AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025150133
RESEARCH ARTICLE

Innovative design and compression performance of selective laser melting-printed tantalum artificial vertebral bodies

Yutao Zhang1 Wurikaixi Aiyiti2* Jintao Li1,2 Yong Huang1,3 Xiaohong Dong1
Show Less
1 Xinjiang Coal Mine Electromechanical Engineering Technology Research Center, School of Electromechanical Engineering, Xinjiang Institute of Engineering, Urumqi, Xinjiang, China
2 Xinjiang Additive Remanufacturing Technology Key Laboratory, School of Mechanical Engineering, Xinjiang University, Urumqi, Xinjiang, China
3 Key Laboratory of Intelligent Manufacturing Technology for Building Steel Structures of Xinjiang Production and Construction Corps, Urumqi, Xinjiang, China
Received: 11 April 2025 | Accepted: 16 May 2025 | Published online: 16 May 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Tantalum (Ta) holds considerable potential for clinical applications in artificial vertebral bodies (AVBs) owing to its excellent biocompatibility. A novel Ta AVB structure was engineered by combining thin-walled structure topology optimization with lattice structure filling design methods. Three types of Ta AVBs—designated as AVB-1, AVB-2, and AVB-3—were fabricated using selective laser melting. The influence of sidewall curvature on the mechanical properties and deformation behavior of AVBs was investigated through compression tests and finite element analysis. The elastic modulus and yield strength of the Ta lattice structures ranged from 1.75 to 3.21 GPa and 31 to 65 MPa, respectively. Incorporating topologically thin walls enhanced the elastic modulus and yield strength by factors of 2.26–3.77 and 3–3.62, respectively. A decrease in sidewall curvature was associated with an increase in both elastic modulus and yield strength of the AVBs. Specifically, as the sidewall curvature decreased from 0.027 to 0 mm−1, the elastic modulus and yield strength increased by factors of 2.76 and 2.19, respectively. The yield strengths of the AVBs were comparable to those of human cortical bone. Among the three designs, AVB-2 exhibited the highest yield-strength-to-elastic-modulus ratio (0.029), compared to AVB-1 and AVB-3 (0.024 and 0.019, respectively), suggesting that the optimal sidewall curvature is 0.014 mm−1. AVB-2 effectively mitigated the stress shielding effect while maximizing the load-bearing capacity, indicating its significant potential for clinical applications.

 

Graphical abstract
Keywords
Tantalum
Selective laser melting
Artificial vertebral body
Lattice structure
Topology optimization
Funding
This work was supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region, China under grant number 2023D01A86, the Scientific and Technological Research Projects in Key Areas of Xinjiang Production and Construction Corps, China under grant number 2024ABO49, and the Key Research and Development Program of Xinjiang Uygur Autonomous Region, China under grant number 2023B01016.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Shimizu T, Kato S, Yokogawa N, et al. Total en bloc spondylectomy for primary tumors of the thoracic and lumbar spine: a review article. Semin Spine Surg. 2024;36(4):101137. doi: 10.1016/j.semss.2024.101137
  2. Kandziora F, Schnake KJ, Klostermann CK, Haas NP. Vertebral body replacement in spine surgery. Unfallchirurg. 2004;107(5):354-371. doi: 10.1007/s00113-004-0777-z
  3. Kang J, Dong E, Li X, et al. Topological design and biomechanical evaluation for 3D printed multi-segment artificial vertebral implants. Mater. Sci. Eng. C-Mater. Biol. Appl. 2021;127:112250. doi: 10.1016/j.msec.2021.112250
  4. Zhang YW, Deng L, Zhang XX, et al. Three-dimensional printing-assisted cervical anterior bilateral pedicle screw fixation of artificial vertebral body for cervical tuberculosis. World Neurosurg. 2019;127:25-30. doi: 10.1016/j.wneu.2019.03.238
  5. Perez Roman RJ, Boddu JV, Bashti M, et al. The use of carbon fiber-reinforced instrumentation in patients with spinal oncologic tumors: a systematic review of literature and future directions. World Neurosurg. 2023;173:13-22. doi: 10.1016/j.wneu.2023.01.090
  6. Chen G, Yin M, Liu W, et al. A novel height-adjustable nano-hydroxyapatite/polyamide-66 vertebral body for reconstruction of thoracolumbar structural stability after spinal tumor resection. World Neurosurg. 2019;122:e206-e214. doi: 10.1016/j.wneu.2018.09.213
  7. Kong F, Nie Z, Liu Z, Hou S, Ji J. Developments of nano- TiO2 incorporated hydroxyapatite/PEEK composite strut for cervical reconstruction and interbody fusion after corpectomy with anterior plate fixation. J Photochem Photobiol B-Biol. 2018;187:120-125. doi: 10.1016/j.jphotobiol.2018.07.016
  8. Abd-Elaziem W, Darwish MA, Hamada A, Daoush WM. Titanium-based alloys and composites for orthopedic implants applications: a comprehensive review. Mater. Des. 2024;241:112850. doi: 10.1016/j.matdes.2024.112850
  9. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28(32):4845-4869. doi: 10.1016/j.biomaterials.2007.07.013
  10. Ma H, Suonan A, Zhou J, et al. PEEK (Polyether-ether-ketone) and its composite materials in orthopedic implantation. Arab J Chem. 2021;14(3):102977. doi: 10.1016/j.arabjc.2020.102977
  11. Liu C, Xu M, Wang Y, et al. Exploring the potential of hydroxyapatite-based materials in biomedicine: a comprehensive review. Mater Sci Eng R-Rep. 2024;161:100870. doi: 10.1016/j.mser.2024.100870
  12. Minagar S, Berndt CC, Wang J, Ivanova E, Wen C. A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater. 2012;8(8):2875-2888. doi: 10.1016/j.actbio.2012.04.005
  13. Jiang H. F, Aihemaiti P, Aiyiti W, Kasimu A. Study of the compression behaviours of 3D-printed PEEK/CFR-PEEK sandwich composite structures. Virtual Phys Prototyp. 2022;17(2):138-155. doi: 10.1080/17452759.2021.2014636
  14. Zheng J, Zhao H, Ouyang Z, et al. Additively-manufactured PEEK/HA porous scaffolds with excellent osteogenesis for bone tissue repairing. Compos Pt B-Eng. 2022;232:109508. doi: 10.1016/j.compositesb.2021.109508
  15. Li S, Li G, Hu J, et al. Porous polyetheretherketone-hydroxyapatite composite: a candidate material for orthopedic implant. Compos Commun. 2021;28:100908. doi: 10.1016/j.coco.2021.100908
  16. Aufa AN, Hassan MZ, Ismail Z. Recent advances in Ti-6Al- 4V additively manufactured by selective laser melting for biomedical implants: prospect development. J Alloy Compd. 2022;896:163072. doi: 10.1016/j.jallcom.2021.163072
  17. Depboylu FN, Yasa E, Poyraz O, Minguella-Canela J, Korkusuz F, Lopez MAD. Titanium based bone implants production using laser powder bed fusion technology. J Mater Res Technol. 2022;17:1408-1426. doi: 10.1016/j.jmrt.2022.01.087
  18. Mirkhalaf M, Men Y, Wang R, No Y, Zreiqat H. Personalized 3D printed bone scaffolds: a review. Acta Biomater. 2023;156:110-124 doi: 10.1016/j.actbio.2022.04.014
  19. Wu Y, Feng P, Kong Q, et al. Treatment of lumbosacral tuberculosis with significant vertebral body loss using single-stage posterior surgical management with a structural autograft combined with a titanium mesh cage. World Neurosurg. 2021;148:e10-e16. doi: 10.1016/j.wneu.2020.11.104
  20. Zhang HQ, Li M, Wang YX, et al. Minimum 5-year follow-up outcomes for comparison between titanium mesh cage and allogeneic bone graft to reconstruct anterior column through posterior approach for the surgical treatment of thoracolumbar spinal tuberculosis with kyphosis. World Neurosurg. 2019;127:e407-e415. doi: 10.1016/j.wneu.2019.03.139
  21. Jang J. W, Lee J. K, Lee J. H, Hur H, Kim T. W, Kim S. H. Effect of posterior subsidence on cervical alignment after anterior cervical corpectomy and reconstruction using titanium mesh cages in degenerative cervical disease. J Clin Neurosci. 2014;21(10):1779-1785. doi: 10.1016/j.jocn.2014.02.016
  22. Bencharit S, Byrd WC, Altarawneh S, et al. Development and applications of porous tantalum trabecular metal- enhanced titanium dental implants. Clin Implant Dent Relat Res. 2014;16(6):817-826. doi: 10.1111/cid.12059
  23. Piglionico S, Bousquet J, Fatima N, Renaud M, Collart- Dutilleul PY, Bousquet P. Porous tantalum vs. titanium implants: enhanced mineralized matrix formation after stem cells proliferation and differentiation. J Clin Med. 2020;9(11):3657. doi: 10.3390/jcm9113657
  24. Li X, Wang L, Yu XM, et al. Tantalum coating on porous Ti6Al4V scaffold using chemical vapor deposition and preliminary biological evaluation. Mater Sci Eng C-Mater Biol Appl. 2013;33(5):2987-2994. doi: 10.1016/j.msec.2013.03.027
  25. Wang X, Ning B, Pei X. Tantalum and its derivatives in orthopedic and dental implants: osteogenesis and antibacterial properties. Colloid Surf B-Biointerfaces. 2021;208:112055. doi: 10.1016/j.colsurfb.2021.112055
  26. Wang X, Liu W, Jiang C, et al. Research progress on the osteogenic properties of tantalum in the field of medical implant materials. J Mater Res Technol. 2024;30:1706-1715. doi: 10.1016/j.jmrt.2024.03.200
  27. Ataee A, Li Y, Brandt M, Wen C. Ultrahigh-strength titanium gyroid scaffolds manufactured by selective laser melting (SLM) for bone implant applications. Acta Mater. 2018;158:354-368. doi: 10.1016/j.actamat.2018.08.005
  28. Zhang Y, Yang J, Wan W, et al. Evaluation of biological performance of 3D printed trabecular porous tantalum spine fusion cage in large animal models. J Orthop Transl. 2025;50:185-195. doi: 10.1016/j.jot.2024.10.010
  29. Wang X, Xu S, Zhou S, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials. 2016;83:127-141. doi: 10.1016/j.biomaterials.2016.01.012
  30. Chen LY, Liang SX, Liu YJ, Zhang LC. Additive manufacturing of metallic lattice structures: unconstrained design, accurate fabrication, fascinated performances, and challenges. Mater Sci Eng R-Rep. 2021;146:100648. doi: 10.1016/j.mser.2021.100648
  31. Benedetti M, du Plessis A, Ritchie RO, Dallago M, Razavi SMJ, Berto F. Architected cellular materials: a review on their mechanical properties towards fatigue-tolerant design and fabrication. Mater Sci Eng R-Rep. 2021;144:100606. doi: 10.1016/j.mser.2021.100606
  32. Wang Z, Zhang M, Liu Z, et al. Biomimetic design strategy of complex porous structure based on 3D printing Ti-6Al- 4V scaffolds for enhanced osseointegration. Mater Des. 2022;218:110721. doi: 10.1016/j.matdes.2022.110721
  33. Zhang BQ, Pei X, Zhou CC, et al. The biomimetic design and 3D printing of customized mechanical properties porous Ti6Al4V scaffold for load-bearing bone reconstruction. Mater Des. 2018;152:30-39. doi: 10.1016/j.matdes.2018.04.065
  34. Lu HZ, Ma HW, Luo X, et al. Microstructure, shape memory properties, and invitro biocompatibility of porous NiTi scaffolds fabricated via selective laser melting. J Mater Res Technol. 2021;15:6797-6812. doi: 10.1016/j.jmrt.2021.11.112
  35. Deng FY, Liu LL, Li Z, Liu JC. 3D printed Ti6Al4V bone scaffolds with different pore structure effects on bone ingrowth. J Biol Eng. 2021;15(1):4. doi: 10.1186/s13036-021-00255-8
  36. Guo Z, Wang C, Du C, Sui J, Liu J. Effects of topological structure on antibacterial behavior and biocompatibility of implant. Procedia CIRP. 2020;89:126-131. doi: 10.1016/j.procir.2019.12.003
  37. Chen J, Song C, Deng Z, et al. Functional gradient design of additive manufactured gyroid tantalum porous structures: manufacturing, mechanical behaviors and permeability. J Manuf Process. 2024;125:202-216. doi: 10.1016/j.jmapro.2024.07.054
  38. Song C, Chen J, Lei H, et al. Radial gradient design enabling additively manufactured low-modulus gyroid tantalum structures. Int J Mech Sci. 2024;262:108710. doi: 10.1016/j.ijmecsci.2023.108710
  39. Ni X, Sun Q, Wang J, et al. Development and characterization of minimal surface tantalum scaffold with high strength and superior fatigue resistance. J Mater Res Technol. 2025;36:1226-1239. doi: 10.1016/j.jmrt.2025.03.108
  40. Liu J, Zou Z, Li Z, et al. A clustering-based multiscale topology optimization framework for efficient design of porous composite structures. Comput Methods Appl Mech Eng. 2025;439:117881. doi: 10.1016/j.cma.2025.117881
  41. Noman AA, Shaari MS, Mehboob H, Azman AH. Recent advancements in additively manufactured hip implant design using topology optimization technique. Results Eng. 2025;25:103932. doi: 10.1016/j.rineng.2025.103932
  42. Kök HI, Kick M, Akbas O, et al. Reduction of stress-shielding and fatigue-resistant dental implant design through topology optimization and TPMS lattices. J Mech Behav Biomed Mater. 2025;165:106923. doi: 10.1016/j.jmbbm.2025.106923
  43. Xiong W, Ding X, Zhang H, et al. Topology optimization of embracing fixator considering bone remodeling to mitigate stress shielding effect. Med Eng Phys. 2024;125: 104122. doi: 10.1016/j.medengphy.2024.104122
  44. Peng W, Cheng K, Liu Y, et al. Biomechanical and mechanostat analysis of a titanium layered porous implant for mandibular reconstruction: the effect of the topology optimization design. Mater Sci Eng C-Mater Biol Appl. 2021;124:112056. doi: 10.1016/j.msec.2021.112056
  45. Smit T, Aage N, Haschtmann D, Ferguson SJ, Helgason B. Anatomically and mechanically conforming patient-specific spinal fusion cages designed by full-scale topology optimization. J Mech Behav Biomed Mater. 2024; 159:106695. doi: 10.1016/j.jmbbm.2024.106695
  46. Gao H, Jin X, Yang J, et al. Porous structure and compressive failure mechanism of additively manufactured cubic-lattice tantalum scaffolds. Mater Today Adv. 2021;12:100183. doi: 10.1016/j.mtadv.2021.100183
  47. du Plessis A, Razavi SMJ, Benedetti M, et al. Properties and applications of additively manufactured metallic cellular materials: a review. Prog Mater Sci. 2022;125:100918. doi: 10.1016/j.pmatsci.2021.100918
  48. Wang J, Ni X, Sun Q, et al. Additively manufactured trabecular porous tantalum: effects of annealing temperature and oxygen content on mechanical properties. J Mater Res Technol. 2025;35:4055-4070. doi: 10.1016/j.jmrt.2025.02.030
  49. Qin F, Chen L, Zhou G, Shi Q, Liu B, Liu X. Improved compressive strength of laser powder bed fused porous tantalum by hot isostatic pressing. Addit Manuf. 2025;102:104729. doi: 10.1016/j.addma.2025.104729
  50. Liu L, Yi B, Wang T, Li Z, Zhang J, Yoon GH. Investigation on numerical analysis and mechanics experiments for topology optimization of functionally graded lattice structure. Addit Manuf. 2021;47:102275. doi: 10.1016/j.addma.2021.102275
  51. Ahmadi SM, Campoli G, Yavari SA, et al. Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells. J Mech Behav Biomed Mater. 2014;34:106-115. doi: 10.1016/j.jmbbm.2014.02.003
  52. Gibson LJ, Ashby MF, eds. Cellular Solids: Structure and Properties. Cambridge: Cambridge University Press; 1999.
  53. Zhang YT, Aiyiti W, Du S, Jia R, Jiang HF. Design and mechanical behaviours of a novel tantalum lattice structure fabricated by SLM. Virtual Phys Prototyp. 2023;18(1):e2192702. doi: 10.1080/17452759.2023.2192702
  54. Ataee A, Li Y, Fraser D, Song G, Wen C. Anisotropic Ti- 6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications. Mater Des. 2018;137:345-354. doi: 10.1016/j.matdes.2017.10.040
  55. Regassa Hunde B, Debebe Woldeyohannes A. Future prospects of computer-aided design (CAD) – a review from the perspective of artificial intelligence (AI), extended reality, and 3D printing. Results Eng. 2022;14:100478. doi: 10.1016/j.rineng.2022.100478
  56. Benady A, Meyer SJ, Golden E, Dadia S, Katarivas Levy G. Patient-specific Ti-6Al-4V lattice implants for critical-sized load-bearing bone defects reconstruction. Mater Des. 2023;226:111605. doi: 10.1016/j.matdes.2023.111605
  57. Moscol-Albañil I, Solórzano-Requejo W, Rodriguez C, Ojeda C, Díaz Lantada A. Innovative AI-driven design of patient-specific short femoral stems in primary hip arthroplasty. Mater Des. 2024;240:112868. doi: 10.1016/j.matdes.2024.112868
  58. Zhang T, Liu F, Chen J, et al. Dual-graded lattice with mechanical bionics to enhance fatigue performance. Int J Mech Sci. 2024;279:109474. doi: 10.1016/j.ijmecsci.2024.109474
  59. Wang B, Liu M, Ke W, Hua W, Zeng X, Yang C. Finite element analysis of additive manufactured porous peek artificial vertebral bodies in lumbar total en bloc spondylectomy. Spine J. 2025;25(5):1042-1049. doi: 10.1016/j.spinee.2024.10.026
  60. Zhang H, Guo Z, Zhang Z, Wu G, Sang L. Biomimetic design and fabrication of PEEK and PEEK/CF cage with minimal surface structures by fused filament fabrication. J Mater Res Technol. 2023;26:5001-5015. doi: 10.1016/j.jmrt.2023.08.236
  61. Hu B, Wang L, Song Y, et al. A comparison of long-term outcomes of nanohydroxyapatite/polyamide-66 cage and titanium mesh cage in anterior cervical corpectomy and fusion: a clinical follow-up study of least 8 years. Clin Neurol Neurosurg. 2019;176:25-29. doi: 10.1016/j.clineuro.2018.11.015
  62. Chen Y, Chen D, Guo Y, et al. Subsidence of titanium mesh cage: a study based on 300 cases. Clin Spine Surg. 2008;21(7):489-492. doi: 10.1097/BSD.0b013e318158de22
  63. Lostado Lorza R, Somovilla Gomez F, Corral Bobadilla M, et al. Comparative analysis of healthy and cam-type femoroacetabular impingement (FAI) human hip joints using the finite element method. Appl Sci-Basel. 2021;11(23). doi: 10.3390/app112311101
  64. McCartney W, MacDonald B, Ober CA, Lostado-Lorza R, Gómez FS. Pelvic modelling and the comparison between plate position for double pelvic osteotomy using artificial cancellous bone and finite element analysis. BMC Vet Res. 2018;14(1):100. doi: 10.1186/s12917-018-1416-1
  65. Gómez FS, Lorza RL, Bobadilla MC, García RE. Improving the process of adjusting the parameters of finite element models of healthy human intervertebral discs by the multi-response surface method. Materials. 2017;10(10). doi: 10.3390/ma10101116
  66. Íñiguez-Macedo S, Somovilla-Gómez F, Lostado-Lorza R, Corral-Bobadilla M, Martínez-Calvo MÁ, Sanz-Adán F. The process of designing a rotating platform artificial knee prosthesis with posterior stabilizers by finite element analysis. Int J Interact Des Manuf. 2018;12(3):853-864. doi: 10.1007/s12008-017-0428-6
  67. Somovilla-Gómez F, Lostado-Lorza R, Corral-Bobadilla M, Escribano-García R. Improvement in determining the risk of damage to the human lumbar functional spinal unit considering age, height, weight and sex using a combination of FEM and RSM. Biomech Model Mechanobiol. 2020;19(1):351-387. doi: 10.1007/s10237-019-01215-4

 

 

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing