From cells to organs: Technical challenges of two-photon polymerization in biomedical engineering

Nanomanufacturing technology is crucial in advancing sophisticated biomedical devices, biochips, tissue engineering, and advanced biomedical materials. Two-photon polymerization (TPP) offers nanoscale fabrication precision, eliminates the need for masks, and allows the creation of arbitrary three-dimensional structures, providing technical advantages unparalleled by traditional methods. Applying TPP technology in the biomedical field presents new challenges related to materials and systems. Although there has been significant discussion regarding biomaterials, comparatively little attention has been given to the limitations of manufacturing systems for biomedical functional devices. Commercial TPP systems predominantly rely on point-by-point scanning for fabrication, which leads to low throughput. From a biomedical perspective, the goal is to achieve manufacturing precision at the single-cell level while scaling production throughput to the organ level. Advancements in precision and throughput are critical to expanding the applications of TPP in biomedical engineering. This review introduces the fundamental principles of TPP and summarizes recent advancements in TPP applications within tissue engineering, medical devices, and microfluidics. It then delves into the technological progress of TPP in recent years, focusing on aspects such as system design, manufacturing processes, and fabrication principles. The review highlights advancements in areas including the kinetics of light–matter interactions and the development of cutting-edge techniques such as spatiotemporal focusing. Finally, it discusses future development directions of TPP technology in biomedical applications

- Khademhosseini A, Langer R. Microengineered hydrogels for tissue engineering. Biomaterials. 2007;28(34):5087-5092. doi: 10.1016/j.biomaterials.2007.07.021.
- Asadollahbaik A, Thiele S, Weber K, et al. Highly efficient dual-fiber optical trapping with 3D printed diffractive fresnel lenses. ACS Photonics. 2020;7(1):88-97. doi: 10.1021/acsphotonics.9b01024.
- Zhao H, Liu S. Liu S, Wei Y, et al. Multiscale engineered artificial tooth enamel. Science. 2022;375 (6580):551-556. doi: 10.1126/science.abj3343
- Kawata S, Sun H-B, Tanaka T, et al. Finer features for functional microdevices. Nature. 2001;412(6848):697-698. doi: 10.1038/35089130.
- Greant C, Van Durme B, Van Hoorick J, et al. Multiphoton lithography as a promising tool for biomedical applications. Adv Funct Mater. 2023;33(39):202212641. doi: 10.1002/adfm.202212641.
- Arslan A, Steiger W, Roose P, et al. Polymer architecture as key to unprecedented high-resolution 3D-printing performance: the case of biodegradable hexa-functional telechelic urethane-based poly-ε-caprolactone. Mater Today. 2021;44:25-39. doi: 10.1016/j.mattod.2020.10.005.
- Song J, Michas C, Chen CS, et al. From simple to architecturally complex hydrogel scaffolds for cell and tissue engineering applications: opportunities presented by two-photon polymerization. Adv Healthc Mater. 2020;9(1):e1901217. doi: 10.1002/adhm.201901217.
- Zipfel WR, Williams RM, Webb WW. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol. 2003;21(11):1369-1377. doi: 10.1038/nbt899.
- Somers P, Münchinger A, Maruo S, et al. The physics of 3D printing with light. Nat Rev Phys. 2023;6:99-113. doi: 10.1038/s42254-023-00671-3.
- Mueller JB, Fischer J, Mayer F, et al. Polymerization kinetics in three-dimensional direct laser writing. Adv Mater. 2014;26(38):6566-6571. doi: 10.1002/adma.201402366.
- Fischer J, Mueller JB, Kaschke J, et al. Three-dimensional multi-photon direct laser writing with variable repetition rate. Opt Express. 2013;21(22):26244-26260. doi: 10.1364/OE.21.026244.
- Balena A, Bianco M, Pisanello F, et al. Recent advances on high‐speed and holographic two‐photon direct laser writing. Adv Funct Mater. 2023;33(39). doi: 10.1002/adfm.202211773.
- Maruo S, Nakamura O, Kawata S. Three-dimensional microf abr i c at i on wi th two-photon - ab sor b ed photopolymerization. Opt Lett. 1997;22(2):132-134. doi: 10.1364/OL.22.000132.
- Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920-926. doi: 10.1126/science.8493529.
- Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;17(4):467-479. doi: 10.1007/s00586-008-0745-3.
- Chung S, Ingle NP, Montero GA, et al. Bioresorbable elastomeric vascular tissue engineering scaffolds via melt spinning and electrospinning. Acta Biomater. 2010;6(6):1958-1967. doi: 10.1016/j.actbio.2009.12.007.
- Liu X, Ma PX. Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials. 2009;30(25):4094-4103. doi: 10.1016/j.biomaterials.2009.04.024.
- Sin D, Miao X, Liu G, et al. Polyurethane (PU) scaffolds prepared by solvent casting/particulate leaching (SCPL) combined with centrifugation. Mater Sci Eng C. 2010;30(1):78-85. doi: 10.1016/j.msec.2009.09.002.
- Amensag S, McFetridge PS. Tuning scaffold mechanics by laminating native extracellular matrix membranes and effects on early cellular remodeling. J Biomed Mater Res A. 2014;102(5):1325-1333. doi: 10.1002/jbm.a.34791.
- Li X, Lu W, Xu X, et al. Advanced optical methods and materials for fabricating 3D tissue scaffolds. Light Adv Manuf. 2022;3(3):1. doi: 10.37188/lam.2022.026.
- Lee J-Y, An J, Chua CK. Fundamentals and applications of 3D printing for novel materials. Appl Mater Today. 2017;7:120-133. doi: 10.1016/j.apmt.2017.02.004.
- Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9(1):4. doi: 10.1186/s13036-015-0001-4.
- Zandrini T, Shan O, Parodi V, et al. Multi-foci laser microfabrication of 3D polymeric scaffolds for stem cell expansion in regenerative medicine. Sci Rep. 2019;9(1):11761. doi: 10.1038/s41598-019-48080-w.
- Torgersen J, Qin X-H, Li Z, et al. Hydrogels for two-photon polymerization: a toolbox for mimicking the extracellular matrix. Adv Funct Mater. 2013;23(36):4542-4554. doi: 10.1002/adfm.201203880.
- Ovsianikov A, Schlie S, Ngezahayo A, et al. Two‐photon polymerization technique for microfabrication of CAD‐designed 3D scaffolds from commercially available photosensitive materials. J Tissue Eng Regen Med. 2007;1(6):443-449. doi: 10.1002/term.57.
- Klein F, Striebel T, Fischer J, et al. Elastic fully three-dimensional microstructure scaffolds for cell force measurements. Adv Mater. 2010;22(8):868-871. doi: 10.1002/adma.200902515.
- Klein F, Richter B, Striebel T, et al. Two-component polymer scaffolds for controlled three-dimensional cell culture. Adv Mater. 2011;23(11):1341-1345. doi: 10.1002/adma.201004060.
- Ricci D, Nava MM, Zandrini T, et al. Scaling-up techniques for the nanofabrication of cell culture substrates via two-photon polymerization for industrial-scale expansion of stem cells. Materials. 2017;10(1):66. doi: 10.3390/ma10010066.
- Turunen S, Joki T, Hiltunen ML, et al. Direct laser writing of tubular microtowers for 3D culture of human pluripotent stem cell-derived neuronal cells. ACS Appl Mater Interfaces. 2017;9(31):25717-25730. doi: 10.1021/acsami.7b05536.
- Lemma ED, Spagnolo B, Rizzi F, et al. Microenvironmental stiffness of 3D polymeric structures to study invasive rates of cancer cells. Adv Healthc Mater. 2017;6(22):1700888. doi: 10.1002/adhm.201700888.
- Tudor A, Delaney C, Zhang H, et al. Fabrication of soft, stimulus-responsive structures with sub-micron resolution via two-photon polymerization of poly(ionic liquid)s. Mater Today. 2018;21(8):807-816. doi: 10.1016/j.mattod.2018.07.017.
- Marino A, Tricinci O, Battaglini M, et al. A 3D real-scale, biomimetic, and biohybrid model of the blood-brain barrier fabricated through two-photon lithography. Small. 2018;14(6). doi: 10.1002/smll.201702959.
- Fendler C, Denker C, Harberts J, et al. Microscaffolds by direct laser writing for neurite guidance leading to tailor-made neuronal networks. Adv Biosyst. 2019;3(5):1800329. doi: 10.1002/adbi.201800329.
- Akolawala Q, Rovituso M, Versteeg HH, et al. Evaluation of proton-induced DNA damage in 3D-engineered glioblastoma microenvironments. ACS Appl Mater Interfaces. 2022;14(18):20778-20789. doi: 10.1021/acsami.2c03706.
- Rengaraj A, Bosc L, Machillot P, et al. Engineering of a microscale niche for pancreatic tumor cells using bioactive film coatings combined with 3D-architectured scaffolds. ACS Appl Mater Interfaces. 2022;14(11):13107-13121. doi: 10.1021/acsami.2c01747.
- Costa BNL, Adao RMR, Maibohm C, et al. Cellular interaction of bone marrow mesenchymal stem cells with polymer and hydrogel 3D microscaffold templates. ACS Appl Mater Interfaces. 2022;14(11):13013-13024. doi: 10.1021/acsami.1c23442.
- Kaushik S, Hord AH, Denson DD, et al. Lack of pain associated with microfabricated microneedles. Anesth. Analg. 2001;92(2):502-504. doi: 10.1213/00000539-200102000-00041.
- Ovsianikov A, Chichkov B, Mente P, et al. Two photon polymerization of polymer–ceramic hybrid materials for transdermal drug delivery. Int J Appl Ceram Technol. 2007;4(1):22-29. doi: 10.1111/j.1744-7402.2007.02115.x.
- Prausnitz MR, Langer R, Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261-1268. doi: 10.1038/nbt.1504.
- Faraji Rad Z, Nordon RE, Anthony CJ, et al. High-fidelity replication of thermoplastic microneedles with open microfluidic channels. Microsyst Nanoeng. 2017;3(1):17034. doi: 10.1038/micronano.2017.34.
- Balmert SC, Carey CD, Falo GD, et al. Dissolving undercut microneedle arrays for multicomponent cutaneous vaccination. J Controlled Release. 2020;317:336-346. doi: 10.1016/j.jconrel.2019.11.023.
- Li J, Thiele S, Quirk BC, et al. Ultrathin monolithic 3D printed optical coherence tomography endoscopy for preclinical and clinical use. Light Sci Appl. 2020;9(1):124. doi: 10.1038/s41377-020-00365-w.
- Lee S, Kim JY, Kim J, et al. A needle-type microrobot for targeted drug delivery by affixing to a microtissue. Adv Healthc Mater. 2020;9(7):e1901697. doi: 10.1002/adhm.201901697.
- Yang T, Si T, Wu Y, et al. Breaking the limitation of laminar flow in thrombolytic therapy with reconfigurable vortex-like nanobot swarms. Angew Chem Int Ed. 2025;64(17):e202425189. doi: 10.1002/anie.202425189.
- Wrede P, Remlova E, Chen Y, et al. Synergistic integration of materials in medical microrobots for advanced imaging and actuation. Nat Rev Mater. 2025. doi: 10.1038/s41578-025-00811-4.
- Ren L, Nama N, McNeill JM, et al. 3D steerable, acoustically powered microswimmers for single-particle manipulation. Sci Adv. 2019;5(10):eaax3084. doi: 10.1126/sciadv.aax3084.
- Li D, Liu Y, Yang Y, et al. A fast and powerful swimming microrobot with a serrated tail enhanced propulsion interface. Nanoscale. 2018;10(42):19673-19677. doi: 10.1039/c8nr04907f.
- Huang T-Y, Huang H-W, Jin DD, et al. Four-dimensional micro-building blocks. Sci Adv. 2020;6(3):eaav8219.doi: 10.1126/sciadv.aav8219.
- Han H, Ma X, Deng W, et al. Imaging-guided bioresorbable acoustic hydrogel microrobots. Sci Robot. 2024;9(97):eadp3593. doi: 10.1126/scirobotics.adp3593.
- Papanikolaou EG, D’Haeseleer E, Verheyen G, et al. Live birth rate is significantly higher after blastocyst transfer than after cleavage-stage embryo transfer when at least four embryos are available on day 3 of embryo culture. A randomized prospective study. Hum. Reprod. 2005;20(11):3198-203. doi: 10.1093/humrep/dei217.
- Medina-Sanchez M, Schwarz L, Meyer AK, et al. Cellular cargo delivery: toward assisted fertilization by sperm-carrying micromotors. Nano Lett. 2016;16(1):555-561. doi: 10.1021/acs.nanolett.5b04221.
- Fan J, Ren S, Han B, et al. Magnetic fiber robots with multiscale functional structures at the distal end. Adv Funct Mater. 2023;34(12). doi: 10.1002/adfm.202309424.
- Wang X, Qin XH, Hu C, et al. 3D printed enzymatically biodegradable soft helical microswimmers. Adv Funct Mater. 2018;28(45):1804107. doi: 10.1002/adfm.201804107.
- Ceylan H, Yasa IC, Yasa O, et al. 3D-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano. 2019;13(3):3353-3362. doi: 10.1021/acsnano.8b09233.
- Oellers M, Lucklum F, Vellekoop MJ. On-chip mixing of liquids with swap structures written by two-photon polymerization. Microfluid Nanofluidics. 2019;24(1):4. doi: 10.1007/s10404-019-2309-8.
- Lölsberg J, Linkhorst J, Cinar A, et al. 3D nanofabrication inside rapid prototyped microfluidic channels showcased by wet-spinning of single micrometre fibres. Lab Chip. 2018;18(9):1341-1348. doi: 10.1039/C7LC01366C.
- Jiménez-Zenteno AK, Estève A, Cayron H, et al. A novel 3D microdevice for the in vivo capture of cancer-associated cells. Med Devices Sens. 2019;2(5–6):e10056. doi: 10.1002/mds3.10056.
- Lao Z, Zheng Y, Dai Y, et al. Nanogap plasmonic structures fabricated by switchable capillary-force driven self-assembly for localized sensing of anticancer medicines with microfluidic SERS. Adv Funct Mater. 2020;30(15): 1909467. doi: 10.1002/adfm.201909467.
- Erfle P, Riewe J, Bunjes H, et al. Goodbye fouling: a unique coaxial lamination mixer (CLM) enabled by two-photon polymerization for the stable production of monodisperse drug carrier nanoparticles. Lab Chip. 2021;21(11): 2178-2193. doi: 10.1039/D1LC00047K.
- Michas C, Karakan MÇ, Nautiyal P, et al. Engineering a living cardiac pump on a chip using high-precision fabrication. Sci Adv. 2022;8(16):eabm3791. doi: 10.1126/sciadv.abm3791.
- Pearre BW, Michas C, Tsang JM, et al. Fast micron-scale 3D printing with a resonant-scanning two-photon microscope. Addit Manuf. 2019;30:100887. doi: 10.1016/j.addma.2019.100887.
- Kuroiwa Y, Takeshima N, Narita Y, et al. Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements. Opt Express. 2004;12(9):1908-1915. doi: 10.1364/OPEX.12.001908.
- Hasegawa S, Hayasaki Y, Nishida N. Holographic femtosecond laser processing with multiplexed phase Fresnel lenses. Opt Lett. 2006;31(11):1705-1707. doi: 10.1364/OL.31.001705.
- Yamaji M, Kawashima H, Suzuki Ji, et al. Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram. Appl Phys Lett. 2008;93(4):041116. doi: 10.1063/1.2965451.
- Wang X, Fan X, Liu Y, et al. 3D nanolithography via holographic multi‐focus metalens. Laser Photonics Rev. 2024;18(11). doi: 10.1002/lpor.202400181.
- Kato J-i, Takeyasu N, Adachi Y, et al. Multiple-spot parallel processing for laser micronanofabrication. Appl Phys Lett. 2005;86(4):044102. doi: 10.1063/1.1855404.
- Jesacher A, Booth MJ. Parallel direct laser writing in three dimensions with spatially dependent aberration correction. Opt Express. 2010;18(20):21090-21099. doi: 10.1364/OE.18.021090.
- Dong X-Z, Zhao Z-S, Duan X-M. Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing. Appl Phys Lett. 2007;91(12):124103. doi: 10.1063/1.2789661.
- Hahn V, Kiefer P, Frenzel T, et al. Rapid assembly of small materials building blocks (voxels) into large functional 3D metamaterials. Adv Funct Mater. 2020;30(26):1907795. doi: 10.1002/adfm.201907795.
- Kiefer P, Hahn V, Kalt S, et al. A multi-photon (7 × 7)-focus 3D laser printer based on a 3D-printed diffractive optical element and a 3D-printed multi-lens array. Light Adv Manuf. 2024;4(1):28-41. doi: 10.37188/lam.2024.003.
- Ježek J, Čižmár T, Nedĕla V, et al. Formation of long and thin polymer fiber using nondiffracting beam. Opt Express. 2006;14(19):8506-8515. doi: 10.1364/OE.14.008506.
- Stankevicius E, Gertus T, Rutkauskas M, et al. Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique. J Micromech Microeng. 2012;22(6):065022. doi: 10.1088/0960-1317/22/6/065022.
- Zhang C, Hu Y, Li J, et al. A rapid two-photon fabrication of tube array using an annular Fresnel lens. Opt Express. 2014;22(4):3983-3990. doi: 10.1364/OE.22.003983.
- Zhang S-J, Li Y, Liu Z-P, et al. Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum. Appl Phys Lett. 2014;105(6):061101. doi: 10.1063/1.4893007.
- Pan D, Liu S, Ji S, et al. Efficient fabrication of a high-aspect-ratio AFM tip by one-step exposure of a long focal depth holographic femtosecond axilens beam. Opt Lett. 2020;45(4):897-900. doi: 10.1364/OL.384249.
- Wang C, Rao R, Cai Z, et al. Microclaw array fabricated by single exposure of femtosecond airy beam and self-assembly for regulating cell migratory plasticity. ACS Nano. 2023;17(10):9025-9038. doi: 10.1021/acsnano.2c11577.
- Wang C, Yang L, Hu Y, et al. Femtosecond Mathieu beams for rapid controllable fabrication of complex microcages and application in trapping microobjects. ACS Nano. 2019;13(4):4667-4676. doi: 10.1021/acsnano.9b00893.
- Dorrah AH, Bordoloi P, de Angelis VS, et al. Light sheets for continuous-depth holography and three-dimensional volumetric displays. Nat Photonics. 2023;17(5):427-434. doi: 10.1038/s41566-023-01188-y.
- Kelemen L, Valkai S, Ormos P. Parallel photopolymerisation with complex light patterns generated by diffractive optical elements. Opt Express. 2007;15(22):14488-14497. doi: 10.1364/OE.15.014488.
- Yang L, El-Tamer A, Hinze U, et al. Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator. Opt Lasers Eng. 2015;70:26-32. doi: 10.1016/j.optlaseng.2015.02.006.
- Zhang L, Wang C, Zhang C, et al. High-throughput two-photon 3D printing enabled by holographic multi-foci high-speed scanning. Nano Lett. 2024;24(8):2671-2679. doi: 10.1021/acs.nanolett.4c00505.
- Yang L, Qian D, Xin C, et al. Two-photon polymerization of microstructures by a non-diffraction multifoci pattern generated from a superposed Bessel beam. Opt Lett. 2017;42(4):743-746. doi: 10.1364/OL.42.000743.
- Manousidaki M, Papazoglou DG, Farsari M, et al. 3D holographic light shaping for advanced multiphoton polymerization. Opt Lett. 2020;45(1):85-88. doi: 10.1364/OL.45.000085.
- Zhang L, Liu B, Wang C, et al. Functional shape-morphing microarchitectures fabricated by dynamic holographically shifted femtosecond multifoci. Nano Lett. 2022;22(13):5277-5286. doi: 10.1021/acs.nanolett.2c01178.
- Dudley D, Duncan W, Slaughter J. Emerging digital micromirror device (DMD) applications. Proceedings of SPIE; 2003:4985. doi: 10.1117/12.480761.
- Cheng J, Gu C, Zhang D, et al. High-speed femtosecond laser beam shaping based on binary holography using a digital micromirror device. Opt Lett. 2015;40(21): 4875-4878. doi: 10.1364/OL.40.004875.
- Cheng J, Gu C, Zhang D, et al. Ultrafast axial scanning for two-photon microscopy via a digital micromirror device and binary holography. Opt Lett. 2016;41(7): 1451-1454. doi: 10.1364/OL.41.001451.
- Gu C, Zhang D, Chang Y, et al. Digital micromirror device-based ultrafast pulse shaping for femtosecond laser. Opt Lett. 2015;40(12):2870-2873. doi: 10.1364/OL.40.002870.
- Geng Q, Gu C, Cheng J, et al. Digital micromirror device-based two-photon microscopy for three-dimensional and random-access imaging. Optica. 2017;4(6):674-677. doi: 10.1364/OPTICA.4.000674.
- Geng Q, Wang D, Chen P, et al. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat Commun. 2019;10(1):2179. doi: 10.1038/s41467-019-10249-2.
- Ouyang W, Xu X, Lu W, et al. Ultrafast 3D nanofabrication via digital holography. Nat Commun. 2023;14(1):1716. doi: 10.1038/s41467-023-37163-y.
- Jiao BJ, Chen F, Liu Y, et al. Acousto-optic scanning spatial-switching multiphoton lithography. Int J Extreme Manuf. 2023;5(3):035008. doi: 10.1088/2631-7990/ace0a7.
- Yang L, Li J, Hu Y, et al. Projection two-photon polymerization using a spatial light modulator. Opt Commun. 2014;331:82-86. doi: 10.1016/j.optcom.2014.05.051.
- Zhang C, Hu Y, Li J, et al. An improved multi-exposure approach for high quality holographic femtosecond laser patterning. Appl Phys Lett. 2014;105(22):221104. doi: 10.1063/1.4902925.
- Zhang C, Hu Y, Du W, et al. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels. Sci Rep. 2016;6(1):33281. doi: 10.1038/srep33281.
- Kaehr B, Shear JB. Multiphoton fabrication of chemically responsive protein hydrogels for microactuation. Proc Natl Acad Sci. 2008;105(26):8850-8854. doi: 10.1073/pnas.0709571105.
- Kaehr B, Shear JB. Mask-directed multiphoton lithography. J Am Chem Soc. 2007;129(7):1904-1905. doi: 10.1021/ja068390y.
- Kaehr B, Shear JB. High-throughput design of microfluidics based on directed bacterial motility. Lab Chip. 2009;9(18):2632-2637. doi: 10.1039/B908119D.
- Yih J-N, Hu YY, Sie YD, et al. Temporal focusing-based multiphoton excitation microscopy via digital micromirror device. Opt Lett. 2014;39(11):3134-3137. doi: 10.1364/OL.39.003134.
- Mills B, Grant-Jacob JA, Feinaeugle M, et al. Single-pulse multiphoton polymerization of complex structures using a digital multimirror device. Opt Express. 2013;21(12):14853-14858. doi: 10.1364/OE.21.014853.
- Saha SK, Wang D, Nguyen VH, et al. Scalable submicrometer additive manufacturing. Science. 2019;366(6461): 105-109. doi: 10.1126/science.aax8760.
- Somers P, Liang Z, Johnson JE, et al. Rapid, continuous projection multi-photon 3D printing enabled by spatiotemporal focusing of femtosecond pulses. Light Sci Appl. 2021;10(1):199. doi: 10.1038/s41377-021-00645-z.
- Tan D, Li Y, Qi F, et al. Reduction in feature size of two-photon polymerization using SCR500. Appl Phys Lett. 2007;90(7):071106. doi: 10.1063/1.2535504.
- Scott TF, Kowalski BA, Sullivan AC, et al. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography. Science. 2009;324(5929):913-917. doi: 10.1126/science.1167610.
- Fischer J, Wegener M. Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev. 2013;7(1):22-44. doi: 10.1002/lpor.201100046.
- Baldacchini T, Zimmerley M, Kuo CH, et al. Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy. J Phys Chem B. 2009;113(38):12663-12668. doi: 10.1021/jp9058998.
- Cicha K, Li Z, Stadlmann K, et al. Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy. J Appl Phys. 2011;110(6):064911. doi: 10.1063/1.3639304.
- Jiang LJ, Zhou YS, Xiong W, et al. Two-photon polymerization: investigation of chemical and mechanical properties of resins using Raman microspectroscopy. Opt Lett. 2014;39(10):3034-3037. doi: 10.1364/OL.39.003034.
- Sedghamiz E, Liu M, Wenzel W. Challenges and limits of mechanical stability in 3D direct laser writing. Nat Commun. 2022;13(1):2115. doi: 10.1038/s41467-022-29749-9.
- Li Y, Qi FJ, Yang HH, et al. Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization. Nanotechnology. 2008;19(5):055303. doi: 10.1088/0957-4484/19/05/055303.
- Wen X, Zhang B, Wang W, et al. 3D-printed silica with nanoscale resolution. Nat Mater. 2021;20(11): 1506-1511. doi: 10.1038/s41563-021-01111-2.
- Maruo S, Hasegawa T, Yoshimura N. Single-anchor support and supercritical CO2 drying enable high-precision microfabrication of three-dimensional structures. Opt Express. 2009;17(23):20945-20951. doi: 10.1364/OE.17.020945.
- Ovsianikov A, Shizhou X, Farsari M, et al. Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials. Opt Express. 2009;17(4):2143-2148. doi: 10.1364/OE.17.002143.
- Liu Y, Wang H, Ho J, et al. Structural color three-dimensional printing by shrinking photonic crystals. Nat Commun. 2019;10(1):4340. doi: 10.1038/s41467-019-12360-w.
- Haske W, Chen VW, Hales JM, et al. 65 nm feature sizes using visible wavelength 3-D multiphoton lithography. Opt Express. 2007;15(6):3426-3436. doi: 10.1364/OE.15.003426.
- Liu YH, Zhao YY, Jin F, et al. Lambda/12 super resolution achieved in maskless optical projection nanolithography for efficient cross-scale patterning. Nano Lett. 2021;21(9):3915-3921. doi: 10.1021/acs.nanolett.1c00559.
- Hao X, Li Y, Fu S, et al. Review of 4Pi fluorescence nanoscopy. Engineering. 2022;11:146-153. doi: 10.1016/j.eng.2020.07.028.
- Hell S, Stelzer EHK. Properties of a 4Pi confocal fluorescence microscope. J Opt Soc Am A. 1992;9(12):2159-2166. doi: 10.1364/JOSAA.9.002159.
- Tičkūnas T, Paipulas D, Purlys V. 4Pi multiphoton polymerization. Appl Phys Lett. 2020;116(3):031101. doi: 10.1063/1.5128786.
- Strickland D, Mourou G. Compression of amplified chirped optical pulses. Opt Commun. 1985;55(6):447-449. doi: 10.1016/0030-4018(85)90151-8.
- Zhu G, Howe Jv, Durst M, et al. Simultaneous spatial and temporal focusing of femtosecond pulses. Opt Express. 2005;13(6):2153-2159. doi: 10.1364/OPEX.13.002153.
- Papagiakoumou E, de Sars V, Oron D, et al. Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses. Opt Express. 2008;16(26):22039-22047. doi: 10.1364/OE.16.022039.
- He F, Xu H, Cheng Y, et al. Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. Opt Lett. 2010;35(7):1106-1108. doi: 10.1364/OL.35.001106.
- Vitek DN, Adams DE, Johnson A, et al. Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials. Opt Express. 2010;18(17):18086-18094. doi: 10.1364/OE.18.018086.
- Chu W, Tan Y, Wang P, et al. Centimeter-height 3D printing with femtosecond laser two-photon polymerization. Adv Mater Technol. 2018;3(5):1700396. doi: 10.1002/admt.201700396.
- Kim D, So PTC. High-throughput three-dimensional lithographic microfabrication. Opt Lett. 2010;35(10):1602-1604. doi: 10.1364/ol.35.001602.
- Li YC, Cheng LC, Chang CY, et al. Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation. Opt Express. 2012;20(17):19030-19038. doi: 10.1364/oe.20.019030.
- Gu C, Zhang D, Wang D, et al. Parallel femtosecond laser light sheet micro-manufacturing based on temporal focusing. Precis Eng. 2017;50:198-203. doi: 10.1016/j.precisioneng.2017.05.006.
- Wang D, Wen C, Chang Y, et al. Ultrafast laser-enabled 3D metal printing: a solution to fabricate arbitrary submicron metal structures. Precis. Eng. 2018;52:106-111. doi: 10.1016/j.precisioneng.2017.11.015.
- Han F, Gu S, Klimas A, et al. Three-dimensional nanofabrication via ultrafast laser patterning and kinetically regulated material assembly. Science. 2022;378(6626):1325-1331. doi: 10.1126/science.abm8420.
- Saha SK, Chen S-C. Comment on “Rapid Assembly of Small Materials Building Blocks (Voxels) into Large Functional 3D Metamaterials”. Adv Funct Mater. 2020;30(30):2001060. doi: 10.1002/adfm.202001060.
- Kim H, Pingali R, Saha SK. Rapid printing of nanoporous 3D structures by overcoming the proximity effects in projection two-photon lithography. Virtual Phys Prototyp. 2023;18(1):e2230979. doi: 10.1080/17452759.2023.2230979.
- Johnson JE, Jamil IR, Pan L, et al. Bayesian optimization with Gaussian-process-based active machine learning for improvement of geometric accuracy in projection multi-photon 3D printing. Light Sci Appl. 2025;14(1):56. doi: 10.1038/s41377-024-01707-8.
- Fu Y, Wang B, Wei J, et al. Single-step and parallel high-speed fabrication for Au micro-/nanostructures. Opt Lett. 2024;49(21):6001-6004. doi: 10.1364/ol.539524.
- Fu Y, Li N, Ding X, et al. Medium-assisted scalable printing of LIPSS via femtosecond laser projection manufacturing. Opt Lett. 2025;50(3):844-847. doi.: 10.1364/OL.549389.
- Hell SW. Far-field optical nanoscopy. Science. 2007;316(5828):1153-1158. doi: 10.1126/science.1137395.
- Wildanger D, Patton BR, Schill H, et al. Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization. Adv Mater. 2012;24(44):OP309-OP313. doi: 10.1002/adma.201203033.
- Liaros N, Fourkas JT. Ten years of two-color photolithography. Invited. Opt Mater Express. 2019;9(7):3006. doi: 10.1364/ome.9.003006.
- Fischer J, von Freymann G, Wegener M. The materials challenge in diffraction-unlimited direct-laser-writing optical lithography. Adv Mater. 2010;22(32):3578-3582. doi: 10.1002/adma.201000892.
- Li L, Gattass RR, Gershgoren E, et al. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization. Science. 2009;324(5929):910-913. doi: 10.1126/science.1168996.
- He M, Zhang Z, Cao C, et al. 3D sub-diffraction printing by multicolor photoinhibition lithography: from optics to chemistry. Laser Photonics Rev. 2022;16(2):2100229. doi: 10.1002/lpor.202100229.
- Fischer J, Ergin T, Wegener M. Three-dimensional polarization-independent visible-frequency carpet invisibility cloak. Opt Lett. 2011;36(11):2059-2061. doi: 10.1364/ol.36.002059.
- Fischer J, Wegener M. Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy. Invited. Opt Mater Express. 2011;1(4):614-624. doi: 10.1364/OME.1.000614.
- Wolf TJA, Fischer J, Wegener M, et al. Pump-probe spectroscopy on photoinitiators for stimulated-emission-depletion optical lithography. Opt Lett. 2011;36(16):3188-3190. doi: 10.1364/OL.36.003188.
- Wollhofen R, Katzmann J, Hrelescu C, et al. 120 nm resolution and 55 nm structure size in STED-lithography. Opt Express. 2013;21(9):10831-10840. doi: 10.1364/OE.21.010831.
- Fischer J, Mueller JB, Quick AS, et al. Exploring the mechanisms in STED-enhanced direct laser writing. Adv. Opt. Mater. 2015;3(2):221-232. doi: 10.1002/adom.201400413.
- Zhu D, Xu L, Ding C, et al. Direct laser writing breaking diffraction barrier based on two-focus parallel peripheral-photoinhibition lithography. Adv Photonics. 2022;4(6):066002. doi: 10.1117/1.AP.4.6.066002.
- He M, Zhang Z, Cao C, et al. Single-color peripheral photoinhibition lithography of nanophotonic structures. PhotoniX. 2022;3(1):25. doi: 10.1186/s43074-022-00072-2.
- Ding C, Liu X, Liu Q, et al. Subdiffraction 3D nanolithography by two-photon two-step absorption and photoinhibition. Laser Photonics Rev. 2023;18(3):2300645. doi: 10.1002/lpor.202300645.
- Fischer J, Wegener M. Ultrafast polymerization inhibition by stimulated emission depletion for three-dimensional nanolithography. Adv Mater. 2012;24(10):OP65-OP69. doi: 10.1002/adma.201103758.
- Donnert G, Keller J, Medda R, et al. Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci. 2006;103(31):11440-11445. doi: 10.1073/pnas.0604965103.
- Harke B, Bianchini P, Brandi F, et al. Photopolymerization inhibition dynamics for sub-diffraction direct laser writing lithography. Chemphyschem. 2012;13(6):1429-1434. doi: 10.1002/cphc.201200006.
- Harke B, Dallari W, Grancini G, et al. Polymerization inhibition by triplet state absorption for nanoscale lithography. Adv Mater. 2013;25(6):904-909. doi: 10.1002/adma.201204141.
- Thiel M, Ott J, Radke A, et al. Dip-in depletion optical lithography of three-dimensional chiral polarizers. Opt Lett. 2013,38(20):4252-4255. doi: 10.1364/OL.38.004252.
- Somers P, Liang Z, Chi T, et al. Photo-activated polymerization inhibition process in photoinitiator systems for high-throughput 3D nanoprinting. Nanophotonics. 2023;12(8):1571-1580. doi: 10.1515/nanoph-2022-0611.
- Stocker MP, Li L, Gattass RR, et al. Multiphoton photoresists giving nanoscale resolution that is inversely dependent on exposure time. Nat Chem. 2011;3(3):223-227. doi: 10.1038/nchem.965.
- Liaros N, Tomova Z, Razo SAG, et al. The state of the art in multicolor visible photolithography. Proceedings Novel Patterning Technologies. 2018;10584:26-32, doi: 10.1117/12.2297653
- Mueller P, Zieger MM, Richter B, et al. Molecular switch for sub-diffraction laser lithography by photoenol intermediate-state cis-trans isomerization. ACS Nano. 2017;11(6):6396-6403. doi: 10.1021/acsnano.7b02820.
- Müller P, Müller R, Hammer L, et al. STED-inspired laser lithography based on photoswitchable spirothiopyran moieties. Chem Mater. 2019;31(6):1966-1972. doi: 10.1021/acs.chemmater.8b04696.
- Andrew TL, Tsai HY, Menon R. Confining light to deep subwavelength dimensions to enable optical nanopatterning. Science. 2009;324(5929):917-921. doi: 10.1126/science.1167704.
- Cao Y, Gan Z, Jia B, et al. High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization. Opt Express. 2011;19(20):19486-19494. doi: 10.1364/OE.19.019486.
- Gan Z, Cao Y, Evans RA, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat Commun. 2013;4(1):2061. doi: 10.1038/ncomms3061.
- Guan L, Cao C, Liu X, et al. Light and matter co-confined multi-photon lithography. Nat Commun. 2024;15(1):2387. doi: 10.1038/s41467-024-46743-5.
- Zvagelsky R, Mayer F, Beutel D, et al. Towards in-situ diagnostics of multi-photon 3D laser printing using optical coherence tomography. Light Adv Manuf. 2022;3(3):1. doi: 10.37188/lam.2022.039.
- He Y, Shao Q, Chen S-C, et al. Characterization of two-photon photopolymerization fabrication using high-speed optical diffraction tomography. Addit Manuf. 2022;60:103293. doi: 10.1016/j.addma.2022.103293.
- Wang H, Liu S, Yin X, et al. Polar-coordinate line-projection light-curing continuous 3D printing for tubular structures. Int J Extreme Manuf. 2024;6(4):045004. doi: 10.1088/2631-7990/ad3c7f.
- Wang H, Gao F, Shi Y, et al. Sparse-view irradiation processing volumetric additive manufacturing. Int J Extreme Manuf. 2025;7(6):065001. doi: 10.1088/2631-7990/adebbf.
- Hu N, Ding L, Wang A, et al. Comprehensive modeling of corkscrew motion in micro-/nano-robots with general helical structures. Nat Commun. 2024;15(1):7399. doi: 10.1038/s41467-024-51518-z
- Johnson JE, Chen Y, Xu X. Model for polymerization and self-deactivation in two-photon nanolithography. Opt Express. 2022;30(15):26824. doi: 10.1364/oe.461969.
- Pingali R, Saha SK. Reaction-diffusion modeling of photopolymerization during femtosecond projection two-photon lithography. J Manuf Sci Eng. 2021;144(2):021011. doi: 10.1115/1.4051830.