AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.5038
REVIEW

 Recent advances in liver bioengineering and disease modeling using bioprinting

Kimson Chitolie1 Frances DiPietro2 Sneha Phillip2 Kamryn Purpura1 Aylin Acun1*
Show Less
1 Biomedical Engineering Department, School of Engineering, Widener University, Chester, Pennsylvania, USA
2 Biology Department, School of Arts and Sciences, Widener University, Chester, Pennsylvania, USA
Submitted: 3 October 2024 | Accepted: 9 December 2024 | Published: 8 January 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The increase in the prevalence of liver diseases and the lack of versatile treatment options for end-stage liver diseases stresses the need for novel approaches and advanced technologies for developing physiologically and pathologically relevant models of the liver. Liver bioengineering through bioprinting has emerged as a pivotal area of research, aiming to address the critical shortage of donor organs, improve drug testing, and improve disease modeling. Through bioprinting the complex structure, composition and geometry of the liver microstructure can be replicated to give rise to liver models that can mimic the healthy or diseased tissue. These capabilities render bioprinted liver models suitable for advancing drug discovery and testing studies, as well as disease modeling. This review paper explores the application of bioprinting technologies in liver tissue engineering, highlighting the progress in the field through exploring materials, cell sources, and new current techniques used in the bioprinting of liver models. Additionally, the article explores spheroid printing and current preclinical models as well as key challenges and future perspectives. This comprehensive overview aims to provide insights into the current state of liver bioengineering through bioprinting and to identify future directions for research and clinical application.  

Graphical abstract
Keywords
Bioink
Bioprinting
Disease modeling
Liver
Tissue engineering
Funding
This work was funded by Widener University, School of Engineering.
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Li W, Liu Z, Tang F, et al. Application of 3D bioprinting in liver diseases. Micromachines. 2023;14(8):1648. doi: 10.3390/mi14081648
  2. Devarbhavi H, Asrani SK, Arab JP, Nartey YA, Pose E, Kamath PS. Global burden of liver disease: 2023 update. J Hepatol. 2023;79(2):516-537. doi: 10.1016/j.jhep.2023.03.017
  3. Ming Z, Tang X, Liu J, Ruan B. Advancements in research on constructing physiological and pathological liver models and their applications utilizing bioprinting technology. Molecules. 2023;28(9):3683. doi: 10.3390/molecules28093683
  4. Liu YB, Chen MK. Epidemiology of liver cirrhosis and associated complications: current knowledge and future directions. World J Gastroenterol. 2022;28(41): 5910-5930. doi: 10.3748/wjg.v28.i41.5910
  5. Global hepatitis report 2024: action for access in low- and middle-income countries. Accessed September 30, 2024. https://www.who.int/publications/i/item/9789240091672
  6. Nair DG, Weiskirchen R. Recent advances in liver tissue engineering as an alternative and complementary approach for liver transplantation. Curr Issues Mol Biol. 2024;46(1):262-278. doi: 10.3390/cimb46010018
  7. Souza AG, Silva IBB, Campos-Fernandez E, et al. Comparative assay of 2D and 3D cell culture models: proliferation, gene expression and anticancer drug response. Curr Pharm Des. 2018;24(15):1689-1694. doi: 10.2174/1381612824666180404152304
  8. Shamir ER, Ewald AJ. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol. 2014;15(10):647-664. doi: 10.1038/nrm3873
  9. Ravi M, Paramesh V, Kaviya SR, Anuradha E, Solomon FDP. 3D cell culture systems: advantages and applications. J Cell Physiol. 2015;230(1):16-26. doi: 10.1002/jcp.24683
  10. Khati V, Ramachandraiah H, Pati F, Svahn HA, Gaudenzi G, Russom A. 3D bioprinting of multi-material decellularized liver matrix hydrogel at physiological temperatures. Biosensors. 2022;12(7):521. doi: 10.3390/bios12070521
  11. Zhou Z, Xu MJ, Gao B. Hepatocytes: a key cell type for innate immunity. Cell Mol Immunol. 2016;13(3):301-315. doi: 10.1038/cmi.2015.97
  12. Kong C, Bobe S, Pilger C, et al. Multiscale and multimodal optical imaging of the ultrastructure of human liver biopsies. Front Physiol. 2021;12:637136. doi: 10.3389/fphys.2021.637136
  13. Kalra A, Yetiskul E, Wehrle CJ, Tuma F. Physiology of liver. In: StatPearls. StatPearls Publishing; 2024. Accessed September 25, 2024. http://www.ncbi.nlm.nih.gov/books/NBK535438/
  14. Abdel-Misih SRZ, Bloomston M. Liver anatomy. Surg Clin North Am. 2010;90(4):643-653. doi: 10.1016/j.suc.2010.04.017
  15. Brandes R, Lang F, Schmidt R. Physiologie des Menschen: mit Pathophysiologie. Berlin: Springer; 2019. In brief: how does the liver work? In: InformedHealth.Org [Internet]. Institute for Quality and Efficiency in Health Care (IQWiG); 2023. Accessed September 25, 2024. https://www.ncbi.nlm.nih.gov/books/NBK279393/
  16. Nakrani MN, Wineland RH, Anjum F. Physiology, glucose metabolism. In: StatPearls. StatPearls Publishing; 2024. Accessed September 25, 2024. http://www.ncbi.nlm.nih.gov/books/NBK560599/
  17. Mehta P, Grant LM, Reddivari AKR. Viral hepatitis. In: StatPearls. StatPearls Publishing; 2024. Accessed September 25, 2024. http://www.ncbi.nlm.nih.gov/books/NBK554549/
  18. Castaneda D, Gonzalez AJ, Alomari M, Tandon K, Zervos XB. From hepatitis A to E: a critical review of viral hepatitis. World J Gastroenterol. 2021;27(16):1691-1715. doi: 10.3748/wjg.v27.i16.1691
  19. Sharma A, Nagalli S. Chronic liver disease. In: StatPearls. StatPearls Publishing; 2024. Accessed September 25, 2024. http://www.ncbi.nlm.nih.gov/books/NBK554597/
  20. Younossi ZM, Rinella ME, Sanyal AJ, et al. From NAFLD to MAFLD: implications of a premature change in terminology. Hepatol Baltim Md. 2021;73(3):1194-1198. doi: 10.1002/hep.31420
  21. Lotfollahzadeh S, Recio-Boiles A, Babiker HM. Liver cancer. In: StatPearls. StatPearls Publishing; 2024. Accessed September 25, 2024. http://www.ncbi.nlm.nih.gov/books/NBK448337/
  22. Neishabouri A, Soltani Khaboushan A, Daghigh F, Kajbafzadeh AM, Majidi Zolbin M. Decellularization in tissue engineering and regenerative medicine: evaluation, modification, and application methods. Front Bioeng Biotechnol. 2022;10:805299. doi: 10.3389/fbioe.2022.805299
  23. Dai Q, Jiang W, Huang F, Song F, Zhang J, Zhao H. Recent advances in liver engineering with decellularized scaffold. Front Bioeng Biotechnol. 2022;10:831477. doi: 10.3389/fbioe.2022.831477
  24. Mazza G, Al‐Akkad W, Rombouts K, Pinzani M. Liver tissue engineering: from implantable tissue to whole organ engineering. Hepatol Commun. 2017;2(2):131-141. doi: 10.1002/hep4.1136
  25. Han F, Wang J, Ding L, et al. Tissue engineering and regenerative medicine: achievements, future, and sustainability in Asia. Front Bioeng Biotechnol. 2020;8:83. doi: 10.3389/fbioe.2020.00083
  26. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34(3):312-319. doi: 10.1038/nbt.3413
  27. Kang D, Hong G, An S, et al. Bioprinting of multiscaled hepatic lobules within a highly vascularized construct. Small. 2020;16(13):1905505. doi: 10.1002/smll.201905505
  28. Deng B, Ma Y, Huang J, et al. Revitalizing liver function in mice with liver failure through transplantation of 3D-bioprinted liver with expanded primary hepatocytes. Sci Adv. 2024;10(23):eado1550. doi: 10.1126/sciadv.ado1550
  29. Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6(5):915-946. doi: 10.1039/c7bm00765e
  30. Ravanbakhsh H, Karamzadeh V, Bao G, Mongeau L, Juncker D, Zhang YS. Emerging technologies in multi-material bioprinting. Adv Mater Deerfield Beach Fla. 2021;33(49):e2104730. doi: 10.1002/adma.202104730
  31. Kim D, Kim M, Lee J, Jang J. Review on multicomponent hydrogel bioinks based on natural biomaterials for bioprinting 3D liver tissues. Front Bioeng Biotechnol. 2022;10:764682. doi: 10.3389/fbioe.2022.764682
  32. Ghosh RN, Thomas J, Vaidehi BR, et al. An insight into synthesis, properties and applications of gelatin methacryloyl hydrogel for 3D bioprinting. Mater Adv. 2023;4(22):5496-5529. doi: 10.1039/D3MA00715D
  33. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254-271. doi: 10.1016/j.biomaterials.2015.08.045
  34. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37(1):106-126. doi: 10.1016/j.progpolymsci.2011.06.003
  35. Wang L, Zhang HJ, Liu X, et al. A physically cross-linked sodium alginate–gelatin hydrogel with high mechanical strength. ACS Appl Polym Mater. 2021;3(6): 3197-3205. doi: 10.1021/acsapm.1c00404
  36. Gonzalez-Fernandez T, Tenorio AJ, Campbell KT, Silva EA, Leach JK. Alginate-based bioinks for 3D bioprinting and fabrication of anatomically accurate bone grafts. Tissue Eng Part A. 2021;27(17-18):1168-1181. doi: 10.1089/ten.tea.2020.0305
  37. Li D, Wang Y, Zhu S, Hu X, Liang R. Recombinant fibrous protein biomaterials meet skin tissue engineering. Front Bioeng Biotechnol. 2024;12:1411550. doi: 10.3389/fbioe.2024.1411550
  38. Gopinathan J, Noh I. Recent trends in bioinks for 3D printing. Biomater Res. 2018;22(1):11. doi: 10.1186/s40824-018-0122-1
  39. Malda J, Visser J, Melchels FP, et al. 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater Deerfield Beach Fla. 2013;25(36):5011-5028. doi: 10.1002/adma.201302042
  40. Olde Damink LHH, Dijkstra PJ, Van Luyn MJA, Van Wachem PB, Nieuwenhuis P, Feijen J. Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. J Mater Sci Mater Med. 1995;6(8):460-472. doi: 10.1007/BF00123371
  41. Weadock KS, Miller EJ, Bellincampi LD, Zawadsky JP, Dunn MG. Physical crosslinking of collagen fibers: comparison of ultraviolet irradiation and dehydrothermal treatment. J Biomed Mater Res. 1995;29(11):1373-1379. doi: 10.1002/jbm.820291108
  42. Jiang H, Zheng M, Liu X, et al. Feasibility study of tissue transglutaminase for self-catalytic cross-linking of self-assembled collagen fibril hydrogel and its promising application in wound healing promotion. ACS Omega. 2019;4(7):12606-12615. doi: 10.1021/acsomega.9b01274
  43. Nguyen D, Hägg DA, Forsman A, et al. Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate Bioink. Sci Rep. 2017;7(1):658. doi: 10.1038/s41598-017-00690-y
  44. Ziogas IA, Zein NN, Quintini C, Miller CM, Tsoulfas G. Chapter 7 - three-dimensional (3D) printing and liver transplantation. In: Tsoulfas G, Bangeas PI, Suri JS, eds. 3D Printing: Applications in Medicine and Surgery. Elsevier; 2020:97-116. doi: 10.1016/B978-0-323-66164-5.00007-6
  45. Lee H, Han W, Kim H, et al. Development of liver decellularized extracellular matrix bioink for three-dimensional cell printing-based liver tissue engineering. Biomacromolecules. 2017;18(4):1229-1237. doi: 10.1021/acs.biomac.6b01908
  46. Dabaja A, Dabaja A, Abbas M. Polyethylene glycol. In: StatPearls. StatPearls Publishing; 2024. Accessed September 25, 2024. http://www.ncbi.nlm.nih.gov/books/NBK557652/
  47. Ranakoti L, Gangil B, Bhandari P, et al. Promising role of polylactic acid as an ingenious biomaterial in scaffolds, drug delivery, tissue engineering, and medical implants: research developments, and prospective applications. Molecules. 2023;28(2):485. doi: 10.3390/molecules28020485
  48. Murphy S, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-785. doi: 10.1038/nbt.2958
  49. Mirdamadi ES, Khosrowpour Z, Jafari D, Gholipourmalekabadi M, Solati-Hashjin M. 3D-printed PLA/Gel hybrid in liver tissue engineering: effects of architecture on biological functions. Biotechnol Bioeng. 2023;120(3):836-851. doi: 10.1002/bit.28301
  50. Lee J, Maji S, Lee H. Fabrication and integration of a low-cost 3D printing-based glucose biosensor for bioprinted liver-on-a-chip. Biotechnol J. 2023;18(12):2300154. doi: 10.1002/biot.202300154
  51. Gharibshahian M, Salehi M, Beheshtizadeh N, et al. Recent advances on 3D-printed PCL-based composite scaffolds for bone tissue engineering. Front Bioeng Biotechnol. 2023;11:1168504. doi: 10.3389/fbioe.2023.1168504
  52. Mousavi Nejad Z, Zamanian A, Saeidifar M, Vanaei HR, Salar Amoli M. 3D bioprinting of polycaprolactone-based scaffolds for pulp-dentin regeneration: investigation of physicochemical and biological behavior. Polymers. 2021;13(24):4442. doi: 10.3390/polym13244442
  53. Liu JS, Madruga LYC, Yuan Y, Kipper MJ, Khetani SR. Decellularized liver nanofibers enhance and stabilize the long‐term functions of primary human hepatocytes in vitro. Adv Healthc Mater. 2023;12(19):2202302. doi: 10.1002/adhm.202202302
  54. Nguyen DG, Funk J, Robbins JB, et al. Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro. PLOS ONE. 2016;11(7):e0158674. doi: 10.1371/journal.pone.0158674
  55. Westensee IN, Paffen LJMM, Pendlmayr S, De Dios Andres P, Ramos Docampo MA, Städler B. Artificial cells and HepG2 cells in 3D‐bioprinted arrangements. Adv Healthc Mater. 2024;13(12):2303699. doi: 10.1002/adhm.202303699
  56. Lewis PL, Green RM, Shah RN. 3D-printed gelatin scaffolds of differing pore geometry modulate hepatocyte function and gene expression. Acta Biomater. 2018;69:63-70. doi: 10.1016/j.actbio.2017.12.042
  57. Gripon P, Rumin S, Urban S, et al. Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci U S A. 2002;99(24):15655-15660. doi: 10.1073/pnas.232137699
  58. Yang H, Sun L, Pang Y, et al. Three-dimensional bioprinted hepatorganoids prolong survival of mice with liver failure. Gut. 2021;70(3):567-574. doi: 10.1136/gutjnl-2019-319960
  59. Ma X, Qu X, Zhu W, et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci U S A. 2016;113(8): 2206-2211. doi: 10.1073/pnas.1524510113
  60. Yap KK, Schröder J, Gerrand YW, et al. Liver specification of human iPSC-derived endothelial cells transplanted into mouse liver. JHEP Rep. 2024;6(5):101023. doi: 10.1016/j.jhepr.2024.101023
  61. Boularaoui S, Al Hussein G, Khan KA, Christoforou N, Stefanini C. An overview of extrusion-based bioprinting with a focus on induced shear stress and its effect on cell viability. Bioprinting. 2020;20:e00093. doi: 10.1016/j.bprint.2020.e00093
  62. Rossi A, Pescara T, Gambelli AM, et al. Frontiers | biomaterials for extrusion-based bioprinting and biomedical applications. Front Bioeng Biotechnol. 2024;12:1393641. doi: 10.3389/fbioe.2024.1393641
  63. Khoeini R, Nosrati H, Akbarzadeh A, et al. Natural and synthetic bioinks for 3D bioprinting. Adv NanoBiomed Res. 2021;1(8):2000097. doi: 10.1002/anbr.202000097
  64. Jiang Z, Jin B, Liang Z, et al. Liver bioprinting within a novel support medium with functionalized spheroids, hepatic vein structures, and enhanced post-transplantation vascularization. Biomaterials. 2024;311:122681. doi: 10.1016/j.biomaterials.2024.122681
  65. Dharmaraj JJJ, Navasingh RJH, Krolczyk G, Pitchumani SV. Extrusion-based bioprinting in a cost-effective bioprinter. Machines. 2024;12(8):518. doi: 10.3390/machines12080518
  66. JAS, Velayudhan S, PR AK. Biocompatibility evaluation of antioxidant cocktail loaded gelatin methacrylamide as bioink for extrusion-based 3D bioprinting. Biomed Mater. 2023;18(4):044101. doi: 10.1088/1748-605X/acd82f
  67. Akkineni AR, Lode A, Gelinsky M. 3D bioprinting of gelatin-alginate bioinks for biofabrication of in vitro liver sinusoid model. Procedia CIRP. 2024;125:96-100. doi: 10.1016/j.procir.2024.08.017
  68. Massa S, Sakr MA, Seo J, et al. Bioprinted 3D vascularized tissue model for drug toxicity analysis. Biomicrofluidics. 2017;11(4):044109. doi: 10.1063/1.4994708
  69. Roth EA, Xu T, Das M, Gregory C, Hickman JJ, Boland T. Inkjet printing for high-throughput cell patterning. Biomaterials. 2004;25(17):3707-3715. doi: 10.1016/j.biomaterials.2003.10.052
  70. Sun L, Wang Y, Zhang S, Yang H, Mao Y. 3D bioprinted liver tissue and disease models: current advances and future perspectives. Biomater Adv. 2023;152:213499. doi: 10.1016/j.bioadv.2023.213499
  71. Uddin MJ, Hassan J, Douroumis D. Thermal inkjet printing: prospects and applications in the development of medicine. Technologies. 2022;10(5):108. doi: 10.3390/technologies10050108
  72. Park JA, Lee Y, Jung S. Inkjet-based bioprinting for tissue engineering. Organoid. 2023;3:e12. doi: 10.51335/organoid.2023.3.e12
  73. Zhao Dke, Xu Hq, Yin J, Yang HY. Inkjet 3D bioprinting for tissue engineering and pharmaceutics. J Zhejiang Univ-Sci A. 2022;23(12):955-973. doi: 10.1631/jzus.A2200569
  74. Wu CA, Zhu Y, Woo YJ. Advances in 3D bioprinting: techniques, applications, and future directions for cardiac tissue engineering. Bioengineering. 2023;10(7):842. doi: 10.3390/bioengineering10070842
  75. Xu H, Martinez Salazar DM, Shahriar M, Xu C. Investigation and characterization of cell aggregation during and after inkjet-based bioprinting of cell-laden bioink. J Manuf Sci Eng. 2022;144(10):104501. doi: 10.1115/1.4054640
  76. Huang J, Qin Q, Wang J. A review of stereolithography: processes and systems. Processes. 2020;8(9):1138. doi: 10.3390/pr8091138
  77. Liang S, Luo Y, Su Y, et al. Distinct toxicity of microplastics/ TBBPA co-exposure to bioprinted liver organoids derived from hiPSCs of healthy and patient donors. Int J Bioprinting. 2024;10(3):1403. doi: 10.36922/ijb.1403
  78. Hull CW. The birth of 3D printing. Res Technol Manag. 2015;58(6):25-30. doi: 10.5437/08956308X5806067
  79. Tumbleston JR, Shirvanyants D, Ermoshkin N, et al. Continuous liquid interface production of 3D objects. Science. 2015;347(6228):1349-1352. doi: 10.1126/science.aaa2397
  80. Li W, Wang M, Ma H, Chapa-Villarreal FA, Lobo AO, Zhang YS. Stereolithography apparatus and digital light processing-based 3D bioprinting for tissue fabrication. iScience. 2023;26(2):106039. doi: 10.1016/j.isci.2023.106039
  81. Johnson AR, Procopio AT. Low cost additive manufacturing of microneedle masters. 3D Print Med. 2019; 5(1):2. doi: 10.1186/s41205-019-0039-x
  82. Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell‐laden tissue constructs. Adv Mater. 2014;26(19):3124-3130. doi: 10.1002/adma.201305506
  83. Grigoryan B, Paulsen SJ, Corbett DC, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science. 2019;364(6439):458-464. doi: 10.1126/science.aav9750
  84. Levato R, Lim KS, Li W, et al. High-resolution lithographic biofabrication of hydrogels with complex microchannels from low-temperature-soluble gelatin bioresins. Mater Today Bio. 2021;12:100162. doi: 10.1016/j.mtbio.2021.100162
  85. Sphabmixay P, Raredon MSB, Wang AJS, et al. High resolution stereolithography fabrication of perfusable scaffolds to enable long-term meso-scale hepatic culture for disease modeling. Biofabrication. 2021;13(4):045024. doi: 10.1088/1758-5090/ac23aa
  86. Anandakrishnan N, Ye H, Guo Z, et al. Fast stereolithography printing of large-scale biocompatible hydrogel models. Adv Healthc Mater. 2021;10(10):e2002103. doi: 10.1002/adhm.202002103
  87. Urzì O, Gasparro R, Costanzo E, et al. Three-dimensional cell cultures: the bridge between in vitro and in vivo models. Int J Mol Sci. 2023;24(15):12046. doi: 10.3390/ijms241512046
  88. Achilli TM, Meyer J, Morgan JR. Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin Biol Ther. 2012;12(10):1347-1360. doi: 10.1517/14712598.2012.707181
  89. Skardal A, Zhang J, Prestwich GD. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials. 2010;31(24):6173-6181. doi: 10.1016/j.biomaterials.2010.04.045
  90. Mironov V, Kasyanov V, Drake C, Markwald RR. Organ printing: promises and challenges. Regen Med. 2008;3(1):93-103. doi: 10.2217/17460751.3.1.93
  91. Jakab K, Norotte C, Damon B, et al. Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng Part A. 2008;14(3):413-421. doi: 10.1089/tea.2007.0173
  92. Van Houten SK, Bramson MTK, Corr DT. A bioreactor for controlled electrical and mechanical stimulation of developing scaffold-free constructs. J Biomech Eng. 2022;144(9):094501. doi: 10.1115/1.4054021
  93. Fang Y, Ji M, Wu B, et al. Engineering highly vascularized bone tissues by 3D bioprinting of granular prevascularized spheroids. ACS Appl Mater Interfaces. 2023;15(37):43492-43502. doi: 10.1021/acsami.3c08550
  94. Yamada M, Utoh R, Ohashi K, et al. Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions. Biomaterials. 2012;33(33):8304-8315. doi: 10.1016/j.biomaterials.2012.07.068
  95. Li C, Cui W. 3D bioprinting of cell-laden constructs for regenerative medicine. Eng Regen. 2021;2:195-205. doi: 10.1016/j.engreg.2021.11.005
  96. Gaskell H, Sharma P, Colley HE, Murdoch C, Williams DP, Webb SD. Characterization of a functional C3A liver spheroid model. Toxicol Res. 2016;5(4):1053-1065. doi: 10.1039/C6TX00101G
  97. Taymour R, Kilian D, Ahlfeld T, Gelinsky M, Lode A. 3D bioprinting of hepatocytes: core–shell structured co-cultures with fibroblasts for enhanced functionality. Sci Rep. 2021;11(1):5130. doi: 10.1038/s41598-021-84384-6
  98. Kim MK, Jeong W, Jeon S, Kang HW. 3D bioprinting of dECM-incorporated hepatocyte spheroid for simultaneous promotion of cell-cell and -ECM interactions. Front Bioeng Biotechnol. 2023;11:1305023. doi: 10.3389/fbioe.2023.1305023
  99. Wu Y, Wenger A, Golzar H, Tang X. 3D bioprinting of bicellular liver lobule-mimetic structures via microextrusion of cellulose nanocrystal-incorporated shear-thinning bioink. Sci Rep. 2020;10(1):20648. doi: 10.1038/s41598-020-77146-3
  100. Goulart E, de Caires-Junior LC, Telles-Silva KA, et al. 3D bioprinting of liver spheroids derived from human induced pluripotent stem cells sustain liver function and viability in vitro. Biofabrication. 2019;12(1):015010. doi: 10.1088/1758-5090/ab4a30
  101. Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 2009;30(30):5910-5917. doi: 10.1016/j.biomaterials.2009.06.034
  102. Sung K, Patel NR, Ashammakhi N, Nguyen KL. 3-Dimensional bioprinting of cardiovascular tissues. JACC Basic Transl Sci. 2021;6(5):467-482. doi: 10.1016/j.jacbts.2020.12.006
  103. Arai K, Murata D, Verissimo AR, et al. Fabrication of scaffold-free tubular cardiac constructs using a Bio-3D printer. In Matsusaki M, ed. PLOS ONE. 2018;13(12):e0209162. doi: 10.1371/journal.pone.0209162
  104. Mironov V, Kasyanov V, Markwald RR. Organ printing: from bioprinter to organ biofabrication line. Tissue Cell Pathw Eng. 2011;22(5):667-673. doi: 10.1016/j.copbio.2011.02.006
  105. Moldovan NI, Hibino N, Nakayama K. Principles of the Kenzan method for robotic cell spheroid-based three-dimensional bioprinting. Tissue Eng Part B Rev. 2017;23(3):237-244. doi: 10.1089/ten.teb.2016.0322
  106. Foglia B, Turato C, Cannito S. Hepatocellular carcinoma: latest research in pathogenesis, detection and treatment. Int J Mol Sci. 2023;24(15):12224. doi: 10.3390/ijms241512224
  107. Deng GL, Zeng S, Shen H. Chemotherapy and target therapy for hepatocellular carcinoma: new advances and challenges. World J Hepatol. 2015;7(5):787-798. doi: 10.4254/wjh.v7.i5.787
  108. Jeong S, Cheng Q, Huang L, et al. Risk stratification system to predict recurrence of intrahepatic cholangiocarcinoma after hepatic resection. BMC Cancer. 2017;17(1):464. doi: 10.1186/s12885-017-3464-5
  109. de Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell. 2023;41(3):374-403. doi: 10.1016/j.ccell.2023.02.016
  110. Sun L, Yang H, Wang Y, et al. Application of a 3D bioprinted hepatocellular carcinoma cell model in antitumor drug research. Front Oncol. 2020;10:878. doi: 10.3389/fonc.2020.00878
  111. Mao S, He J, Zhao Y, et al. Bioprinting of patient-derived in vitro intrahepatic cholangiocarcinoma tumor model: establishment, evaluation and anti-cancer drug testing. Biofabrication. 2020;12(4):045014. doi: 10.1088/1758-5090/aba0c3
  112. Xie F, Sun L, Pang Y, et al. Three-dimensional bio-printing of primary human hepatocellular carcinoma for personalized medicine. Biomaterials. 2021;265:120416. doi: 10.1016/j.biomaterials.2020.120416
  113. Wang X, Liu Z, Duan Q, et al. 3D bioprinting of in vitro porous hepatoma models: establishment, evaluation, and anticancer drug testing. Bio-Des Manuf. 2024;7(2):137-152. doi: 10.1007/s42242-023-00263-1
  114. Wang X, Yang X, Liu Z, et al. 3D bioprinting of an in vitro hepatoma microenvironment model: Establishment, evaluation, and anticancer drug testing. Acta Biomater. 2024;185:173-189. doi: 10.1016/j.actbio.2024.07.019
  115. van Grunsven LA. 3D in vitro models of liver fibrosis. Adv Drug Deliv Rev. 2017;121:133-146. doi: 10.1016/j.addr.2017.07.004
  116. Carvalho AM, Bansal R, Barrias CC, Sarmento B. The material world of 3D-bioprinted and microfluidic-chip models of human liver fibrosis. Adv Mater. 2024;36(2):2307673. doi: 10.1002/adma.202307673
  117. Cuvellier M, Ezan F, Oliveira H, et al. 3D culture of HepaRG cells in GelMa and its application to bioprinting of a multicellular hepatic model. Biomaterials. 2021; 269:120611. doi: 10.1016/j.biomaterials.2020.120611
  118. Ma X, Yu C, Wang P, et al. Rapid 3D bioprinting of decellularized extracellular matrix with regionally varied mechanical properties and biomimetic microarchitecture. Biomaterials. 2018;185:310-321. doi: 10.1016/j.biomaterials.2018.09.026
  119. Norona LM, Nguyen DG, Gerber DA, Presnell SC, LeCluyse EL. Editor’s highlight: modeling compound-induced fibrogenesis in vitro using three-dimensional bioprinted human liver tissues. Toxicol Sci Off J Soc Toxicol. 2016;154(2):354-367. doi: 10.1093/toxsci/kfw169
  120. Lee H, Kim J, Choi Y, Cho DW. Application of gelatin bioinks and cell-printing technology to enhance cell delivery capability for 3D liver fibrosis-on-a-chip development. ACS Biomater Sci Eng. 2020;6(4):2469-2477. doi: 10.1021/acsbiomaterials.9b01735

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing