Fabrication of bacteriorhodopsin-embedded hydrogel construct for biocompatible photosensitive device
Bacteriorhodopsin (br) is a promising photosensitive material with applications in energy conversion, biosensors, and optoelectronic devices due to its bio-sourced origin and photoelectrical properties. Despite advancements in recent years, the integration of br-based devices necessitates the use of materials with little biocompatibility and fabrication techniques with restricted customizability, limiting potential applications such as optocontrol of cell behavior, implants with 3D patterning for retinal disease treatment, and light-sensitive cell robots. To solve this limitation, this study presents a novel approach by embedding br into a hydrogel matrix. It utilizes an extrusion-based and 3D bioprinting technique, showcasing its light-sensitive characteristics within a fully biocompatible construct. The hydrogel, comprising gelatin and sodium alginate, offers excellent printability for generating structured designs with versatile patterns. Photoelectrical properties of the fabricated br-embedded hydrogel construct, such as differential response, light intensity sensitivity, and br concentration sensitivity, are identified through electrochemical characterization. The temporal and spatial pattern recognition ability, based on the photoelectrical characteristics, is demonstrated through modulated light illumination and different patterns of printed hydrogel construct. Pattern recognition ability was then applied to reconstruct images containing different Latin letters. This research presents a novel method for the fabrication of patterned hydrogel constructs with high biocompatibility and distinctive light-responsive properties, expanding the potential applications of br in bio-related scenarios.
- Marin E, Boschetto F, Pezzotti G. Biomaterials and biocompatibility: an historical overview. J Biomed Mater Res A. 2020;108(8):1617-1633. doi: 10.1002/jbm.a.36930
- Biswal T, BadJena SK, Pradhan D. Sustainable biomaterials and their applications: a short review. Mater Today Proc. 2020;30:274-282. doi: 10.1016/j.matpr.2020.01.437
- Li YT, Tian Y, Tian H, et al. A review on bacteriorhodopsin-based bioelectronic devices. Sensors (Basel). 2018;18(5):1368. doi: 10.3390/s18051368
- Shin N, Lee SH, Cho Y, Park TH, Hong S. Bioelectronic skin based on nociceptive ion channel for human-like perception of cold pains. Small. 2020;16(30):2001469. doi: 10.1002/smll.202001469
- Kim D, Han SA, Kim JH, Lee JH, Kim SW, Lee SW. Biomolecular piezoelectric materials: from amino acids to living tissues. Adv Mater. 2020;32(14):1906989. doi: 10.1002/adma.201906989
- Lanyi JK. Understanding structure and function in the light-driven proton pump bacteriorhodopsin. J Struct Biol. 1998;124(2):164-178. doi: 10.1006/jsbi.1998.4044
- Oesterhelt D, Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol. 1971;233(39):149-152. doi: 10.1038/newbio233149a0
- Lozier RH, Bogomolni RA, Stoeckenius W. Bacteriorhodopsin: a light-driven proton pump in Halobacterium halobium. Biophys J. 1975;15(9):955-962. doi: 10.1016/S0006-3495(75)85875-9
- Oesterhelt D. The purple membrane of Halobacterium halobium: a new system for light energy conversion. Ciba Found Symp. 1975;(31):147-167. doi: 10.1002/9780470720134.ch9
- Oesterhelt D. Bacteriorhodopsin as an example of a light‐driven proton pump. Angew Chem Int Ed Engl. 1976;15(1):17-24. doi: 10.1002/anie.197600171
- Stoeckenius W, Lozier RH, Bogomolni RA. Bacteriorhodopsin and the purple membrane of halobacteria. Biochim Biophys Acta 1979;505(3–4):215-278. doi: 10.1016/0304-4173(79)90006-5
- Váró G, Keszthelyi L. Photoelectric signals from dried oriented purple membranes of Halobacterium halobium. Biophys J. 1983;43(1):47-51. doi: 10.1016/S0006-3495(83)84322-7
- Kouyama T, Kouyama AN, Ikegami A. Bacteriorhodopsin is a powerful light-driven proton pump. Biophys J. 1987;51(5):839-841. doi: 10.1016/S0006-3495(87)83411-2
- Kikukawa T, Araiso T, Mukasa K, Shimozawa T, Kamo N. The molecular motion of bacteriorhodopsin mutant D96N in the purple membrane. FEBS Lett. 1995;377(3): 502-504. doi: 10.1016/0014-5793(95)01408-X
- Miyasaka TMT. Design of intelligent optical sensors with organized bacteriorhodopsin films. Jpn J Appl Phys. 1995;34(7S):3920. doi: 10.1143/JJAP.34.3920
- Miyasaka T, Koyama K, Itoh I. Quantum conversion and image detection by a bacteriorhodopsin-based artificial photoreceptor. Science. 1992;255(5042):342-344. doi: 10.1126/science.255.5042.342
- Lu Z, Wang J, Xiang X, Li R, Qiao Y, Li CM. Integration of bacteriorhodopsin with upconversion nanoparticles for NIR-triggered photoelectrical response. Chem Commun (Camb). 2015;51(29):6373-6376. doi: 10.1039/c5cc00457h
- Choi HG, Min J, Choi JW, Lee WH. Molecular photoreceptor consisting of bacteriorhodopsin/flavin complex Langmuir– Blodgett films. Biosensor Bioelectron. 1998;13(10):1069- 1075. doi: 10.1016/S0956-5663(98)00073-6
- Hasegawa H, Sakamoto K, Shomura K, et al. Biomaterial-based biomimetic visual sensors: inkjet patterning of bacteriorhodopsin. ACS Appl Mater Interfaces. 2023;15(38):45137-45145. doi: 10.1021/acsami.3c07540
- Okada-Shudo Y, Tanabe T, Mukai T, Kasai K, Zhang Y, Watanabe M. Directionally selective motion detection with bacteriorhodopsin patterned sensor. Synth Met. 2016;222:249-254. doi: 10.1016/j.synthmet.2016.10.020
- Lv Y, Yang N, Li S, Lu S, Xiang Y. A novel light-driven pH-biosensor based on bacteriorhodopsin. Nano Energy. 2019;66:104129. doi: 10.1016/j.nanoen.2019.104129
- Walczak KA, Bergstrom PL, Friedrich CR. Light sensor platform based on the integration of bacteriorhodopsin with a single electron transistor. Act Passive Electron Compon. 2011;2011:1-7. doi: 10.1155/2011/586924
- Chen HM, Jheng KR, Yu AD. Direct, label-free, selective, and sensitive microbial detection using a bacteriorhodopsin-based photoelectric immunosensor. Biosens Bioelectron. 2017;91:24-31. doi: 10.1016/j.bios.2016.12.032
- Ahmadi M, Yeow JTW. Fabrication and characterization of a radiation sensor based on bacteriorhodopsin. Biosens Bioelectron. 2011;26(5):2171-2176. doi: 10.1016/j.bios.2010.09.029
- Ahmadi M, Osei EK, Yeow JTW. Bacteriorhodopsin for superficial X-ray sensing. Sens Actuat B Chem. 2012;166- 167:177-183. doi: 10.1016/j.snb.2012.02.037
- Choi HG, Jung WC, Min J, Lee WH, Choi JW. Color image detection by biomolecular photoreceptor using bacteriorhodopsin-based complex LB films. Biosens Bioelectron. 2001;16(9):925-935. doi: 10.1016/s0956-5663(01)00211-1
- Kim JH, Kim DH, So JH, Koo HJ. Toward eco-friendly dye-sensitized solar cells (DSSCs): natural dyes and aqueous electrolytes. Energies. 2021;15(1):219. doi: 10.3390/en15010219
- Devi P, Thakur A, Ghosh D, et al. Boosting photoelectrochemical performance of GaN nanowall network photoanode with bacteriorhodopsin. Int J Hydrogen Energy. 2020;45(1):103-111. doi: 10.1016/j.ijhydene.2019.10.184
- Wu M, Lin F, Song Y. Engineered bacteriorhodopsin film with oriented patterns for the improvement of the photoelectric response. Int J Mol Sci. 2022;23(24):16079. doi: 10.3390/ijms232416079
- Molaeirad A, Rezaeian N. Oriented assembly of bacteriorhodopsin on ZnO nanostructured electrode for enhanced photocurrent generation. Biotechnol Appl Biochem. 2015;62(4):489-493. doi: 10.1002/bab.1294
- Renugopalakrishnan V, Barbiellini B, King C, et al. Engineering a robust photovoltaic device with quantum dots and bacteriorhodopsin. J Phys Chem C Nanomater Interfaces. 2014;118(30):16710-16717. doi: 10.1021/jp502885s
- Lu S, Guo Z, Xiang Y, Jiang L. Photoelectric frequency response in a bioinspired bacteriorhodopsin/ alumina nanochannel hybrid nanosystem. Adv Mater. 2016;28(44):9851-9856. doi: 10.1002/adma.201603809
- Chellamuthu J, Nagaraj P, Chidambaram SG, Sambandam A, Muthupandian A. Enhanced photocurrent generation in bacteriorhodopsin based bio-sensitized solar cells using gel electrolyte. J Photochem Photobiol B. 2016;162:208-212. doi: 10.1016/j.jphotobiol.2016.06.044
- Naseri N, Janfaza S, Irani R. Visible light switchable bR/TiO2 nanostructured photoanodes for bio-inspired solar energy conversion. RSC Adv. 2015;5(24): 18642-18646. doi: 10.1039/C4RA16188B
- Molaeirad A, Janfaza S, Karimi-Fard A, Mahyad B. Photocurrent generation by adsorption of two main pigments of Halobacterium salinarum on TiO2 nanostructured electrode. Biotechnol Appl Biochem. 2015;62(1):121-125. doi: 10.1002/bab.1244
- Mohammadpour R, Janfaza S. Efficient nanostructured biophotovoltaic cell based on bacteriorhodopsin as biophotosensitizer. ACS Sustain Chem Eng. 2015;3(5):809- 813. doi: 10.1021/sc500617w
- Guo Z, Liang D, Rao S, Xiang Y. Heterogeneous bacteriorhodopsin/gold nanoparticle stacks as a photovoltaic system. Nano Energy. 2015;11:654-661. doi: 10.1016/j.nanoen.2014.11.026
- Hug H, Bader M, Mair P, Glatzel T. Biophotovoltaics: natural pigments in dye-sensitized solar cells. Appl Energy. 2014;115:216-225. doi: 10.1016/j.apenergy.2013.10.055
- Kumara NTRN, Ekanayake P, Lim A, et al. Layered co-sensitization for enhancement of conversion efficiency of natural dye sensitized solar cells. J Alloys Compoun. 2013;581:186-191. doi: 10.1016/j.jallcom.2013.07.039
- Yen CW, Hayden SC, Dreaden EC, Szymanski P, El-Sayed MA. Tailoring plasmonic and electrostatic field effects to maximize solar energy conversion by bacteriorhodopsin, the other natural photosynthetic system. Nano Lett. 2011;11(9):3821-3826. doi: 10.1021/nl2018959
- Thavasi V, Lazarova T, Filipek S, et al. Study on the feasibility of bacteriorhodopsin as bio-photosensitizer in excitonic solar cell: a first report. J Nanosci Nanotech. 2009;9(3): 1679-1687. doi: 10.1166/jnn.2009.si07
- Li R, Hu F, Bao Q, et al. Enhancement of photoelectric response of bacteriorhodopsin by multilayered WO3·H2O nanocrystals/PVA membrane. Chem Commun. 2010;46(5):689-691. doi: 10.1039/b923354g
- Zabut B, Elkahlout K, Yücel M, Gunduz U, Turker L, Eroglu I. Hydrogen gas production by combined systems of Rhodobacter sphaeroides O.U.001 and Halobacterium salinarum in a photobioreactor. Int J Hydrogen Energy. 2006;31:1553-1562. doi: 10.1016/j.ijhydene.2006.06.023
- Chen F, Qing Y, Wu H, Hou X. Optical storage characters of bacteriorhodopsin molecule film. Proc SPIE. 2002;4536. doi: 10.1117/12.409233
- Yu X, Yao B, Lei M, Gao P, Ma B. Femtosecond laser-induced permanent anisotropy in bacteriorhodopsin films and applications in optical data storage. J Modern Optic. 2013;60(4):309-314. doi: 10.1080/09500340.2013.774067
- Yao B, Lei M, Ren L, et al. Polarization multiplexed write-once–read-many optical data storage in bacteriorhodopsin films. Opt Lett. 2005;30(22):3060-3062. doi: 10.1364/ol.30.003060
- Chen F, Hou X, Li BF, Jiang L, Hammp N. Optical information storage of bacteriorhodopsin molecule film: experimental study. Mater Sci Eng B. 2000;76(1):76-78. doi: 10.1016/S0921-5107(00)00399-8
- Hampp NA, Neebe M, Seitz A. Printing inks containing the photochromic protein bacteriorhodopsin. In: Optical Security and Counterfeit Deterrence Techniques III. SPIE, 2000;3973:118-125. doi: 10.1117/12.382181
- Hampp N, Neebe M. Bacteriorhodopsin-based multilevel optical security features. In: Optical Security and Counterfeit Deterrence Techniques VI. SPIE, 2006;6075:256-264. doi: 10.1117/12.642627
- Ostrovsky MA, Smitienko OA, Bochenkova AV, Feldman TB. Similarities and differences in photochemistry of Type I and Type II rhodopsins. Biochem Moscow. 2023;88(10): 1528-1543. doi: 10.1134/S0006297923100097
- Sabari Girisun TC, Jeganathan C, Pavithra N, Anandan S. Structurally modified bacteriorhodopsin as an efficient bio-sensitizer for solar cell applications. Eur Biophys J. 2019;48(1):61-71. doi: 10.1007/s00249-018-1331-1
- Janfaza S, Molaeirad A, Mohamadpour R, Khayati M, Mehrvand J. Efficient bio-nano hybrid solar cells via purple membrane as sensitizer. BioNanoSci. 2014;4(1):71-77. doi: 10.1007/s12668-013-0118-1
- Das S, Wu C, Song Z, et al. Bacteriorhodopsin enhances efficiency of perovskite solar cells. ACS Appl Mater Interfaces. 2019;11(34):30728-30734. doi: 10.1021/acsami.9b06372
- Jeganathan C, Sabari Girisun TC, Vijaya S, Anandan S. Bacteriorhodopsin-sensitized preferentially oriented one-dimensional TiO2 nanorod polymorphs as efficient photoanodes for high-performance bio-sensitized solar cells. Appl Nanosci. 2019;9(2):189-208. doi: 10.1007/s13204-018-0905-7
- Yao B, Wang Y, Lei M, Zheng Y. Characteristics and mechanisms of the two types of photoelectric differential response of bacteriorhodopsin-based photocell. Biosens Bioelectron. 2003;19(4):283-287. doi: 10.1016/S0956-5663(03)00211-2
- Wang Y, Wu J, Ma D, Ding J. Preparation of a cross-linked gelatin/bacteriorhodopsin film and its photochromic properties. Sci China Chem. 2011;54(2):405-409. doi: 10.1007/s11426-010-4213-7
- Ma D, Zhao Y, Wu J, Cui T, Ding J. A block-copolymer hydrogel encapsulates bacteriorhodopsin and produces the longest photochromic response of the membrane protein under high water content conditions. Soft Matter. 2009;5(23):4635-4637. doi: 10.1039/b917438a
- Hsieh FY, Han HW, Chen XR, Yang CS, Wei Y, Hsu SH. Non-viral delivery of an optogenetic tool into cells with self-healing hydrogel. Biomaterials. 2018;174:31-40. doi: 10.1016/j.biomaterials.2018.05.014
- Ma Y, Zhang Y, Cai S, et al. Flexible hybrid electronics for digital healthcare. Adv Mater. 2020;32(15):1902062. doi: 10.1002/adma.201902062
- Wang L, Xu T, Zhang X. Multifunctional conductive hydrogel-based flexible wearable sensors. TrAC Trends Anal Chem. 2021;134:116130. doi: 10.1016/j.trac.2020.116130
- Ling Y, An T, Yap LW, Zhu B, Gong S, Cheng W. Disruptive, soft, wearable sensors. Adv Mater. 2020;32(18):1904664. doi: 10.1002/adma.201904664
- Han F, Xie X, Wang T, et al. Wearable hydrogel‐based epidermal sensor with thermal compatibility and long term stability for smart colorimetric multi‐signals monitoring. Adv Healthc Mater. 2023;12(3):2201730. doi: 10.1002/adhm.202201730
- Persaud A, Maus A, Strait L, Zhu D. 3D bioprinting with live cells. Eng Regen. 2022;3(3):292-309. doi: 10.1016/j.engreg.2022.07.002
- Dey M, Ozbolat IT. 3D bioprinting of cells, tissues and organs. Sci Rep. 2020;10(1):14023. doi: 10.1038/s41598-020-70086-y
- Gai K, Yang M, Chen W, et al. Development of neural cells and spontaneous neural activities in engineered brain-like constructs for transplantation. Adv Healthc Mater. 2024;2401419. doi: 10.1002/adhm.202401419
- Lien SM, Ko LY, Huang TJ. Effect of crosslinking temperature on compression strength of gelatin scaffold for articular cartilage tissue engineering. Mater Sci Eng C. 2010;30(4):631-635. doi: 10.1016/j.msec.2010.02.019
- Chu LK, Yen CW, El-Sayed MA. Bacteriorhodopsin-based photo-electrochemical cell. Biosens Bioelectron. 2010;26(2):620-626. doi: 10.1016/j.bios.2010.07.01
- Liu W, Liu F, Zhang T. An optoelectronic device based on bacteriorhodopsin with modulated photocurrent waveform. Opt Mater. 2022;133:112937. doi: 10.1016/j.optmat.2022.112937