3D-bioprinted kartogenin-laden hydrogel promotes cartilage regeneration via Smad1/5/9- mediated chondrogenesis of bone marrow stromal cells
Cartilage injury and degeneration are common clinical problems that severely affect joint function and quality of life. Due to the limited self-healing capacity of cartilage, there is an urgent need for advanced biomaterials and strategies to promote effective cartilage regeneration. In this study, we present a 3D-bioprinted kartogenin (KGN)-loaded hydrogel with optimized biocompatibility and biomechanical properties for cartilage regeneration. By investigating the molecular mechanisms underlying KGN-induced chondrogenic differentiation of bone marrow stromal cells (BMSCs), we identified the critical role of the Smad1/5/9 signaling pathway through transcriptomic analysis. The hydrogel scaffold demonstrated uniform microstructure, robust mechanical stability, and controlled degradation, supporting BMSC adhesion and proliferation. In vitro experiments revealed that KGN activation of Smad1/5/9 significantly enhanced chondrogenic differentiation, evidenced by upregulated cartilage-specific matrix production and morphological changes in BMSCs, while pathway inhibition diminished this effect. Animal experiments using a rat model of cartilage injury demonstrated the hydrogel’s biosafety, with no systemic toxicity or adverse inflammation, and its capacity to promote structured neocartilage formation rich in type II collagen. Histological and immunohistochemical analyses further validated the hydrogel’s superior repair efficacy compared to controls. These findings highlight the dual functionality of the 3D-printed KGN-loaded hydrogel as a mechanically stable carrier and a bioactive inducer of BMSC chondrogenesis, mediated via Smad1/5/9 signaling, offering a promising strategy for cartilage tissue engineering.

- Xu J, Ji J, Jiao J, et al. 3D printing for bone-cartilage interface regeneration. Front Bioeng Biotechnol. 2022;10:828921. doi: 10.3389/fbioe.2022.828921
- Jahani A, Nourbakhsh MS, Ebrahimzadeh MH, Mohammadi M, Yari D, PhD AM. Available 3D-printed biomolecule-loaded alginate-based scaffolds for cartilage tissue engineering applications: a review on current status and future prospective. Arch Bone Jt Surg. 2024;12(2):92-101. doi: 10.22038/abjs.2023.73275.3396
- Liang Q, Ma Y, Yao X, Wei W. Advanced 3D-printing bioinks for articular cartilage repair. IJB. 2022;8(3):511. doi: 10.18063/ijb.v8i3.511
- Deptuła M, Zawrzykraj M, Sawicka J, Banach-Kopeć A, Tylingo R, Pikuła M. Application of 3D-printed hydrogels in wound healing and regenerative medicine. Biomed Pharmacother. 2023;167:115416. doi: 10.1016/j.biopha.2023.115416
- Nabizadeh Z, Nasrollahzadeh M, Daemi H, et al. Micro-and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis. Beilstein J Nanotechnol. 2022;13:363-389. doi: 10.3762/bjnano.13.31
- Messaoudi O, Henrionnet C, Bourge K, Loeuille D, Gillet P, Pinzano A. Stem cells and extrusion 3D printing for Hyaline cartilage engineering. Cells. 2020;10(1):2. doi: 10.3390/cells10010002
- Wei W, Ma Y, Yao X, et al. Advanced hydrogels for the repair of cartilage defects and regeneration. Bioact Mater. 2021;6(4):998-1011. doi: 10.1016/j.bioactmat.2020.09.030
- Zhang W, Chen R, Xu X, et al. Construction of biocompatible hydrogel scaffolds with a long-term drug release for facilitating cartilage repair. Front Pharmacol. 2022;13:922032. doi: 10.3389/fphar.2022.922032
- Liu Y, Peng L, Li L, et al. 3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model. Biomaterials. 2021;279:121216. doi: 10.1016/j.biomaterials.2021.121216
- Chen X, Wang Y, Chen R, Qu N, Zhang B, Xia C. Suppressing PLCγ1 enhances osteogenic and chondrogenic potential of BMSCs. Biochem Biophys Res Commun. 2020;532(2):292-299. doi: 10.1016/j.bbrc.2020.08.049
- Xu Y, Wang Y, Wang A, et al. Effect of CD44 on differentiation of human amniotic mesenchymal stem cells into chondrocytes via Smad and ERK signaling pathways. Mol Med Rep. 2020;21(4):1777-1786. doi: 10.3892/mmr.2020.11044
- Hou M, Zhang Y, Zhou X, et al. Kartogenin prevents cartilage degradation and alleviates osteoarthritis progression in mice via the miR-146a/NRF2 axis. Cell Death Dis. 2021;12(5):503. doi: 10.1038/s41419-021-03765-x
- Wang J, Zhou J, Zhang N, Zhang X, Li Q. A heterocyclic molecule kartogenin induces collagen synthesis of human dermal fibroblasts by activating the smad4/smad5 pathway. Biochem Biophys Res Commun. 2014;450(1):568-574. doi: 10.1016/j.bbrc.2014.06.016
- de Kroon LMG, Narcisi R, van den Akker GGH, et al. SMAD3 and SMAD4 have a more dominant role than SMAD2 in TGFβ-induced chondrogenic differentiation of bone marrow-derived mesenchymal stem cells. Sci Rep. 2017;7(1):43164. doi: 10.1038/srep43164
- Pu P, Wu S, Zhang K, et al. Mechanical force induces macrophage-derived exosomal UCHL3 promoting bone marrow mesenchymal stem cell osteogenesis by targeting SMAD1. J Nanobiotechnol. 2023;21(1):180. doi: 10.1186/s12951-023-01836-z
- Zhang S, Hu P, Liu T, et al. Kartogenin hydrolysis product 4-aminobiphenyl distributes to cartilage and mediates cartilage regeneration. Theranostics. 2019;9(24):7108-7121. doi: 10.7150/thno.38182
- Dey MK, Devireddy RV. Rheological characterization and printability of sodium alginate–gelatin hydrogel for 3D cultures and bioprinting. Biomimetics. 2025;10(1):28. doi: 10.3390/biomimetics10010028
- Yu PB, Deng DY, Lai CS, et al. BMP type I receptor inhibition reduces heterotopic ossification. Nat Med. 2008;14(12):1363-1369. doi: 10.1038/nm.1888
- Tsukamoto S, Mizuta T, Fujimoto M, et al. Smad9 is a new type of transcriptional regulator in bone morphogenetic protein signaling. Sci Rep. 2014;4:7596. doi: 10.1038/srep07596
- Yao Y, Wei G, Deng L, Cui W. Visualizable and lubricating hydrogel microspheres via NanoPOSS for cartilage regeneration. Adv Sci (Weinh). 2023;10(15):e2207438. doi: 10.1002/advs.202207438
- Chen Y, Yan X, Yuan F, et al. Kartogenin‐conjugated double‐network hydrogel combined with stem cell transplantation and tracing for cartilage repair. Adv Sci (Weinh). 2022;9(35):e2105571. doi: 10.1002/advs.202105571
- Xu T, Yu X, Xu K, et al. Comparison of the ability of exosomes and ectosomes derived from adipose-derived stromal cells to promote cartilage regeneration in a rat osteochondral defect model. Stem Cell Res Ther. 2024;15(1):1. doi: 10.1186/s13287-024-03632-4
- Wang M, Wu Y, Li G, et al. Articular cartilage repair biomaterials: strategies and applications. Mater Today Bio. 2024;24:100948. doi: 10.1016/j.mtbio.2024.100948
- Wu Z, Yao H, Sun H, et al. Enhanced hyaline cartilage formation and continuous osteochondral regeneration via 3D-Printed heterogeneous hydrogel with multi-crosslinking inks. Mater Today Bio. 2024;26:101080. doi: 10.1016/j.mtbio.2024.101080
- Mikaeeli Kangarshahi B, Naghib SM, Rabiee N. 3D printing and computer-aided design techniques for drug delivery scaffolds in tissue engineering. Expert Opin Drug Deliv. 2024;21(11):1615-1636. doi: 10.1080/17425247.2024.2409913
- Hafezi M, Nouri Khorasani S, Zare M, Esmaeely Neisiany R, Davoodi P. Advanced hydrogels for cartilage tissue engineering: recent progress and future directions. Polymers (Basel). 2021;13(23):4199. doi: 10.3390/polym13234199
- Antich C, de Vicente J, Jiménez G, et al. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Acta Biomater. 2020;106:114-123. doi: 10.1016/j.actbio.2020.01.046
- Murphy CA, Serafin A, Collins MN. Development of 3D printable gelatin methacryloyl/chondroitin sulfate/ hyaluronic acid hydrogels as implantable scaffolds. Polymers (Basel). 2024;16(14):1958. doi: 10.3390/polym16141958
- Dai W, Zhang L, Yu Y, et al. 3D bioprinting of heterogeneous constructs providing tissue‐specific microenvironment based on host–guest modulated dynamic hydrogel bioink for osteochondral regeneration. Adv Funct Mater. 2022;32(23):2200710. doi: 10.1002/adfm.202200710
- Zhang Y, Li D, Liu Y, et al. 3D-bioprinted anisotropic bicellular living hydrogels boost osteochondral regeneration via reconstruction of cartilage–bone interface. Innovation (Camb). 2024;5(1):100542. doi: 10.1016/j.xinn.2023.100542
- Song C, Wu X, Wei Z, Xu Y, Wang Y, Zhao Y. Dental pulp stem cells-loaded kartogenin-modified hydrogel microspheres with chondrocyte differentiation property for cartilage repair. Chem Eng J. 2024;496:153930. doi: 10.1016/j.cej.2024.153930
- Yan H, Yu T, Li J, et al. Kartogenin improves osteogenesis of bone marrow mesenchymal stem cells via autophagy. Stem Cells Int. 2022;2022:1278921. doi: 10.1155/2022/1278921
- Li TF. TGF-b signaling in chondrocytes. Front Biosci. 2005;10(1-3):681-685. doi: 10.2741/1563
- Li J, Dong S. The signaling pathways involved in chondrocyte differentiation and hypertrophic differentiation. Stem Cells Int. 2016;2016:2470351. doi: 10.1155/2016/2470351
- Huntley R, Jensen E, Gopalakrishnan R, Mansky KC. Bone morphogenetic proteins: their role in regulating osteoclast differentiation. Bone Rep. 2019;10:100207. doi: 10.1016/j.bonr.2019.100207
- Lu C, Dong X, Yu WP, et al. Inorganic phosphate-osteogenic induction medium promotes osteogenic differentiation of valvular interstitial cells via the BMP-2/Smad1/5/9 and RhoA/ROCK-1 signaling pathways. Am J Transl Res. 2020;12(7):3329-3345.
- Wang T, Zhang C, Wu C, et al. miR-765 inhibits the osteogenic differentiation of human bone marrow mesenchymal stem cells by targeting BMP6 via regulating the BMP6/Smad1/5/9 signaling pathway. Stem Cell Res Ther. 2020;11(1):251. doi: 10.1186/s13287-020-1579-0
- Ampuja M, Kallioniemi A. Transcription factors—intricate players of the bone morphogenetic protein signaling pathway. Genes Chromosomes Cancer. 2017;57(1):3-11. doi: 10.1002/gcc.22502
