AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.4252
RESEARCH ARTICLE

Development of a biocompatible radiotherapy spacer using 3D printing and microcellular foaming process for enhanced prostate cancer treatment

DongHwan Lim1 DoKun Yoon2 JaeHoo Kim3 KiHoon Sung4 YoungEun Choi4 HeeSoon Sheen3 Han-Back Shin4* Sung Woon Cha1*
Show Less
1 School of Mechanical Engineering, Yonsei University, Seoul, South Korea
2 Department of Radiation Oncology, Gachon University Gil Medical Center, Incheon, Republic of Korea
3 Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea
4 Department of Radiation Oncology, School/Faculty, Gachon University Gil Medical Center, Incheon, Republic of Korea
IJB 2024, 10(5), 4252 https://doi.org/10.36922/ijb.4252
Submitted: 15 July 2024 | Accepted: 5 August 2024 | Published: 6 August 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

In this study, a new active spacer was developed using three-dimensional (3D) printing technology and microcellular foaming process to overcome the limitations of current spacers used in prostate cancer treatment. In prostate cancer treatment, a spacer is inserted between the prostate and rectum to increase the distance between the two organs so as to reduce the radiation dose to the rectum. Radiotherapy spacer is widely used in particle therapy, such as proton and carbon beams, and X-ray radiation therapies, including intensity-modulated radiotherapy and stereotactic body radiation therapy. However, existing spacers have been reported to cause significant side effects. Therefore, this study introduces a 3D printing technique using polycaprolactone to develop a spacer that provides customized treatment and minimizes side effects. This technique utilizes the volume expansion that occurs when a 3D spacer printed to fit a patient’s organs undergoes foaming through a supercritical carbon dioxide (scCO2)-assisted microcellular foaming process. Additionally, the use of scCO2 allows simultaneous gas absorption and sterilization, thereby reducing the number of process steps. This study confirms the potential of the newly developed spacer to provide effective and safe radiotherapy for prostate cancer, reduce patient discomfort, and minimize rectal side effects during radiation treatment.

Keywords
3D printing
Prostate cancer treatment
Radiotherapy spacer
Microcellu¬lar foaming process
Biodegradable polymer
Funding
This work was supported by National Research Foundation of Korea (NRF) grants funded by the Ministry of Education (RS-2023-00247348).
Conflict of interest
The authors declare they have no competing interests.
References
  1. American Cancer Society. The cancer atlas: the burden: Europe [Internet]. Published Accessed at: December 9, 2020. https://canceratlas.cancer.org/the-burden/europe/
  2. Datta NR, Stutz E, Rogers S, Bodis S. Conventional versus hypofractionated Radiation therapy for localized or locally advanced prostate cancer: a systematic review and meta-analysis along with therapeutic implications. Int J Radiat Oncol Biol Phys. 2017;99(3):573-589. doi: 10.1016/j.ijrobp.2017.07.021
  3. Heemsbergen WD, Peeters STH, Koper PCM, Hoogeman MS, Lebesque JV. Acute and late gastrointestinal toxicity after radiotherapy in prostate cancer patients: Consequential late damage. Int J Radiat Oncol Biol Phys. 2006;66(1):3-10. doi: 10.1016/j.ijrobp.2006.03.055
  4. Noel Rolon. Letter to Noel Rolon. Food and Drug Administration; 2015. Accessed December 2, 2020. https://www. accessdata.fda.gov/cdrh_docs/pdf14/ DEN140030.pdf
  5. Payne HA, Pinkawa M, Peedell C, Bhattacharyya SK, Woodward E, Miller LE. SpaceOAR hydrogel spacer injection prior to stereotactic body radiation therapy for men with localized prostate cancer: a systematic review. Medicine (Baltimore). 2021;100(49):e28111. doi: 10.1097/MD.0000000000028111
  6. Whalley D, Hruby G, Alfieri F, Kneebone A, Eade T. SpaceOAR hydrogel in dose-escalated prostate cancer radiotherapy: rectal dosimetry and late toxicity. Clin Oncol. 2016;28(10):e148-e154. doi: 10.1016/j.clon.2016.05.005
  7. Babar M, Katz A, Ciatto M. Dosimetric and clinical outcomes of SpaceOAR in men undergoing external beam radiation therapy for localized prostate cancer: a systematic review. J Med Imaging Radiat Oncol. 2021;65(3):384-397. doi: 10.1111/1754-9485.13179
  8. Sanei M, Ghaffari H, Ardekani M, et al. Effectiveness of rectal displacement devices during prostate external-beam radiation therapy: a review. J Cancer Res Ther. 2021;17(2):303-310. doi: 10.4103/jcrt.JCRT_841_19
  9. Afkhami Ardekani M, Ghaffari H, Navaser M, Zoljalali Moghaddam SH, Refahi S. Effectiveness of rectal displacement devices in managing prostate motion: a systematic review. Strahlenther Onkol. 2021;197(2):97-115. doi: 10.1007/s00066-020-01633-9
  10. Van Lin ENJT, Hoffmann AL, Van Kollenburg P, Leer JW, Visser AG. Rectal wall sparing effect of three different endorectal balloons in 3D conformal and IMRT prostate radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63(2):565-576. doi: 10.1016/j.ijrobp.2005.05.010
  11. Ghaffari H, Mehrabian A. Rectal retractor in prostate radiotherapy: pros and cons. Radiat Oncol. 2022;17(1):204. doi: 10.1186/s13014-022-02176-2
  12. Shi S, Vissapragada R, Abi Jaoude J, et al. Evolving role of biomaterials in diagnostic and therapeutic radiation oncology. Bioact Mater. 2020;5(2):233-240. doi: 10.1016/j.bioactmat.2020.01.011
  13. Armstrong N, Bahl A, Pinkawa M, et al. SpaceOAR hydrogel spacer for reducing radiation toxicity during radiotherapy for prostate cancer. A systematic review. Urology. 2021;156:e74-e85. doi: 10.1016/j.urology.2021.05.013
  14. Mahdavi SR, Ghaffari H, Mofid B, Rostami A, Reiazi R, Janani L. Rectal retractor application during image-guided dose-escalated prostate radiotherapy. Strahlenther Onkol. 2019;195(10):923-933. doi: 10.1007/s00066-019-01445-6
  15. Aminsharifi A, Kotamarti S, Silver D, Schulman A. Major complications and adverse events related to the injection of the spaceoar hydrogel system before radiotherapy for prostate cancer: review of the manufacturer and user facility device experience database. J Endourol. 2019;33(10): 868-871. doi: 10.1089/end.2019.0431
  16. Mohamed RM, Yusoh K. A review on the recent research of polycaprolactone (PCL). Adv Mat Res. 2015;1134:249-255. doi: 10.4028/www.scientific.net/amr.1134.249
  17. Zhang Q, Jiang Y, Zhang Y, Ye Z, Tan W, Lang M. Effect of porosity on long-term degradation of poly (ε-caprolactone) scaffolds and their cellular response. Polym Degrad Stab. 2013;98(1):209-218. doi: 10.1016/j.polymdegradstab.2012.10.008
  18. Yeong WY, Sudarmadji N, Yu HY, et al. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater. 2010;6(6):2028-2034. doi: 10.1016/j.actbio.2009.12.033
  19. Woodruff MA, Hutmacher DW. The return of a forgotten polymer - polycaprolactone in the 21st century. Prog Polymer Sci (Oxf). 2010;35(10):1217-1256. doi: 10.1016/j.progpolymsci.2010.04.002
  20. Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N. PCL and PCL-based materials in biomedical applications. J Biomater Sci Polym Ed. 2018;29(7-9):863-893. doi: 10.1080/09205063.2017.1394711
  21. Dugad R, Radhakrishna G, Gandhi A. Recent advancements in manufacturing technologies of microcellular polymers: a review. J Polymer Res. 2020;27(7):182. doi: 10.1007/s10965-020-02157-7
  22. Cha SW. A Microcellular Foaming/Forming Process Performed at Ambient Temperature and a Super-Microcellular Foaming Process. Mechanical Engineering Department; 1994. Ph D Thesis. Accessed June 9, 2023. https://cir.nii.ac.jp/crid/1572824498934882176.bib?lang=ja
  23. Hou J, Jiang J, Guo H, et al. Fabrication of fibrillated and interconnected porous poly(ϵ-caprolactone) vascular tissue engineering scaffolds by microcellular foaming and polymer leaching. RSC Adv. 2020;10(17):10055-10066. doi: 10.1039/d0ra00956c
  24. Wang H, Li W, Kumar V. Solid-State Foaming Of Polycaprolactone (PCL); 2007. http://www.asme.org
  25. Hatami T, Johner JCF, de Castro KC, Mei LHI, Vieira MGA, Angela M. New insight into a step-by-step modeling of supercritical CO2 foaming to fabricate poly(ε-caprolactone) scaffold. Ind Eng Chem Res. 2020;59(45):20033-20044. doi: 10.1021/acs.iecr.0c04372
  26. Kosowska K, Krzysztoforski J, Henczka M. Foaming of PCL-based composites using scCO2: structure and physical properties. Materials (Basel). 2022;15(3):1169. doi: 10.3390/ma15031169
  27. Ribeiro N, Soares GC, Santos-Rosales V, et al. A new era for sterilization based on supercritical CO2 technology. J Biomed Mater Res B Appl Biomater. 2020;108(2):399-428. doi: 10.1002/jbm.b.34398
  28. Soares GC, Learmonth DA, Vallejo MC, et al. Supercritical CO2 technology: the next standard sterilization technique? Mater Sci Eng C. 2019;99:520-540. doi: 10.1016/j.msec.2019.01.121
  29. Matthews IP, Gibson C, Samuel AH. Sterilisation of implantable devices. Clin Mater. 1994;15(3):191-215. doi: 10.1016/0267-6605(94)90082-5
  30. Tipnis NP, Burgess DJ. Sterilization of implantable polymer-based medical devices: a review. Int J Pharm. 2018;544(2):455-460. doi: 10.1016/j.ijpharm.2017.12.003
  31. Rogers WJ. 2 - Steam and dry heat sterilization of biomaterials and medical devices. In: Lerouge S, Simmons A, eds. Sterilisation of Biomaterials and Medical Devices. Woodhead Publishing; 2012:20-55. doi: 10.1533/9780857096265.20
  32. Li G, Li Y, Wang J, et al. Guidelines for radiotherapy of prostate cancer (2020 edition). Precis Radiat Oncol. 2021;5(3):160-182. doi: 10.1002/pro6.1129
  33. Kuboki T. Foaming behavior of cellulose fiber-reinforced polypropylene composites in extrusion. J Cell Plastics. 2014;50(2):113-128. doi: 10.1177/0021955X13504775
  34. Gong P, Taniguchi T, Ohshima M. Nanoporous structure of the cell walls of polycarbonate foams. J Mater Sci. 2014;49(6):2605-2617. doi: 10.1007/s10853-013-7959-4
  35. Baker SC, Rohman G, Southgate J, Cameron NR. The relationship between the mechanical properties and cell behaviour on PLGA and PCL scaffolds for bladder tissue engineering. Biomaterials. 2009;30(7):1321-1328. doi: 10.1016/j.biomaterials.2008.11.033
  36. Onizuka R, Araki F, Ohno T, et al. Accuracy of dose calculation algorithms for virtual heterogeneous phantoms and intensity-modulated radiation therapy in the head and neck. Radiol Phys Technol. 2016;9(1):77-87. doi: 10.1007/s12194-015-0336-z
  37. Wang K, Mavroidis P, Royce TJ, et al. Prostate stereotactic body radiation therapy: an overview of toxicity and dose response. Int J Radiat Oncol Biol Phys. 2021;110(1): 237-248. doi: 10.1016/j.ijrobp.2020.09.054

 

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing