AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025310311
RESEARCH ARTICLE

Evaluation of biomechanical properties and early osseointegration of biomimetic bone trabecular Ti6Al4V scaffolds based on Voronoi design

Jinghong Yang1,2† Zi Wang1,3,4† Lujun Jiang1,3,4† Zhong Li1,3,4* Linlin Liu5* Juncai Liu1,3,4*
Show Less
1 Department of Orthopedics, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
2 Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
3 Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
4 Sichuan Provincial Laboratory of Orthopaedic Engineering, Southwest Medical University, Luzhou, Sichuan, China
5 School of Integrated Circuits, Chongqing University of Posts and Telecommunications, Chongqing, China
†These authors contributed equally to this work.
Received: 31 July 2025 | Accepted: 22 September 2025 | Published online: 22 September 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Ti6Al4V scaffolds demonstrate significant translational potential for bone defect reconstruction by virtue of their exceptional biocompatibility and corrosion resistance. However, achieving concurrent osseointegration enhancement and mechanical compatibility with native cancellous bone remains a critical design constraint. A trabecular bone-mimetic porous Ti6Al4V scaffold was fabricated via Voronoi-tessellated computer-aided design and selective laser melting. Precise modulation of pore architecture enabled controlled porosity. The mechanical properties of the scaffold were characterized through compression testing. Early-stage in vivo osseointegration was evaluated at weeks 4 and 12 in a rabbit femoral condyle defect model using histomorphometry and micro-computed tomography, with comparisons made against conventional strut-based and G-curved lattice structures. The Voronoi scaffold demonstrated an elastic modulus and yield strength comparable to cancellous bone, thereby mitigating stress-shielding effects. Additionally, according to the results from the biomechanics, computational fluid dynamics, and in vivo analyses, the scaffold demonstrated significantly enhanced osteogenic potential and superior bone-implant interface integration compared to the strut and triply periodic minimal surface (TPMS) designs. In conclusion, the Voronoi design provides an effective biomimetic strategy for fabricating porous titanium alloy bone scaffolds with enhanced osteogenic properties, which embody higher potential than conventional struts and TPMS structures in facilitating bone defect repair.  

Graphical abstract
Keywords
Biomechanics
Computational fluid dynamics
Osseointegration
Ti6Al4V scaffolds
Voronoi
Funding
This study was supported by the Sichuan Science and Technology Program (2024YFHZ0067; awarded to J.L.) and the China Postdoctoral Science Foundation (2023MD744134; awarded to L.L.).
Conflict of interest
All authors report no conflicts of interest relevant to the contents of this paper.
References
  1. Jing Z, Zhang T, Xiu P, et al. Functionalization of 3D-printed titanium alloy orthopedic implants: a literature review. Biomed Mater. 2020;15(5):052003. doi: 10.1088/1748-605X/ab9078
  2. Li L, Shi J, Zhang K, et al. Early osteointegration evaluation of porous Ti6Al4V scaffolds designed based on triply periodic minimal surface models. J Orthop Translat. 2019;19:94-105. doi: 10.1016/j.jot.2019.03.003
  3. Revilla-León M, Meyer MJ, Özcan M. Metal additive manufacturing technologies: literature review of current status and prosthodontic applications. Int J Comput Dent. 2019;22(1):55-67.
  4. Alammar A, Kois JC, Revilla-León M, Att W. Additive Manufacturing Technologies: Current Status and Future Perspectives. J Prosthodont. 2022;31(S1):4-12. doi: 10.1111/jopr.13477
  5. Liu F, Ran Q, Zhao M, Zhang T, Zhang DZ, Su Z. Additively manufactured continuous cell-size gradient porous scaffolds: pore characteristics, mechanical properties and biological responses in vitro. Materials (Basel). 2020;13(11):2589. doi: 10.3390/ma13112589
  6. Ran Q, Yang W, Hu Y, et al. Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes. J Mech Behav Biomed Mater. 2018;84:1-11. doi: 10.1016/j.jmbbm.2018.04.010
  7. Arjunan A, Demetriou M, Baroutaji A, Wang C. Mechanical performance of highly permeable laser melted Ti6Al4V bone scaffolds. J Mech Behav Biomed Mater. 2020;102:103517. doi: 10.1016/j.jmbbm.2019.103517
  8. Wang H, Su K, Su L, Liang P, Ji P, Wang C. The effect of 3D-printed Ti(6)Al(4)V scaffolds with various macropore structures on osteointegration and osteogenesis: a biomechanical evaluation. J Mech Behav Biomed Mater. 2018;88:488-496. doi: 10.1016/j.jmbbm.2018.08.049
  9. Gryko A, Prochor P, Sajewicz E. Finite element analysis of the influence of porosity and pore geometry on mechanical properties of orthopaedic scaffolds. J Mech Behav Biomed Mater. 2022;132:105275. doi: 10.1016/j.jmbbm.2022.105275
  10. Van Bael S, Chai YC, Truscello S, et al. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomater. 2012;8(7):2824-34. doi: 10.1016/j.actbio.2012.04.001
  11. Chen Z, Yan X, Yin S, et al. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Mater Sci Eng C Mater Biol Appl. 2020;106:110289. doi: 10.1016/j.msec.2019.110289
  12. Coburn B, Salary RR. Mechanical characterization of porous bone-like scaffolds with complex microstructures for bone regeneration. Bioengineering (Basel). 2025;12(4):416. doi: 10.3390/bioengineering12040416
  13. Kumar PV, Pal S, Birru AK, Jaganathan BG, Muthu N. 3D-printed TPMS-structured hybrid PLA/MgTiO(3) scaffolds: Synergizing bioactivity and antibacterial performance for bone regeneration. Biomater Adv. 2025;177:214370. doi: 10.1016/j.bioadv.2025.214370
  14. Pazhamannil RV, Alkhedher M. Advances in additive manufacturing for bone tissue engineering: materials, design strategies, and applications. Biomed Mater. 2024;20(1). doi: 10.1088/1748-605X/ad9dce
  15. Ma J, Li Y, Mi Y, et al. Novel 3D printed TPMS scaffolds: microstructure, characteristics, and applications in bone regeneration. J Tissue Eng. 2024;15:20417314241263689. doi: 10.1177/20417314241263689
  16. Ye J, Miao B, Xiong Y, et al. 3D printed porous magnesium metal scaffolds with bioactive coating for bone defect repair: enhancing angiogenesis and osteogenesis. J Nanobiotechnology. 2025;23(1):160. doi: 10.1186/s12951-025-03222-3
  17. Hao W, Yongtao L, Jian J, Hanxing Z. Data-driven inverse design of novel spinodoid bone scaffolds with highly matched mechanical properties in three orthogonal directions. Mater Des. 2025;251:113697. doi: 10.1016/j.matdes.2025.113697
  18. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5):363-408. doi: 10.1615/critrevbiomedeng.v40.i5.10
  19. Deng F, Liu L, Li Z, Liu J. 3D printed Ti6Al4V bone scaffolds with different pore structure effects on bone ingrowth. J Biol Eng. 2021;15(1):4. doi: 10.1186/s13036-021-00255-8
  20. Vossenberg P, Higuera GA, van Straten G, van Blitterswijk CA, van Boxtel AJ. Darcian permeability constant as indicator for shear stresses in regular scaffold systems for tissue engineering. Biomech Model Mechanobiol. 2009;8(6):499-507. doi: 10.1007/s10237-009-0153-6
  21. Sinha R, Le Gac S, Verdonschot N, van den Berg A, Koopman B, Rouwkema J. Endothelial cell alignment as a result of anisotropic strain and flow induced shear stress combinations. Sci Rep. 2016;6:29510. doi: 10.1038/srep29510
  22. Ali D. Effect of scaffold architecture on cell seeding efficiency: a discrete phase model CFD analysis. Comput Biol Med. 2019;109:62-69. doi: 10.1016/j.compbiomed.2019.04.025
  23. Melchels FP, Tonnarelli B, Olivares AL, et al. The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding. Biomaterials. 2011;32(11): 2878-2884. doi: 10.1016/j.biomaterials.2011.01.023
  24. Beaudoin AJ, Mihalko WM, Krause WR. Finite element modelling of polymethylmethacrylate flow through cancellous bone. J Biomech. 1991;24(2):127-136. doi: 10.1016/0021-9290(91)90357-s
  25. Sun J, Chen C, Zhang B, Yao C, Zhang Y. Advances in 3D-printed scaffold technologies for bone defect repair: materials, biomechanics, and clinical prospects. Biomed Eng Online. 2025;24(1):51. doi: 10.1186/s12938-025-01381-w
  26. Zhang L, Yang G, Johnson BN, Jia X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater. 2019;84:16-33. doi: 10.1016/j.actbio.2018.11.039
  27. Attarilar S, Ebrahimi M, Djavanroodi F, Fu Y, Wang L, Yang J. 3D printing technologies in metallic implants: a thematic review on the techniques and procedures. Int J Bioprint. 2021;7(1):306. doi: 10.18063/ijb.v7i1.306
  28. Distefano F, Pasta S, Epasto G. Titanium lattice structures produced via additive manufacturing for a bone scaffold: a review. J Funct Biomater. 2023;14(3):125. doi: 10.3390/jfb14030125
  29. Elhattab K, Hefzy MS, Hanf Z, et al. Biomechanics of additively manufactured metallic scaffolds-a review. Materials (Basel). 2021;14(22):6833. doi: 10.3390/ma14226833
  30. Wang C, Xu D, Lin L, et al. Large-pore-size Ti6Al4V scaffolds with different pore structures for vascularized bone regeneration. Mater Sci Eng C Mater Biol Appl. 2021;131:112499. doi: 10.1016/j.msec.2021.112499
  31. Zhao F, Xiong Y, Ito K, van Rietbergen B, Hofmann S. Porous geometry guided micro-mechanical environment within scaffolds for cell mechanobiology study in bone tissue engineering. Front Bioeng Biotechnol. 2021;9:736489. doi: 10.3389/fbioe.2021.736489
  32. Fonseca H, Moreira-Gonçalves D, Coriolano HJ, Duarte JA. Bone quality: the determinants of bone strength and fragility. Sports Med. 2014;44(1):37-53. doi: 10.1007/s40279-013-0100-7
  33. Müller R. Hierarchical microimaging of bone structure and function. Nat Rev Rheumatol. 2009;5(7):373-381. doi: 10.1038/nrrheum.2009.107
  34. Gómez S, Vlad MD, López J, Fernández E. Design and properties of 3D scaffolds for bone tissue engineering. Acta Biomater. 2016;42:341-350. doi: 10.1016/j.actbio.2016.06.032
  35. Zhao Z, Li J, Yao D, Wei Y. Mechanical and permeability properties of porous scaffolds developed by a Voronoi tessellation for bone tissue engineering. J Mater Chem B. 2022;10(46):9699-9712. doi: 10.1039/d2tb01478e
  36. Zou S, Gong H, Gao J. Additively manufactured multilevel voronoi-lattice scaffolds with bonelike mechanical properties. ACS Biomater Sci Eng. 2022;8(7):3022-3037. doi: 10.1021/acsbiomaterials.1c01482
  37. Mamuti M, Chao L, Tian Z. Analysis of mechanical characteristics and permeability of TPMS and Voronoi porous structure for bone scaffold. Comput Methods Biomech Biomed Engin. 2024:1-14. doi: 10.1080/10255842.2024.2358378
  38. Zhu L, Liang H, Lv F, et al. Design and compressive fatigue properties of irregular porous scaffolds for orthopedics fabricated using selective laser melting. ACS Biomater Sci Eng. 2021;7(4):1663-1672. doi: 10.1021/acsbiomaterials.0c01392
  39. Morgan EF, Unnikrisnan GU, Hussein AI. Bone mechanical properties in healthy and diseased states. Annu Rev Biomed Eng. 2018;20:119-143. doi: 10.1146/annurev-bioeng-062117-121139
  40. Channasanon S, Kaewkong P, Chantaweroad S, et al. Scaffold geometry and computational fluid dynamics simulation supporting osteogenic differentiation in dynamic culture. Comput Methods Biomech Biomed Engin. 2024;27(5):587-598. doi: 10.1080/10255842.2023.2195961
  41. Prakoso AT, Basri H, Adanta D, et al. The effect of tortuosity on permeability of porous scaffold. Biomedicines. 2023;11(2):427. doi: 10.3390/biomedicines11020427
  42. Lai R, Jiang J, Huo Y, et al. Design of novel graded bone scaffolds based on triply periodic minimal surfaces with multi-functional pores. Front Bioeng Biotechnol. 2025;13:1503582. doi: 10.3389/fbioe.2025.1503582
  43. Pei T, Su G, Yang J, et al. Fluid shear stress regulates osteogenic differentiation via annexina6-mediated autophagy in MC3T3-E1 cells. Int J Mol Sci. 2022;23(24):15702. doi: 10.3390/ijms232415702
  44. Zhao Y, Richardson K, Yang R, et al. Notch signaling and fluid shear stress in regulating osteogenic differentiation. Front Bioeng Biotechnol. 2022;10:1007430. doi: 10.3389/fbioe.2022.1007430
  45. Ferguson BM, Clark JR, Li Q. Scaffold geometries designed to promote bone ingrowth by enhancing mechanobiological stimulation and biotransportation - a multiobjective optimisation approach. J Mech Behav Biomed Mater. 2025;164:106883. doi: 10.1016/j.jmbbm.2024.106883
  46. Liu B, Feng J, Chen J, He Y, Fu J. A topology optimisation-based design method for 3D Voronoi porous structures and its application for medical pillows. Virtual Phys Prototyp. 2023;18(1):e2285392. doi: 10.1080/17452759.2023.2285392

 

 

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing