AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025180171
RESEARCH ARTICLE

3D-bioprinted kartogenin-laden hydrogel promotes cartilage regeneration via Smad1/5/9- mediated chondrogenesis of bone marrow stromal cells

Chenhui Yang1,2,3 Changshun Chen1,2 Rongjin Cheng1,2 Fei Yang1,2 Hefang Xiao1,2 Bin Geng1,2 Yayi Xia1,2*
Show Less
1 Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
2 Department of Orthopedics I, Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China
3 Department of Orthopedics, Tianshui Hand and Foot Surgery Hospital, Tianshui, Gansu, China
Received: 28 April 2025 | Accepted: 5 August 2025 | Published online: 5 August 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Cartilage injury and degeneration are common clinical problems that severely affect joint function and quality of life. Due to the limited self-healing capacity of cartilage, there is an urgent need for advanced biomaterials and strategies to promote effective cartilage regeneration. In this study, we present a 3D-bioprinted kartogenin (KGN)-loaded hydrogel with optimized biocompatibility and biomechanical properties for cartilage regeneration. By investigating the molecular mechanisms underlying KGN-induced chondrogenic differentiation of bone marrow stromal cells (BMSCs), we identified the critical role of the Smad1/5/9 signaling pathway through transcriptomic analysis. The hydrogel scaffold demonstrated uniform microstructure, robust mechanical stability, and controlled degradation, supporting BMSC adhesion and proliferation. In vitro experiments revealed that KGN activation of Smad1/5/9 significantly enhanced chondrogenic differentiation, evidenced by upregulated cartilage-specific matrix production and morphological changes in BMSCs, while pathway inhibition diminished this effect. Animal experiments using a rat model of cartilage injury demonstrated the hydrogel’s biosafety, with no systemic toxicity or adverse inflammation, and its capacity to promote structured neocartilage formation rich in type II collagen. Histological and immunohistochemical analyses further validated the hydrogel’s superior repair efficacy compared to controls. These findings highlight the dual functionality of the 3D-printed KGN-loaded hydrogel as a mechanically stable carrier and a bioactive inducer of BMSC chondrogenesis, mediated via Smad1/5/9 signaling, offering a promising strategy for cartilage tissue engineering.

Graphical abstract
Keywords
3D bioprinting
Bone marrow stromal cells
Cartilage regeneration
Kartogenin
Smad1/5/9 pathway
Funding
This study was supported by the National Natural Science Foundation of China (81960403, 82060405, and 82360436); Lanzhou Science and Technology Plan Program (2021- RC-102); Natural Science Foundation of Gansu Province (22JR5RA943, 22JR5RA956, and 23JRRA1500); Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital (CY2021-MS-A07).
Conflict of interest
The authors declare no conflict of interest.
References
  1. Xu J, Ji J, Jiao J, et al. 3D printing for bone-cartilage interface regeneration. Front Bioeng Biotechnol. 2022;10:828921. doi: 10.3389/fbioe.2022.828921
  2. Jahani A, Nourbakhsh MS, Ebrahimzadeh MH, Mohammadi M, Yari D, PhD AM. Available 3D-printed biomolecule-loaded alginate-based scaffolds for cartilage tissue engineering applications: a review on current status and future prospective. Arch Bone Jt Surg. 2024;12(2):92-101. doi: 10.22038/abjs.2023.73275.3396
  3. Liang Q, Ma Y, Yao X, Wei W. Advanced 3D-printing bioinks for articular cartilage repair. IJB. 2022;8(3):511. doi: 10.18063/ijb.v8i3.511
  4. Deptuła M, Zawrzykraj M, Sawicka J, Banach-Kopeć A, Tylingo R, Pikuła M. Application of 3D-printed hydrogels in wound healing and regenerative medicine. Biomed Pharmacother. 2023;167:115416. doi: 10.1016/j.biopha.2023.115416
  5. Nabizadeh Z, Nasrollahzadeh M, Daemi H, et al. Micro-and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis. Beilstein J Nanotechnol. 2022;13:363-389. doi: 10.3762/bjnano.13.31
  6. Messaoudi O, Henrionnet C, Bourge K, Loeuille D, Gillet P, Pinzano A. Stem cells and extrusion 3D printing for Hyaline cartilage engineering. Cells. 2020;10(1):2. doi: 10.3390/cells10010002
  7. Wei W, Ma Y, Yao X, et al. Advanced hydrogels for the repair of cartilage defects and regeneration. Bioact Mater. 2021;6(4):998-1011. doi: 10.1016/j.bioactmat.2020.09.030
  8. Zhang W, Chen R, Xu X, et al. Construction of biocompatible hydrogel scaffolds with a long-term drug release for facilitating cartilage repair. Front Pharmacol. 2022;13:922032. doi: 10.3389/fphar.2022.922032
  9. Liu Y, Peng L, Li L, et al. 3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model. Biomaterials. 2021;279:121216. doi: 10.1016/j.biomaterials.2021.121216
  10. Chen X, Wang Y, Chen R, Qu N, Zhang B, Xia C. Suppressing PLCγ1 enhances osteogenic and chondrogenic potential of BMSCs. Biochem Biophys Res Commun. 2020;532(2):292-299. doi: 10.1016/j.bbrc.2020.08.049
  11. Xu Y, Wang Y, Wang A, et al. Effect of CD44 on differentiation of human amniotic mesenchymal stem cells into chondrocytes via Smad and ERK signaling pathways. Mol Med Rep. 2020;21(4):1777-1786. doi: 10.3892/mmr.2020.11044
  12. Hou M, Zhang Y, Zhou X, et al. Kartogenin prevents cartilage degradation and alleviates osteoarthritis progression in mice via the miR-146a/NRF2 axis. Cell Death Dis. 2021;12(5):503. doi: 10.1038/s41419-021-03765-x
  13. Wang J, Zhou J, Zhang N, Zhang X, Li Q. A heterocyclic molecule kartogenin induces collagen synthesis of human dermal fibroblasts by activating the smad4/smad5 pathway. Biochem Biophys Res Commun. 2014;450(1):568-574. doi: 10.1016/j.bbrc.2014.06.016
  14. de Kroon LMG, Narcisi R, van den Akker GGH, et al. SMAD3 and SMAD4 have a more dominant role than SMAD2 in TGFβ-induced chondrogenic differentiation of bone marrow-derived mesenchymal stem cells. Sci Rep. 2017;7(1):43164. doi: 10.1038/srep43164
  15. Pu P, Wu S, Zhang K, et al. Mechanical force induces macrophage-derived exosomal UCHL3 promoting bone marrow mesenchymal stem cell osteogenesis by targeting SMAD1. J Nanobiotechnol. 2023;21(1):180. doi: 10.1186/s12951-023-01836-z
  16. Zhang S, Hu P, Liu T, et al. Kartogenin hydrolysis product 4-aminobiphenyl distributes to cartilage and mediates cartilage regeneration. Theranostics. 2019;9(24):7108-7121. doi: 10.7150/thno.38182
  17. Dey MK, Devireddy RV. Rheological characterization and printability of sodium alginate–gelatin hydrogel for 3D cultures and bioprinting. Biomimetics. 2025;10(1):28. doi: 10.3390/biomimetics10010028
  18. Yu PB, Deng DY, Lai CS, et al. BMP type I receptor inhibition reduces heterotopic ossification. Nat Med. 2008;14(12):1363-1369. doi: 10.1038/nm.1888
  19. Tsukamoto S, Mizuta T, Fujimoto M, et al. Smad9 is a new type of transcriptional regulator in bone morphogenetic protein signaling. Sci Rep. 2014;4:7596. doi: 10.1038/srep07596
  20. Yao Y, Wei G, Deng L, Cui W. Visualizable and lubricating hydrogel microspheres via NanoPOSS for cartilage regeneration. Adv Sci (Weinh). 2023;10(15):e2207438. doi: 10.1002/advs.202207438
  21. Chen Y, Yan X, Yuan F, et al. Kartogenin‐conjugated double‐network hydrogel combined with stem cell transplantation and tracing for cartilage repair. Adv Sci (Weinh). 2022;9(35):e2105571. doi: 10.1002/advs.202105571
  22. Xu T, Yu X, Xu K, et al. Comparison of the ability of exosomes and ectosomes derived from adipose-derived stromal cells to promote cartilage regeneration in a rat osteochondral defect model. Stem Cell Res Ther. 2024;15(1):1. doi: 10.1186/s13287-024-03632-4
  23. Wang M, Wu Y, Li G, et al. Articular cartilage repair biomaterials: strategies and applications. Mater Today Bio. 2024;24:100948. doi: 10.1016/j.mtbio.2024.100948
  24. Wu Z, Yao H, Sun H, et al. Enhanced hyaline cartilage formation and continuous osteochondral regeneration via 3D-Printed heterogeneous hydrogel with multi-crosslinking inks. Mater Today Bio. 2024;26:101080. doi: 10.1016/j.mtbio.2024.101080
  25. Mikaeeli Kangarshahi B, Naghib SM, Rabiee N. 3D printing and computer-aided design techniques for drug delivery scaffolds in tissue engineering. Expert Opin Drug Deliv. 2024;21(11):1615-1636. doi: 10.1080/17425247.2024.2409913
  26. Hafezi M, Nouri Khorasani S, Zare M, Esmaeely Neisiany R, Davoodi P. Advanced hydrogels for cartilage tissue engineering: recent progress and future directions. Polymers (Basel). 2021;13(23):4199. doi: 10.3390/polym13234199
  27. Antich C, de Vicente J, Jiménez G, et al. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Acta Biomater. 2020;106:114-123. doi: 10.1016/j.actbio.2020.01.046
  28. Murphy CA, Serafin A, Collins MN. Development of 3D printable gelatin methacryloyl/chondroitin sulfate/ hyaluronic acid hydrogels as implantable scaffolds. Polymers (Basel). 2024;16(14):1958. doi: 10.3390/polym16141958
  29. Dai W, Zhang L, Yu Y, et al. 3D bioprinting of heterogeneous constructs providing tissue‐specific microenvironment based on host–guest modulated dynamic hydrogel bioink for osteochondral regeneration. Adv Funct Mater. 2022;32(23):2200710. doi: 10.1002/adfm.202200710
  30. Zhang Y, Li D, Liu Y, et al. 3D-bioprinted anisotropic bicellular living hydrogels boost osteochondral regeneration via reconstruction of cartilage–bone interface. Innovation (Camb). 2024;5(1):100542. doi: 10.1016/j.xinn.2023.100542
  31. Song C, Wu X, Wei Z, Xu Y, Wang Y, Zhao Y. Dental pulp stem cells-loaded kartogenin-modified hydrogel microspheres with chondrocyte differentiation property for cartilage repair. Chem Eng J. 2024;496:153930. doi: 10.1016/j.cej.2024.153930
  32. Yan H, Yu T, Li J, et al. Kartogenin improves osteogenesis of bone marrow mesenchymal stem cells via autophagy. Stem Cells Int. 2022;2022:1278921. doi: 10.1155/2022/1278921
  33. Li TF. TGF-b signaling in chondrocytes. Front Biosci. 2005;10(1-3):681-685. doi: 10.2741/1563
  34. Li J, Dong S. The signaling pathways involved in chondrocyte differentiation and hypertrophic differentiation. Stem Cells Int. 2016;2016:2470351. doi: 10.1155/2016/2470351
  35. Huntley R, Jensen E, Gopalakrishnan R, Mansky KC. Bone morphogenetic proteins: their role in regulating osteoclast differentiation. Bone Rep. 2019;10:100207. doi: 10.1016/j.bonr.2019.100207
  36. Lu C, Dong X, Yu WP, et al. Inorganic phosphate-osteogenic induction medium promotes osteogenic differentiation of valvular interstitial cells via the BMP-2/Smad1/5/9 and RhoA/ROCK-1 signaling pathways. Am J Transl Res. 2020;12(7):3329-3345.
  37. Wang T, Zhang C, Wu C, et al. miR-765 inhibits the osteogenic differentiation of human bone marrow mesenchymal stem cells by targeting BMP6 via regulating the BMP6/Smad1/5/9 signaling pathway. Stem Cell Res Ther. 2020;11(1):251. doi: 10.1186/s13287-020-1579-0
  38. Ampuja M, Kallioniemi A. Transcription factors—intricate players of the bone morphogenetic protein signaling pathway. Genes Chromosomes Cancer. 2017;57(1):3-11. doi: 10.1002/gcc.22502

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing