AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.4166
REVIEW

Comprehensive insight into 3D bioprinting technology for brain tumor modelling

Ayoung Kim1,2 Kyumin Mo1,2 Soohyun Choe1,2 Miyoung Shin3 Hyunho Yoon1,2*
Show Less
1 Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi, South Korea
2 Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi, South Korea
3 Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
Submitted: 8 July 2024 | Accepted: 22 August 2024 | Published: 27 August 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Glioblastoma is one of the most common primary malignant brain tumors with a poor prognosis and high mortality rate. Since only small lipophilic molecules can penetrate the blood–brain barrier, chemotherapy and immunotherapy are limited in their ability to effectively treat brain tumors. 3D bioprinting has the potential to directly model the 3D environment of human pathology and diseases. In many cancers, 3D bioprinting technology closely mimics the tumor microenvironment, making it a promising tool for drug screening and uncovering the mechanisms of cancer initiation and progression. Recent 3D bioprinting technologies have been developed to recreate the dynamic interactions between the tumor and endothelial cells. Brain tumor models using 3D bioprinting technology can reconstruct the biophysical heterogeneity and immune interactions in the brain. These advanced models regulate the organization of tumor structures for preclinical drug testing and reveal the immunological pathways involved in brain tumors. Here, we highlight 3D bioprinting technologies that can replace conventional in vitro models for brain tumor treatment.

Keywords
3D Bioprinting
Blood–brain barrier
Glioblastoma
Glioblasto¬ma-on-a-chip
Tumor microenvironment
Funding
The authors wish to acknowledge Brain Korea 21 (BK21; grant number M2022B002600003) and the Ministry of Food and Drug Safety in Korea (grant number 22213MFDS421)
Conflict of interest
The authors declare they have no competing interests.
References
  1. Tang M, Jiang S, Huang X, et al. Integration of 3D bioprinting and multi-algorithm machine learning identified glioma susceptibilities and microenvironment characteristics. Cell Discov. 2024;10(1):39. doi: 10.1038/s41421-024-00650-7
  2. Yi HG, Jeong YH, Kim Y, et al. A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy. Nat Biomed Eng. 2019;3(7):509-519. doi: 10.1038/s41551-019-0363-x
  3. Wang YI, Abaci HE, Shuler ML. Microfluidic blood-brain barrier model provides in vivo‐like barrier properties for drug permeability screening. Biotechnol Bioeng. 2017;114(1):184-194. doi: 10.1002/bit.26045
  4. Tang M, Xie Q, Gimple RC, et al. Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions. Cell Res. 2020;30(10):833-853. doi: 10.1038/s41422-020-0338-1
  5. Silvani G, Basirun C, Wu H, et al. A 3D‐bioprinted vascularized glioblastoma‐on‐a‐chip for studying the impact of simulated microgravity as a novel pre‐clinical approach in brain tumor therapy. Adv Ther. 2021;4(11):2100106. doi: 10.1002/adtp.202100106
  6. Colopi A, Fuda S, Santi S, et al. Impact of age and gender on glioblastoma onset, progression, and management. Mech Ageing Dev. 2023;211:111801. doi: 10.1016/j.mad.2023.111801
  7. Lauko A, Lo A, Ahluwalia MS, Lathia JD. Cancer cell heterogeneity & plasticity in glioblastoma and brain tumors. Semin Cancer Biol. 2022;82:162-175. doi: 10.1016/j.semcancer.2021.02.014
  8. Schaff LR, Mellinghoff IK. Glioblastoma and other primary brain malignancies in adults: a review. JAMA. 2023;329(7):574-587. doi: 10.1001/jama.2023.0023
  9. Xie Z, Chen M, Lian J, Wang H, Ma J. Glioblastoma-on-a-chip construction and therapeutic applications. Front Oncol. 2023;13:1183059. doi: 10.3389/fonc.2023.1183059
  10. Angom RS, Nakka NMR, Bhattacharya S. Advances in glioblastoma therapy: an update on current approaches. Brain Sci. 2023;13(11):1536. doi: 10.3390/brainsci13111536
  11. Sharma P, Aaroe A, Liang J, Puduvalli VK. Tumor microenvironment in glioblastoma: current and emerging concepts. Neurooncol Adv. 2023;5(1):vdad009. doi: 10.1093/noajnl/vdad009
  12. Pineda E, Domenech M, Hernandez A, Comas S, Balana C. Recurrent glioblastoma: ongoing clinical challenges and future prospects. Onco Targets Ther. 2023;16:71-86. doi: 10.2147/OTT.S366371
  13. Knowlton S, Onal S, Yu CH, Zhao JJ, Tasoglu S. Bioprinting for cancer research. Trends Biotechnol. 2015;33(9):504-513. doi: 10.1016/j.tibtech.2015.06.007
  14. Van Norman GA. Limitations of animal studies for predicting toxicity in clinical trials: is it time to rethink our current approach? JACC Basic Transl Sci. 2019;4(7):845-854. doi: 10.1016/j.jacbts.2020.03.010
  15. Kang Y, Datta P, Shanmughapriya S, Ozbolat IT. 3D bioprinting of tumor models for cancer research. ACS Appl Bio Mater. 2020;3(9):5552-5573. doi: 10.1021/acsabm.0c00791
  16. Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6(5):915-946. doi: 10.1039/c7bm00765e
  17. Prendergast ME, Burdick JA. Computational modeling and experimental characterization of extrusion printing into suspension baths. Adv Healthc Mater. 2022;11(7):e2101679. doi: 10.1002/adhm.202101679
  18. Ozbek II, Saybasili H, Ulgen KO. Applications of 3D bioprinting technology to brain cells and brain tumor models: special emphasis to glioblastoma. ACS Biomater Sci Eng. 2024;10(5):2616-2635. doi: 10.1021/acsbiomaterials.3c01569
  19. Qiu B, Bessler N, Figler K, et al. Bioprinting neural systems to model central nervous system diseases. Adv Funct Mater. 2020;30(44):1910250. doi: 10.1002/adfm.201910250
  20. DePalma TJ, Sivakumar H, Skardal A. Strategies for developing complex multi-component in vitro tumor models: highlights in glioblastoma. Adv Drug Deliv Rev. 2022;180:114067. doi: 10.1016/j.addr.2021.114067
  21. Jiao W, Shan J, Gong X, et al. GelMA hydrogel: a game-changer in 3D tumor modeling. Mater Today Chem. 2024;38:102111. doi: 10.1002/adfm.201910250
  22. Jung M, Ghamrawi S, Du EY, Gooding JJ, Kavallaris M. Advances in 3D bioprinting for cancer biology and precision medicine: from matrix design to application. Adv Healthc Mater. 2022;11(24):e2200690. doi: 10.1002/adhm.202200690
  23. Crivii C-B, Boșca AB, Melincovici CS, et al. Glioblastoma microenvironment and cellular interactions. Cancers. 2022;14(4):1092. doi: 10.1002/adfm.201910250
  24. Thenuwara G, Javed B, Singh B, Tian F. Biosensor-enhanced organ-on-a-chip models for investigating glioblastoma tumor microenvironment dynamics. Sensors. 2024;24(9):2865. doi: 10.3390/s24092865
  25. Parra-Cantu C, Li W, Quiñones-Hinojosa A, Zhang YS. 3D bioprinting of glioblastoma model. J 3D Print Med. 2020;4(2):113-125. doi: 10.2217/3dp-2019-0027
  26. Cadena M, Ning L, King A, et al. 3D bioprinting of neural tissues. Adv Healthc Mater. 2021;10(15):e2001600. doi: 10.1002/adhm.202001600
  27. Khoeini R, Nosrati H, Akbarzadeh A, et al. Natural and synthetic bioinks for 3D bioprinting. Adv NanoBiomed Res. 2021;1(8):2000097. doi: 10.1002/anbr.202000097
  28. Leong SW, Tan SC, Norhayati MN, Monif M, Lee S-Y. Effectiveness of bioinks and the clinical value of 3d bioprinted glioblastoma models: a systematic review. Cancers. 2022;14(9):2149. doi: 10.3390/cancers14092149
  29. Tang M, Rich JN, Chen S. Biomaterials and 3D bioprinting strategies to model glioblastoma and the blood-brain barrier. Adv Mater. 2021;33(5):2004776. doi: 10.1002/adma.202004776v
  30. Ma L, Li Y, Wu Y, et al. 3D bioprinted hyaluronic acid-based cell-laden scaffold for brain microenvironment simulation. Bio-Design Manuf. 2020;3:164-174. doi: 10.1007/s42242-020-00076-6
  31. de la Vega L, Lee C, Sharma R, Amereh M, Willerth SM. 3D bioprinting models of neural tissues: the current state of the field and future directions. Brain Res Bull. 2019;150:240-249. doi: 10.1016/j.brainresbull.2019.06.007
  32. Kumar SL, Sureka P, Sowmitha A, Sentisenla J, Swathy M. Recent advancements of hydroxyapatite and polyethylene glycol (PEG) composites for tissue engineering applications—a comprehensive review. Eur Polym J. 2024;215(9):113226. doi: 10.1016/j.eurpolymj.2024.113226
  33. Shi L, Zhang J, Zhao M, et al. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale. 2021;13(24):10748-10764. doi: 10.1039/D1NR02065J
  34. Walus K, Beyer S, Willerth SM. Three-dimensional bioprinting healthy and diseased models of the brain tissue using stem cells. Curr Opin Biomed Eng. 2020;14:25-33. doi: 10.1016/j.cobme.2020.03.002
  35. Lee SJ, Esworthy T, Stake S, et al. Advances in 3D bioprinting for neural tissue engineering. Adv Biosyst. 2018;2(4): 1700213. doi: 10.1002/adbi.201700213
  36. Esworthy TJ, Miao S, Lee S-J, et al. Advanced 4D-bioprinting technologies for brain tissue modeling and study. Int J Smart Nano Mater. 2019;10(3):177-204. doi: 10.1080/19475411.2019.1631899
  37. Wang X, Dai X, Zhang X, et al. 3D bioprinted glioma cell‐laden scaffolds enriching glioma stem cells via epithelial–mesenchymal transition. J Biomed Mater Res A. 2019;107(2):383-391. doi: 10.1002/jbm.a.36549
  38. Sánchez-Salazar MG, Álvarez MM, Trujillo-de Santiago G. Advances in 3D bioprinting for the biofabrication of tumor models. Bioprinting. 2021;21:e00120. doi: 10.1016/j.bprint.2020.e00120
  39. Wang X, Li X, Ding J, et al. 3D bioprinted glioma microenvironment for glioma vascularization. J Biomed Mater Res A. 2021;109(6):915-925. doi: 10.1002/jbm.a.37082
  40. Graber P, Dolman MEM, Jung M, Kavallaris M. Ex vivo modeling of the tumor microenvironment to develop therapeutic strategies for gliomas. Adv Ther. 2024:2300442. doi: 10.1002/adtp.202300442
  41. Wang X, Li X, Dai X, et al. Coaxial extrusion bioprinted shell-core hydrogel microfibers mimic glioma microenvironment and enhance the drug resistance of cancer cells. Colloids Surf B Biointerfaces. 2018;171:291-299. doi: 10.1016/j.colsurfb.2018.07.042
  42. Suresh P. Saponins-uptake and targeting issues for brain-specific delivery for enhanced cell death induction in glioblastoma. Lett Drug Des Discov. 2022;19(6): 473-480. doi: 10.2174/1570180819666220121145332
  43. Dai X, Ma C, Lan Q, Xu T. 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility. Biofabrication. 2016;8(4):045005. doi: 10.1088/1758-5090/8/4/045005
  44. Ahmed T. Biomaterial-based in vitro 3D modeling of glioblastoma multiforme. Cancer Pathog Ther. 2023;1(3):177-194. doi: 10.1016/j.cpt.2023.01.002
  45. Han S, Kim S, Chen Z, et al. 3D bioprinted vascularized tumour for drug testing. Int J Mol Sci. 2020;21(8):2993. doi: 10.3390/ijms21082993
  46. Kim EH, Song HS, Yoo SH, Yoon M. Tumor treating fields inhibit glioblastoma cell migration, invasion and angiogenesis. Oncotarget. 2016;7(40):65125-65136. doi: 10.18632/oncotarget.11372
  47. Tricinci O, De Pasquale D, Marino A, Battaglini M, Pucci C, Ciofani G. A 3D biohybrid real‐scale model of the brain cancer microenvironment for advanced in vitro testing. Adv Mater Technol. 2020;5(10):2000540. doi: 10.1002/admt.202000540
  48. Bakirci E, Schaefer N, Dahri O, et al. Melt electrowritten in vitro radial device to study cell growth and migration. Adv Biosyst. 2020;4(10):2000077. doi: 10.1002/adbi.202000077
  49. Huang W, Ding X, Ye H, Wang J, Shao J, Huang T. Hypoxia enhances the migration and invasion of human glioblastoma U87 cells through PI3K/Akt/mTOR/HIF-1α pathway. Neuroreport. 2018;29(18):1578-1585. doi: 10.1097/WNR.0000000000001156
  50. Smits IP, Blaschuk OW, Willerth SM. Novel N-cadherin antagonist causes glioblastoma cell death in a 3D bioprinted co-culture model. Biochem Biophys Res Commun. 2020;529(2):162-168. doi: 10.1016/j.bbrc.2020.06.001
  51. Wang X, Li X, Dai X, et al. Bioprinting of glioma stem cells improves their endotheliogenic potential. Colloids Surf B Biointerfaces. 2018;171:629-637. doi: 10.1016/j.colsurfb.2018.08.006
  52. Böttcher B, Pflieger A, Schumacher J, Jungnickel B, Feller K-H. 3d bioprinting of prevascularized full-thickness gelatin-alginate structures with embedded co-cultures. Bioengineering. 2022;9(6):242. doi: 10.3390/bioengineering9060242
  53. Dai X, Liu L, Ouyang J, et al. Coaxial 3D bioprinting of self-assembled multicellular heterogeneous tumor fibers. Sci Rep. 2017;7(1):1457. doi: 10.1038/s41598-017-01581-y
  54. Zhang Z, Chen X, Gao S, Fang X, Ren S. 3D bioprinted tumor model: a prompt and convenient platform for overcoming immunotherapy resistance by recapitulating the tumor microenvironment. Cell Oncol (Dordr). 2024;47:1113-1126. doi: 10.1007/s13402-024-00935-9
  55. Hermida MA, Kumar JD, Schwarz D, et al. Three dimensional in vitro models of cancer: Bioprinting multilineage glioblastoma models. Adv Biol Regul. 2020;75:100658. doi: 10.1016/j.jbior.2019.100658
  56. Jamee R, Araf Y, Naser IB, Promon SK. The promising rise of bioprinting in revolutionalizing medical science: advances and possibilities. Regen Ther. 2021;18:133-145. doi: 10.1016/j.reth.2021.05.006
  57. Schiffer D, Annovazzi L, Casalone C, Corona C, Mellai M. Glioblastoma: microenvironment and niche concept. Cancers. 2018;11(1):5. doi: 10.3390/cancers11010005
  58. Nieland L, Morsett LM, Broekman MLD, Breakefield XO, Abels ER. Extracellular vesicle-mediated bilateral communication between glioblastoma and astrocytes. Trends Neurosci. 2021;44(3):215-226. doi: 10.1016/j.tins.2020.10.014
  59. Figueroa J, Phillips LM, Shahar T, et al. Exosomes from glioma-associated mesenchymal stem cells increase the tumorigenicity of glioma stem-like cells via transfer of miR- 1587. Cancer Res. 2017;77(21):5808-5819. doi: 10.1158/0008-5472.can-16-2524
  60. Parak A, Pradeep P, du Toit LC, Kumar P, Choonara YE, Pillay V. Functionalizing bioinks for 3D bioprinting applications. Drug Discov Today. 2019;24(1):198-205. doi: 10.1016/j.drudis.2018.09.012
  61. Heinrich MA, Bansal R, Lammers T, Zhang YS, Michel Schiffelers R, Prakash J. 3D‐bioprinted mini‐brain: a glioblastoma model to study cellular interactions and therapeutics. Adv Mater. 2019;31(14):1806590. doi: 10.1002/adma.201806590
  62. Wang L, Wang C, Wu S, Fan Y, Li X. Influence of the mechanical properties of biomaterials on degradability, cell behaviors and signaling pathways: current progress and challenges. Biomater Sci. 2020;8(10):2714-2733. doi: 10.1039/D0BM00269K
  63. Tang M, Tiwari SK, Agrawal K, et al. Rapid 3D bioprinting of glioblastoma model mimicking native biophysical heterogeneity. Small. 2021;17(15):2006050. doi: 10.1002/smll.202006050
  64. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254-271. doi: 10.1016/j.biomaterials.2015.08.045
  65. Tavsanli B, Okay O. Mechanically strong hyaluronic acid hydrogels with an interpenetrating network structure. Eur Polym J. 2017;94:185-195. doi: 10.1016/j.eurpolymj.2017.07.009
  66. Stanković T, Ranđelović T, Dragoj M, et al. In vitro biomimetic models for glioblastoma-a promising tool for drug response studies. Drug Resiste Updates. 2021;55: 100753. doi: 10.1016/j.drup.2021.100753
  67. Ivanov DP, Parker TL, Walker DA, et al. In vitro co-culture model of medulloblastoma and human neural stem cells for drug delivery assessment. J Biotechnol. 2015;205:3-13. doi: 10.1016/j.jbiotec.2015.01.002
  68. Northcott PA, Robinson GW, Kratz CP, et al. Medulloblastoma. Nat Rev Dis Primers. 2019;5(1):11. doi: 10.1038/s41572-019-0063-6
  69. Reyhanoglu G, Tadi P. Etoposide; 2020.
  70. Iwadate Y. Epithelial-mesenchymal transition in glioblastoma progression. Oncol Lett. 2016;11(3): 1615-1620. doi: 10.3892/ol.2016.4113
  71. Nowicki MO, Hayes JL, Chiocca EA, Lawler SE. Proteomic analysis implicates vimentin in glioblastoma cell migration. Cancers. 2019;11(4):466. doi: 10.3390/cancers11040466
  72. Huleihel L, Dziki JL, Bartolacci JG, et al. Macrophage phenotype in response to ECM bioscaffolds. Semin Immunol. 2017;29:2-13. doi: 10.1016/j.smim.2017.04.004
  73. Im JH, Buzzelli JN, Jones K, et al. FGF2 alters macrophage polarization, tumour immunity and growth and can be targeted during radiotherapy. Nat Commun. 2020;11(1):4064. doi: 10.1038/s41467-020-17914-x
  74. Chen Z, Feng X, Herting CJ, et al. Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Res. 2017;77(9):2266-2278. doi: 10.1158/0008-5472.CAN-16-2310
  75. Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood-brain barrier: from physiology to disease and back. Physiol Rev. 2018;99(1):21-78. doi: 10.1152/physrev.00050.2017
  76. Alahmari A. Blood-brain barrier overview: structural and functional correlation. Neural Plast. 2021;2021:1-10. doi: 10.1155/2021/6564585
  77. Aday S, Cecchelli R, Hallier-Vanuxeem D, Dehouck MP, Ferreira L. Stem cell-based human blood-brain barrier models for drug discovery and delivery. Trends Biotechnol. 2016;34(5):382-393. doi: 10.1016/j.tibtech.2016.01.001
  78. Gastfriend BD, Palecek SP, Shusta EV. Modeling the blood-brain barrier: Beyond the endothelial cells. Curr Opin Biomed Eng. Mar 2018;5:6-12. doi: 10.1016/j.cobme.2017.11.002
  79. Brown LS, Foster CG, Courtney JM, King NE, Howells DW, Sutherland BA. Pericytes and neurovascular function in the healthy and diseased brain. Front Cell Neurosci. 2019; 13:282. doi: 10.3389/fncel.2019.00282
  80. Heithoff BP, George KK, Phares AN, Zuidhoek IA, Munoz‐ Ballester C, Robel S. Astrocytes are necessary for blood– brain barrier maintenance in the adult mouse brain. Glia. 2021;69(2):436-472. doi: 10.1002/glia.23908
  81. Luo H, Shusta EV. Blood-brain barrier modulation to improve glioma drug delivery. Pharmaceutics. 2020;12(11):1085. doi: 10.3390/pharmaceutics12111085
  82. Chaulagain B, Gothwal A, Lamptey RNL, et al. Experimental models of in vitro blood–brain barrier for CNS drug delivery: an evolutionary perspective. Int J Mol Sci. 2023; 24(3):2710. doi: 10.3390/ijms24032710
  83. Sivandzade F, Cucullo L. In-vitro blood-brain barrier modeling: A review of modern and fast-advancing technologies. J Cereb Blood Flow Metab. 2018;38(10):1667-1681. doi: 10.1177/0271678X18788769
  84. Risau W, Wolburg H. Development of the blood-brain barrier. Trends Neurosci. 1990;13(5):174-178. doi: 10.1016/0166-2236(90)90043-a
  85. Ventura RD. An overview of laser-assisted bioprinting (LAB) in tissue engineering applications. Med Lasers 2021;10(2):76-81. doi: 10.25289/ML.2021.10.2.76
  86. Marino A, Tricinci O, Battaglini M, et al. A 3D real‐scale, biomimetic, and biohybrid model of the blood‐brain barrier fabricated through two‐photon lithography. Small. 2018;14(6):1702959. doi: 10.1002/smll.201702959
  87. Liu Z-L, Chen H-H, Zheng L-L, Sun L-P, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Trans Targeted Ther. 2023;8(1):198. doi: 10.1038/s41392-023-01460-1
  88. Akbarian M, Bertassoni LE, Tayebi L. Biological aspects in controlling angiogenesis: current progress. Cell Mol Life Sci. 2022;79(7):349. doi: 10.1007/s00018-022-04348-5
  89. Ansari MJ, Bokov D, Markov A, et al. Cancer combination therapies by angiogenesis inhibitors; a comprehensive review. Cell Commun Signal. 2022;20(1):49. doi: 10.1186/s12964-022-00838-y
  90. Cao Y, Langer R, Ferrara N. Targeting angiogenesis in oncology, ophthalmology and beyond. Nat Rev Drug Discov. 2023;22(6):476-495. doi: 10.1038/s41573-023-00671-z
  91. Yang Y, Cao Y. The impact of VEGF on cancer metastasis and systemic disease. Semin Cancer Biol. 2022;86(Pt 3):251-261. doi: 10.1016/j.semcancer.2022.03.011
  92. Ahmad A, Nawaz MI. Molecular mechanism of VEGF and its role in pathological angiogenesis. J Cell Biochem. 2022;123(12):1938-1965. doi: 10.1002/jcb.30344
  93. Xu D, Luo Y, Wang P, et al. Clinical progress of anti-angiogenic targeted therapy and combination therapy for gastric cancer. Front Oncol. 2023;13:1148131. doi: 10.3389/fonc.2023.1148131
  94. Zou G, Zhang X, Wang L, et al. Herb-sourced emodin inhibits angiogenesis of breast cancer by targeting VEGFA transcription. Theranostics. 2020;10(15):6839-6853. doi: 10.7150/thno.43622
  95. Majewska A, Wilkus K, Brodaczewska K, Kieda C. Endothelial cells as tools to model tissue microenvironment in hypoxia-dependent pathologies. Int J Mol Sci. 2021;22(2):520. doi: 10.3390/ijms22020520
  96. Lizarraga-Verdugo E, Avendano-Felix M, Bermudez M, Ramos-Payan R, Perez-Plasencia C, Aguilar-Medina M. Cancer stem cells and its role in angiogenesis and vasculogenic mimicry in gastrointestinal cancers. Front Oncol. 2020;10:413. doi: 10.3389/fonc.2020.00413
  97. Schulte JD, Aghi MK, Taylor JW. Anti-angiogenic therapies in the management of glioblastoma. Chin Clin Oncol. 2021;10(4):37. doi: 10.21037/cco.2020.03.06
  98. Claesson-Welsh L, Welsh M. VEGFA and tumour angiogenesis. J Intern Med. 2013;273(2):114-27. doi: 10.1111/joim.12019
  99. Mandrycky CJ, Howard CC, Rayner SG, Shin YJ, Zheng Y. Organ-on-a-chip systems for vascular biology. J Mol Cell Cardiol. 2021;159:1-13. doi: 10.1016/j.yjmcc.2021.06.002
  100. Pollet A, den Toonder JMJ. Recapitulating the vasculature using organ-on-chip technology. Bioengineering (Basel). 2020;7(1):17. doi: 10.3390/bioengineering7010017
  101. Farhang Doost N, Srivastava SK. A comprehensive review of organ-on-a-chip technology and its applications. Biosensors. 2024;14(5):225. doi: 10.3390/bios14050225
  102. Kumar V, Varghese S. Ex vivo tumor‐on‐a‐chip platforms to study intercellular interactions within the tumor microenvironment. Adv Healthc Mater. 2019;8(4): 1801198. doi: 10.1002/adhm.201801198
  103. Fetah K, Tebon P, Goudie MJ, et al. The emergence of 3D bioprinting in organ-on-chip systems. Prog Biomed Eng. 2019;1(1):012001. doi: 10.1088/2516-1091/ab23df
  104. Gao Q, Liu Z, Lin Z, et al. 3D bioprinting of vessel-like structures with multilevel fluidic channels. ACS Biomater Sci Eng. 2017;3(3):399-408. doi: 10.1021/acsbiomaterials.6b00643
  105. Samadian H, Jafari S, Sepand M, et al. 3D bioprinting technology to mimic the tumor microenvironment: tumor-on-a-chip concept. Mater Today Adv. 2021;12:100160. doi: 10.1016/j.mtadv.2021.100160
  106. Alves AH, Nucci MP, Mamani JB, et al. The advances in glioblastoma on-a-chip for therapy approaches. Cancers. 2022;14(4):869. doi: 10.3390/cancers14040869
  107. Song Q, Sun J, Mu Y, Xu Y, Zhu Q, Jin Q. A new method for polydimethylsiloxane (PDMS) microfluidic chips to maintain vacuum-driven power using Parylene C. Sens Actuators B: Chem. 2018;256:1122-1130. doi: 10.1016/j.snb.2017.10.006
  108. Tabatabaei Rezaei N, Kumar H, Liu H, Lee SS, Park SS, Kim K. Recent advances in organ-on-chips integrated with bioprinting technologies for drug screening. Adv Healthc Mater. 2023;12(20):e2203172. doi: 10.1002/adhm.202203172
  109. Nie J, Gao Q, Fu J, He Y. Grafting of 3D bioprinting to in vitro drug screening: a review. Adv Healthc Mater. 2020;9(7):e1901773. doi: 10.1002/adhm.201901773
  110. Radhakrishnan J, Varadaraj S, Dash SK, Sharma A, Verma RS. Organotypic cancer tissue models for drug screening: 3D constructs, bioprinting and microfluidic chips. Drug Discov Today. 2020;25(5):879-890. doi: 10.1016/j.drudis.2020.03.002
  111. Yang Z, Wu S, Fontana F, et al. The tight junction protein Claudin-5 limits endothelial cell motility. J Cell Sci. 2021;134(1):jcs248237. doi: 10.1242/jcs.248237
  112. Greene C, Campbell M. Tight junction modulation of the blood brain barrier: CNS delivery of small molecules. Tissue Barriers. 2016;4(1):e1138017. doi: 10.1080/21688370.2015.1138017
  113. Yang JY, Shin D-S, Jeong M, et al. Evaluation of drug blood-brain-barrier permeability using a microfluidic chip. Pharmaceutics. 2024;16(5):574. doi: 10.3390/pharmaceutics16050574
  114. Chittiboyina S, Rahimi R, Atrian F, Ochoa M, Ziaie B, Lelievre SA. Gradient-on-a-chip with reactive oxygen species reveals thresholds in the nucleus response of cancer cells depending on the matrix environment. ACS Biomater Sci Eng. 2018;4(2):432-445. doi: 10.1021/acsbiomaterials.7b00087
  115. Sontheimer-Phelps A, Hassell BA, Ingber DE. Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer. 2019;19(2):65-81. doi: 10.1038/s41568-018-0104-6
  116. Malik A, Pal R, Gupta SK. EGF-mediated reduced miR-92a- 1-5p controls HTR-8/SVneo cell invasion through activation of MAPK8 and FAS which in turn increase MMP-2/-9 expression. Sci Rep. 2020;10(1):12274. doi: 10.1038/s41598-020-68966-4
  117. Liu D, Yang T, Ma W, Wang Y. Clinical strategies to manage adult glioblastoma patients without MGMT hypermethylation. J Cancer. 2022;13(1):354. doi: 10.7150/jca.63595
  118. Qu S, Qi S, Zhang H, et al. Albumin-bound paclitaxel augment temozolomide treatment sensitivity of glioblastoma cells by disrupting DNA damage repair and promoting ferroptosis. J Exp Clin Cancer Res. 2023;42(1):285. doi: 10.1186/s13046-023-02843-6
  119. Tsai C-Y, Ko H-J, Huang C-YF, et al. Ionizing radiation induces resistant glioblastoma stem-like cells by promoting autophagy via the Wnt/β-catenin pathway. Life. 2021;11(5):451. doi: 10.3390/life11050451
  120. Yu W, Zhang L, Wei Q, Shao A. O6-methylguanine- DNA methyltransferase (MGMT): challenges and new opportunities in glioma chemotherapy. Front Oncol. 2020;9:1547. doi: 10.3389/fonc.2019.01547
  121. Kohutova A, Munzova D, Pesl M, Rotrekl V. alpha(1)- Adrenoceptor agonist methoxamine inhibits base excision repair via inhibition of apurinic/apyrimidinic endonuclease 1 (APE1). Acta Pharm. 2023;73(2):281-291. doi: 10.2478/acph-2023-0012 doi: 10.1007/s11154-020-09551-y
  122. Burman P, Lamb L, McCormack A. Temozolomide therapy for aggressive pituitary tumours–current understanding and future perspectives. Rev Endocr Metab Disord. 2020;21:263-276.
  123. Erasimus H, Gobin M, Niclou S, Van Dyck E. DNA repair mechanisms and their clinical impact in glioblastoma. Mutat Res Rev Mutat Res. 2016;769:19-35. doi: 10.1016/j.mrrev.2016.05.005
  124. Shu J, Wang X, Yang X, Zhao G. Author correction: ATM inhibitor KU60019 synergistically sensitizes lung cancer cells to topoisomerase II poisons by multiple mechanisms. Sci Rep. 2024;14(1):8785. doi: 10.1038/s41598-024-59332-9
  125. Wang C, Li J, Sinha S, Peterson A, Grant GA, Yang F. Mimicking brain tumor-vasculature microanatomical architecture via co-culture of brain tumor and endothelial cells in 3D hydrogels. Biomaterials. 2019;202:35-44. doi: 10.1016/j.biomaterials.2019.02.024
  126. Nguyen T, Sarkar T, Tran T, Moinuddin SM, Saha D, Ahsan F. Multilayer soft photolithography fabrication of microfluidic devices using a custom-built wafer-scale PDMS slab aligner and cost-efficient equipment. Micromachines (Basel). 2022;13(8):1357. doi: 10.3390/mi13081357
  127. Neufeld L, Yeini E, Reisman N, et al. Microengineered perfusable 3D-bioprinted glioblastoma model for in vivo mimicry of tumor microenvironment. Sci Adv. 2021;7(34):eabi9119. doi: 10.1126/sciadv.abi9119
  128. Schober AL, Wicki-Stordeur LE, Murai KK, Swayne LA. Foundations and implications of astrocyte heterogeneity during brain development and disease. Trends Neurosci. 2022;45(9):692-703. doi: 10.1016/j.tins.2022.06.009
  129. Slika H, Karimov Z, Alimonti P, et al. Preclinical models and technologies in glioblastoma research: evolution, current state, and future avenues. Int J Mol Sci. 2023;24(22):16316. doi: 10.3390/ijms242216316
  130. Jung S, Jo H, Hyung S, Jeon NL. Advances in 3D vascularized tumor-on-a-Chip technology. Adv Exp Med Biol.2022;1379:231-256. doi: 10.1007/978-3-031-04039-9_9
  131. Li W, Zhou Z, Zhou X, et al. 3D biomimetic models to reconstitute tumor microenvironment in vitro: spheroids, organoids, and tumor‐on‐a‐chip. Adv Healthc Mater. 2023;12(18):2202609. doi: 10.1002/adhm.202202609
  132. Langhans SA. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol. 2018;9:6. doi: 10.3389/fphar.2018.00006
  133. Joseph JS, Malindisa ST, Ntwasa M. Two-dimensional (2D) and three-dimensional (3D) cell culturing in drug discovery. Cell Cult. 2018;2:1-22. doi: 10.5772/intechopen.81552
  134. Hagenbuchner J, Nothdurfter D, Ausserlechner MJ. 3D bioprinting: novel approaches for engineering complex human tissue equivalents and drug testing. Essays Biochem. 2021;65(3):417-427. doi: 10.1042/EBC20200153
  135. Sunildutt N, Parihar P, Chethikkattuveli Salih AR, Lee SH, Choi KH. Revolutionizing drug development: harnessing the potential of organ-on-chip technology for disease modeling and drug discovery. Front Pharmacol. 2023;14:1139229. doi: 10.3389/fphar.2023.1139229
  136. Peng W, Datta P, Ayan B, Ozbolat V, Sosnoski D, Ozbolat IT. 3D bioprinting for drug discovery and development in pharmaceutics. Acta Biomater. 2017;57:26-46. doi: 10.1016/j.actbio.2017.05.025
  137. Satpathy A, Datta P, Wu Y, Ayan B, Bayram E, Ozbolat IT. Developments with 3D bioprinting for novel drug discovery. Expert Opin Drug Discov. 2018;13(12):1115-1129. doi: 10.1080/17460441.2018.1542427
  138. Yun EJ, Kim S, Hsieh JT, Baek ST. Wnt/beta-catenin signaling pathway induces autophagy-mediated temozolomide-resistance in human glioblastoma. Cell Death Dis. 2020;11(9):771. doi: 10.1038/s41419-020-02988-8
  139. Song Q, Peng S, Sun Z, Heng X, Zhu X. Temozolomide drives ferroptosis via a DMT1-dependent pathway in glioblastoma cells. Yonsei Med J. 2021;62(9):843-849. doi: 10.3349/ymj.2021.62.9.843
  140. Karve AS, Desai JM, Gadgil SN, et al. A review of approaches to potentiate the activity of temozolomide against glioblastoma to overcome resistance. Int J Mol Sci. 2024;25(6):3217. doi: 10.3390/ijms25063217
  141. Ibarra LE, Vilchez ML, Caverzan MD, Milla Sanabria LN. Understanding the glioblastoma tumor biology to optimize photodynamic therapy: From molecular to cellular events. J Neurosci Res. 2021;99(4):1024-1047. doi: 10.1002/jnr.24776
  142. Reed MR, Maddukuri L, Ketkar A, et al. Inhibition of tryptophan 2,3-dioxygenase impairs DNA damage tolerance and repair in glioma cells. NAR Cancer. 2021;3(2):zcab014. doi: 10.1093/narcan/zcab014
  143. Cirri D, Chiaverini L, Pratesi A, Marzo T. Is the next cisplatin already in our laboratory? Comm Inorganic Chem. 2023;43(6):465-478. doi: 10.1080/02603594.2022.2152016
  144. Luo H, Yi T, Huang D, et al. circ_PTN contributes to-cisplatin resistance in glioblastoma via PI3K/AKT signaling through the miR-542-3p/PIK3R3 pathway. Mol Ther Nucleic Acids. 2021;26:1255-1269. doi: 10.1016/j.omtn.2021.08.034
  145. Lee SH, Kang MS, Jeon S, et al. 3D bioprinting of human mesenchymal stem cells-laden hydrogels incorporating MXene for spontaneous osteodifferentiation. Heliyon. 2023;9(3):e14490. doi: 10.1016/j.heliyon.2023.e14490
  146. Vignesh A, Binoy A, Thurakkal L, Bhuvanesh NS, Sadhukhan S, Porel M. Pyrene aroylhydrazone-based Pd (II) complexes for DNA/protein binding, cellular imaging and in vitro anticancer activity via ROS production. J Mol Struct. 2024;1295:136693. doi: 10.1016/j.molstruc.2023.136693
  147. Ma Q, Sun J, Wang H, et al. Far upstream element-binding protein 1 confers lobaplatin resistance by transcriptionally activating PTGES and facilitating the arachidonic acid metabolic pathway in osteosarcoma. Med Comm (2020). 2023;4(3):e257. doi: 10.1002/mco2.257
  148. Du L, Fei Z, Song S, Wei N. Antitumor activity of Lobaplatin against esophageal squamous cell carcinoma through caspase-dependent apoptosis and increasing the Bax/Bcl-2 ratio. Biomed Pharmacother. 2017;95:447-452. doi: 10.1016/j.biopha.2017.08.119
  149. Vaz-Salgado MA, Villamayor M, Albarran V, et al. Recurrent glioblastoma: a review of the treatment options. Cancers (Basel). 2023;15(17):4279. doi: 10.3390/cancers15174279
  150. Yamamuro S, Takahashi M, Satomi K, et al. Lomustine and nimustine exert efficient antitumor effects against glioblastoma models with acquired temozolomide resistance. Cancer Sci. 2021;112(11):4736-4747. doi: 10.1111/cas.15141
  151. Schneider M, Potthoff AL, Evert BO, et al. Inhibition of Intercellular Cytosolic Traffic via Gap Junctions Reinforces Lomustine-Induced Toxicity in Glioblastoma Independent of MGMT Promoter Methylation Status. Pharmaceuticals (Basel). 2021;14(3):195. doi: 10.3390/ph14030195
  152. Amrein PC. Low-dose dasatinib: when less can be more. Lancet Haematol. 2021;8(12):e867-e868. doi: 10.1016/S2352-3026(21)00342-2
  153. Owusu A, Bonnaire K, Hailemeskel B. Lovastatin use in transplant: a review and survey. Int J Pharm Res Allied Sci. 2024;13(1):83-90. doi: 10.51847/LJ2kXhjbtG
  154. Alhalabi OT, Fletcher MNC, Hielscher T, et al. A novel patient stratification strategy to enhance the therapeutic efficacy of dasatinib in glioblastoma. Neuro Oncol. 2022;24(1): 39-51. doi: 10.1093/neuonc/noab158
  155. Ryu KY, Lee HJ, Woo H, et al. Dasatinib regulates LPS-induced microglial and astrocytic neuroinflammatory responses by inhibiting AKT/STAT3 signaling. J Neuroinflammation. 2019;16(1):190. doi: 10.1186/s12974-019-1561-x
  156. Liu PC, Lu G, Deng Y, et al. Inhibition of NF-kappaB pathway and modulation of MAPK signaling pathways in glioblastoma and implications for lovastatin and tumor necrosis factor-related apoptosis inducing ligand (TRAIL) combination therapy. PLoS One. 2017;12(1):e0171157. doi: 10.1371/journal.pone.0171157
  157. Zhu Z, Zhang P, Li N, et al. Lovastatin enhances cytotoxicity of temozolomide via impairing autophagic flux in glioblastoma cells. Biomed Res Int. 2019;2019:2710693. doi: 10.1155/2019/2710693
  158. Wu Q, Zhu C, Zhang S, Zhou Y, Zhong Y. Hematological toxicities of concurrent chemoradiotherapies in head and neck cancers: comparison among cisplatin, nedaplatin, lobaplatin, and nimotuzumab. Front Oncol. 2021;11:762366. doi: 10.3389/fonc.2021.762366
  159. Hua S, Kong X, Chen B, et al. Anticancer mechanism of lobaplatin as monotherapy and in combination with paclitaxel in human gastric cancer. Curr Mol Pharmacol. 2018;11(4):316-325. doi: 10.2174/1874467211666180813095050
  160. Weller M, Le Rhun E. How did lomustine become standard of care in recurrent glioblastoma? Cancer Treat Rev. 2020;87:102029. doi: 10.1016/j.ctrv.2020.102029
  161. Mekala JR, Adusumilli K, Chamarthy S, Angirekula HSR. Novel sights on therapeutic, prognostic, and diagnostics aspects of non-coding RNAs in glioblastoma multiforme. Metabolic Brain Dis. 2023;38(6):1801-1829. doi: 10.1007/s11011-023-01234-2
  162. Wang X, Luo Y, Ma Y, Wang P, Yao R. Converging bioprinting and organoids to better recapitulate the tumor microenvironment. Trends Biotechnol. 2024;42(5):648-663. doi: 10.1016/j.tibtech.2023.11.006
  163. Li Y, Liu J, Xu S, Wang J. 3D bioprinting: an important tool for tumor microenvironment research. Int J Nanomed. 2023:18;8039-8057. doi: 10.2147/IJN.S435845
  164. Shah B, Dong X. Current status of in vitro models of the blood-brain barrier. Curr Drug Deliv. 2022; doi: 10.2174/1567201819666220303102614
  165. Yigci D, Sarabi MR, Ustun M, et al. 3D bioprinted glioma models. Prog Biomed Eng. 2022;4(4):042001. doi: 10.1088/2516-1091/ac7833

 

 

 

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing