A new solution for in situ monitoring of shape fidelity in extrusion-based bioprinting via thermal imaging
Bioprinting is an interdisciplinary study field, where additive manufacturing is combined with tissue engineering and material sciences. The ever-increasing need for personalized medicine fueled interest in the possibility of using this technique to reproduce biological tissues, allowing bioprinting to establish itself as one of the most promising approach in biomedical research. Producing bioconstructs that resemble living tissues is a very complex and multi-step procedure. Given the complexity of the processes involved, the literature still lacks robust solutions for monitoring the bioprinted construct quality, especially in situ and in-line. Here, a novel non-destructive approach for monitoring the geometries of bioprinted constructs based on infrared (IR) imaging is proposed. Besides the intuitive use of IR information to gain insight on the temperature signature, we propose IR video imaging as a viable solution to overcome traditional problems of visible-range imaging for geometry reconstruction with transparent bioinks, especially when precise information on the last printed layer only is required. The results obtained show a significant new direction for in-line monitoring of bioprinting processes.
- Moroni L, Boland T, Burdick JA, et al. Biofabrication: a guide to technology and terminology. Trends Biotechnol. 2018;36(4):384-402. doi: 10.1016/j.tibtech.2017.10.015
- Ng WL, Chua CK, Shen YF. Print me an organ! Why we are not there yet. Prog Polym Sci. 2019;97:101145. doi: 10.1016/j.progpolymsci.2019.101145
- Santoni S, Gugliandolo SG, Sponchioni M, Moscatelli D, Colosimo BM. 3D bioprinting: current status and trends—a guide to the literature and industrial practice. Bio-Des Manuf. 2021;5(1):14-42. doi: 10.1007/S42242-021-00165-0
- Pereira FDAS, Parfenov V, Khesuani YD, Ovsianikov A, Mironov V. Commercial 3D bioprinters. In: Ovsianikov A, Yoo J, Mironov V, eds. 3D Printing and Biofabrication. Cham: Springer; 2018: 535-549. doi: 10.1007/978-3-319-45444-3_12
- Jang J, Park JY, Gao G, Cho D-W. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics. Biomaterials. 2018;156:88-106. doi: 10.1016/j.biomaterials.2017.11.030
- Constante G, Apsite I, Alkhamis H, et al. 4D biofabrication using a combination of 3D printing and melt-electrowriting of shape-morphing polymers. ACS Appl Mater Interfaces. 2021;13(11):12767-12776. doi: 10.1021/acsami.0c18608
- Caleffi JT, Aal MCE, Gallindo H de OM, et al. Magnetic 3D cell culture: state of the art and current advances. Life Sci. 2021;286:120028. doi: 10.1016/j.lfs.2021.120028
- Hu X, Zheng J, Hu Q, et al. Smart acoustic 3D cell construct assembly with high-resolution. Biofabrication. 2022;14(4). doi: 10.1088/1758-5090/ac7c90
- Moldovan NI, Hibino N, Nakayama K. Principles of the kenzan method for robotic cell spheroid-based three-dimensional bioprinting. Tissue Eng Part B Rev. 2017;23(3):237-244. doi: 10.1089/ten.teb.2016.0322
- Zhou X, Wu H, Wen H, Zheng B. Advances in single-cell printing. Micromachines. 2022;13(1):80. doi: 10.3390/mi13010080
- Ramesh S, Harrysson OLA, Rao PK, et al. Extrusion bioprinting: recent progress, challenges, and future opportunities. Bioprinting. 2021;21:e00116. doi: 10.1016/j.bprint.2020.e00116
- Boularaoui S, Al Hussein G, Khan KA, Christoforou N, Stefanini C. An overview of extrusion-based bioprinting with a focus on induced shear stress and its effect on cell viability. Bioprinting. 2020;20:e00093. doi: 10.1016/J.BPRINT.2020.E00093
- Saunders RE, Derby B. Inkjet printing biomaterials for tissue engineering: bioprinting. Int Mater Rev. 2014;59(8):430-448. doi: 10.1179/1743280414Y.0000000040
- Ng WL, Huang X, Shkolnikov V, Suntornnond R, Yeong WY. Polyvinylpyrrolidone-based bioink: influence of bioink properties on printing performance and cell proliferation during inkjet-based bioprinting. Bio-Des Manuf. 2023;6(6):676-690. doi: 10.1007/S42242-023-00245-3/FIGURES/5
- Levato R, Dudaryeva O, Garciamendez-Mijares CE, et al. Light-based vat-polymerization bioprinting. Nat Rev Methods Primers. 2023;3(1):1-19. doi: 10.1038/s43586-023-00231-0
- Gao G, Kim BS, Jang J, Cho D-W. Recent strategies in extrusion-based three-dimensional cell printing toward organ biofabrication. ACS Biomater Sci Eng. 2019;5(3):1150-1169. doi: 10.1021/acsbiomaterials.8b00691
- Antoshin AA, Churbanov SN, Minaev NV, et al. LIFT-bioprinting, is it worth it? Bioprinting. 2019;15(May):e00052. doi: 10.1016/j.bprint.2019.e00052
- Nuñez Bernal P, Delrot P, Loterie D, et al. Volumetric bioprinting of complex living-tissue constructs within seconds. Adv Mater. 2019;31(42):1904209. doi: 10.1002/ADMA.201904209
- Kumar H, Kim K. Stereolithography 3D bioprinting. Methods Mol Biol. 2020;2140:93-108. doi: 10.1007/978-1-0716-0520-2_6
- Sheth R, Balesh ER, Zhang YS, Hirsch JA, Khademhosseini A, Oklu R. Three-dimensional printing: an enabling technology for IR. J Vasc Interv Radiol. 2016;27(6):859-865. doi: 10.1016/j.jvir.2016.02.029
- Bouguéon G, Kauss T, Dessane B et al., 2019, Micro-and nano-formulations for bioprinting and additive manufacturing. Drug Discov Today 24 (1): 163–178. doi: 10.1016/j.drudis.2018.10.013
- Caltanissetta F, Grasso M, Petrò S, Colosimo BM. Characterization of in-situ measurements based on layerwise imaging in laser powder bed fusion. Addit Manuf. 2018;24:183-199. doi: 10.1016/J.ADDMA.2018.09.017
- Grasso M, Remani A, Dickins A, Colosimo BM, Leach RK. In-situ measurement and monitoring methods for metal powder bed fusion: an updated review. Meas Sci Technol. 2021;32(11):112001. doi: 10.1088/1361-6501/AC0B6B
- Grasso M, Colosimo BM. Process defects and in situ monitoring methods in metal powder bed fusion: a review. Meas Sci Technol. 2017;28(4):044005. doi: 10.1088/1361-6501/AA5C4F
- Colosimo BM, Huang Q, Dasgupta T, Tsung F. Opportunities and challenges of quality engineering for additive manufacturing. J Qual Technol. 2018;50(3):233-252. doi: 10.1080/00224065.2018.1487726
- AbouelNour Y, Gupta N. Assisted defect detection by in-process monitoring of additive manufacturing using optical imaging and infrared thermography. Addit Manuf. 2023;67:103483. doi: 10.1016/J.ADDMA.2023.103483
- Hossain REN, Lewis J, Moore AL. In situ infrared temperature sensing for real-time defect detection in additive manufacturing. Addit Manuf. 2021;47:102328. doi: 10.1016/J.ADDMA.2021.102328
- Gugliandolo SG, Margarita A, Santoni S, Moscatelli D, Colosimo BM. In-situ monitoring of defects in extrusion-based bioprinting processes using visible light imaging. Procedia CIRP. 2022;110(C):219-224. doi: 10.1016/J.PROCIR.2022.06.040
- Schmieg B, Gretzinger S, Schuhmann S, Guthausen G, Hubbuch J. Magnetic resonance imaging as a tool for quality control in extrusion-based bioprinting. Biotechnol J. 2022;17(5):2100336. doi: 10.1002/BIOT.202100336
- Strauß S, Meutelet R, Radosevic L, Gretzinger S, Hubbuch J. Image analysis as PAT-tool for use in extrusion-based bioprinting. Bioprinting. 2021;21:e00112. doi: 10.1016/J.BPRINT.2020.E00112
- Uzun-Per M, Gillispie GJ, Tavolara TE, et al. Automated image analysis methodologies to compute bioink printability. Adv Eng Mater. 2021;23(4):2000900. doi: 10.1002/ADEM.202000900
- Bone JM, Childs CM, Menon A, et al. Hierarchical machine learning for high-fidelity 3D printed biopolymers. ACS Biomater Sci Eng. 2020;6(12):7021-7031. doi: 10.1021/acsbiomaterials.0c00755
- Sedigh A, DiPiero D, Shine KM, Tomlinson RE. Enhancing precision in bioprinting utilizing fuzzy systems. Bioprinting. 2022;25:e00190. doi: 10.1016/J.BPRINT.2021.E00190
- Wang L, Xu ME, Luo L, Zhou Y, Si P. Iterative feedback bio-printing-derived cell-laden hydrogel scaffolds with optimal geometrical fidelity and cellular controllability. Sci Rep. 2018;8(1):1-13. doi: 10.1038/s41598-018-21274-4
- Wang L, Xu M, Zhang L, Zhou Q, Luo L. Automated quantitative assessment of three-dimensional bioprinted hydrogel scaffolds using optical coherence tomography. Biomed Opt Express. 2016;7(3):894. doi: 10.1364/boe.7.000894
- Bonatti AF, Vozzi G, Chua CK, De Maria C. A deep learning approach for error detection and quantification in extrusion-based bioprinting. Mater Today Proc. 2022;70:131-135. doi: 10.1016/J.MATPR.2022.09.006
- Bonatti AF, Vozzi G, Chua CK, De Maria C. A deep learning quality control loop of the extrusion-based bioprinting process. Int J Bioprint. 2022;8(4):307-320. doi: 10.18063/IJB.V8I4.620
- Yang S, Chen Q, Wang L, Xu M. In situ defect detection and feedback control with three-dimensional extrusion-based bioprinter-associated optical coherence tomography. Int J Bioprint. 2022;9(1):47-62. doi: 10.18063/IJB.V9I1.624
- Jin Z, Zhang Z, Shao X, Gu GX. Monitoring anomalies in 3D bioprinting with deep neural networks. ACS Biomater Sci Eng. 2023;9(7):3945-3952. doi: 10.1021/acsbiomaterials.0c01761
- Armstrong AA, Alleyne AG, Wagoner Johnson AJ. 1D and 2D error assessment and correction for extrusion-based bioprinting using process sensing and control strategies. Biofabrication. 2020;12(4):045023. doi: 10.1088/1758-5090/ABA8EE
- Armstrong AA, Norato J, Alleyne AG, Johnson AJW. Direct process feedback in extrusion-based 3D bioprinting. Biofabrication. 2019;12(1):015017. doi: 10.1088/1758-5090/AB4D97
- Armstrong AA, Pfeil A, Alleyne AG, Johnson AJW. Process monitoring and control strategies in extrusion-based bioprinting to fabricate spatially graded structures. Bioprinting. 2021;21:e00126. doi: 10.1016/J.BPRINT.2020.E00126
- Gao T, Gillispie GJ, Copus JS, et al. Optimization of gelatin-alginate composite bioink printability using rheological parameters: a systematic approach. Biofabrication. 2018;10(3):034106. doi: 10.1088/1758-5090/aacdc7
- Yaneva A, Shopova D, Bakova D, et al. The progress in bioprinting and its potential impact on health-related quality of life. Bioengineering. 2023;10(8):910. doi: 10.3390/BIOENGINEERING10080910
- Moncal KK, Ozbolat V, Datta P, Heo DN, Ozbolat IT. Thermally-controlled extrusion-based bioprinting of collagen. J Mater Sci Mater Med. 2019;30:55. doi: 10.1007/s10856-019-6258-2
- Santoni S, Sponchioni M, Gugliandolo SG, Colosimo BM, Moscatelli D. Preliminary tests on PEG-based thermoresponsive polymers for the production of 3D bioprinted constructs. Procedia CIRP. 2022;110(C): 350-355. doi: 10.1016/j.procir.2022.06.062
- Suntornnond R, An J, Chua CK. Bioprinting of thermoresponsive hydrogels for next generation tissue engineering: a review. Macromol Mater Eng. 2017;302(1):1600266. doi: 10.1002/mame.201600266
- Hsieh FY, Lin HH, Hsu S-H. 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials. 2015;71:48-57. doi: 10.1016/j.biomaterials.2015.08.028
- Bradley D, Roth G. Adaptive thresholding using the integral image. J Graph Tools. 2007;12(2):13-21. doi: 10.1080/2151237X.2007.10129236
- Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945;26(3):297-302. doi: 10.2307/1932409
- Caltanissetta F, Dreifus G, Hart AJ, Colosimo BM. In-situ monitoring of material extrusion processes via thermal videoimaging with application to big area additive manufacturing (BAAM). Addit Manuf. 2022;58:102995. doi: 10.1016/J.ADDMA.2022.102995