rev Rheumatol. 2020;16(4):193–207. doi: 10.1038/s41584-019-0364-x
  108. Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SCG. Self-healing injectable hydrogels for tissue regeneration. Chem Rev. 2023;123(2):834–873. doi: 10.1021/acs.chemrev.2c00179
  109. Li Y, Chen C, Jiang J, et al. Bioactive film-guided soft-hard interface design technology for multi-tissue integrative regeneration. Adv Sci (Weinheim, Baden-Wurttemberg, Germany). 2022;9(15):e2105945. doi: 10.1002/advs.202105945
  110. Xiao L, Sun Y, Liao L, Su X. Response of mesenchymal stem cells to surface topography of scaffolds and the underlying mechanisms. J Mater Chem B. 2023;11(12):2550–2567. doi: 10.1039/d2tb01875f
  111. Agarwal T, Onesto V, Banerjee D, et al. 3D bioprinting in tissue engineering: Current state-of-the-art and challenges towards system standardization and clinical translation. Biofabrication. 2025;17(4). doi: 10.1088/1758-5090/ade47a
  112. Raees S, Ullah F, Javed F, et al. Classification, processing, and applications of bioink and 3D bioprinting: A detailed review. Int J Biol Macromol. 2023;232:123476. doi: 10.1016/j.ijbiomac.2023.123476
  113. Wang Z, Xiang L, Lin F, Tang Y, Cui W. 3D bioprinting of emulating homeostasis regulation for regenerative medicine applications. J Control Rel: Offic J Control Rel Soc. 2023;353:147–165. doi: 10.1016/j.jconrel.2022.11.035
  114. Yuan Z, Bai X, Li S, et al. Multimaterial and multidimensional bioprinting in regenerative medicine: Advances, limitations, and future directions. Adv Healthc Mater. 2025;14(18):e2500475. doi: 10.1002/adhm.202500475
  115. Mozammal HMD, Lee H. A comprehensive review in the advancements of bioprinting for tissue engineering using polysaccharide biomaterials and a future strategies. Int J Biol Macromol. 2025;322(Pt 3):146667. doi: 10.1016/j.ijbiomac.2025.146667
  116. Li Y, Wu J, He C, et al. 3D prestress bioprinting of directed tissues. Adv Healthc Mater. 2023;12(28):e2301487. doi: 10.1002/adhm.202301487

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing