AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.1704
Cite this article
163
Download
2294
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Potential of bioprinted intestine-on-chip models in advancing understanding of human coronavirus infections and drug screening

Min-Hyeok Kim1 Jeeyeon Lee2 Chwee Teck Lim2,3,4 Sungsu Park1,5*
Show Less
1 School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
2 Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
3 Department of Biomedical Engineering, National University of Singapore, Singapore
4 Mechanobiology Institute, National University of Singapore, Singapore
5 Department of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
IJB 2024, 10(2), 1704 https://doi.org/10.36922/ijb.1704
Submitted: 29 August 2023 | Accepted: 9 November 2023 | Published: 23 January 2024
(This article belongs to the Special Issue Role of 3D Printing Processes in Medicine)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Human coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), contribute to both respiratory and gastrointestinal symptoms, necessitating a comprehensive approach to studying viral pathogenesis. In this context, bioprinted intestine-on-chip models offer a cutting-edge technology for closely replicating the tissue architecture and microenvironment of the human intestine, providing valuable insights into viral dynamics and host responses. Integration of intestinal organoids with organoid-on-chip technology enhances the accuracy of modeling SARS-CoV-2 infection by means of improving cellular differentiation and virus-binding receptor expression. Furthermore, bioprinting technology allows for automated fabrication, enabling high-throughput drug screening on the intestine-on-chip platform. These advancements in bioprinted intestine-on-chip models hold immense promise for advancing our understanding of coronavirus infection in the gut and accelerating drug development, ultimately contributing to improved patient outcomes and public health measures.

Keywords
Intestine
Bioprinting
Organ-on-chip
Coronavirus
Drug screening
Funding
This work was supported by both the SKKU Global Research Platform Research Fund (Sungkyunkwan University, 2022; No. RS-2023-00218543) and the National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT; No. RS-2023-00242443).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Han H, Jang J. Recent advances in biofabricated gut models to understand the gut-brain axis in neurological diseases. Front Med Technol. 2022;4:931411. doi: 10.3389/fmedt.2022.931411
  2. Prashantha K, Krishnappa A, Muthappa M. 3D bioprinting of gastrointestinal cancer models: a comprehensive review on processing, properties, and therapeutic implications. Biointerphases. 2023;18(2):020801. doi: 10.1116/6.0002372
  3. Zimmerling A, Chen X. Bioprinting for combating infectious diseases. Bioprinting. 2020;20:e00104. doi: 10.1016/j.bprint.2020.e00104
  4. Yi H-G, Kim H, Kwon J, Choi Y-J, Jang J, Cho D-W. Application of 3D bioprinting in the prevention and the therapy for human diseases. Signal Transduct Target Ther. 2021;6(1):177. doi: 10.1038/s41392-021-00566-8
  5. V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021;19(3):155-170. doi: 10.1038/s41579-020-00468-6
  6. Luo X, Zhou G-Z, Zhang Y, Peng L-H, Zou L-P, Yang Y-S. Coronaviruses and gastrointestinal diseases. Mil Med Res. 2020;7(1):49. doi: 10.1186/s40779-020-00279-z
  7. Vabret A, Dina J, Gouarin S, et al. Human (non-severe acute respiratory syndrome) coronavirus infections in hospitalised children in France. J Paediatr Child Health. 2008;44(4): 176-181. doi: 10.1111/j.1440-1754.2007.01246.x
  8. Assiri A, Al-Tawfiq JA, Al-Rabeeah AA, et al. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis. 2013;13(9):752-761. doi: 10.1016/S1473-3099(13)70204-4
  9. Guo M, Tao W, Flavell RA, Zhu S. Potential intestinal infection and faecal–oral transmission of SARS-CoV-2. Nat Rev Gastroenterol Hepatol. 2021;18(4):269-283. doi: 10.1038/s41575-021-00416-6
  10. Chen Y, Chen L, Deng Q, et al. The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. J Med Virol. 2020;92(7):833-840. doi: 10.1002/jmv.25825
  11. Zhang F, Lau RI, Liu Q, Su Q, Chan FKL, Ng SC. Gut microbiota in COVID-19: key microbial changes, potential mechanisms and clinical applications. Nat Rev Gastroenterol Hepatol. 2023;20(5):323-337. doi: 10.1038/s41575-022-00698-4
  12. Hashimoto T, Perlot T, Rehman A, et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature. 2012;487(7408):477-481. doi: 10.1038/nature11228
  13. Viana SD, Nunes S, Reis F. ACE2 imbalance as a key player for the poor outcomes in COVID-19 patients with age-related comorbidities – role of gut microbiota dysbiosis. Ageing Res Rev. 2020;62:101123. doi: 10.1016/j.arr.2020.101123
  14. Taelman J, Diaz M, Guiu J. Human intestinal organoids: promise and challenge. Front Cell Dev Biol. 2022;10:854740. doi: 10.3389/fcell.2022.854740
  15. Zachos NC, Kovbasnjuk O, Foulke-Abel J, et al. Human enteroids/colonoids and intestinal organoids functionally recapitulate normal intestinal physiology and pathophysiology. J Biol Chem. 2016;291(8):3759-3766. doi: 10.1074/jbc.R114.635995
  16. Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262-265. doi: 10.1038/nature07935
  17. Sato T, Stange DE, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141(5):1762-1772. doi: 10.1053/j.gastro.2011.07.050
  18. Onozato D, Ogawa I, Kida Y, et al. Generation of budding-like intestinal organoids from human induced pluripotent stem cells. J Pharm Sci. 2021;110(7):2637-2650. doi: 10.1016/j.xphs.2021.03.014
  19. Zhao Z, Chen X, Dowbaj AM, et al. Organoids. Nat Rev Methods Primers. 2022;2(1):94. doi: 10.1038/s43586-022-00174-y
  20. Frum T, Spence JR. hPSC-derived organoids: models of human development and disease. J Mol Med. 2021;99(4): 463-473. doi: 10.1007/s00109-020-01969-w
  21. Puschhof J, Pleguezuelos-Manzano C, Martinez-Silgado A, et al. Intestinal organoid cocultures with microbes. Nat Protoc. 2021;16(10):4633-4649. doi: 10.1038/s41596-021-00589-z
  22. Crawford SE, Ramani S, Blutt SE, Estes MK. Organoids to dissect gastrointestinal virus–host interactions: what have we learned? Viruses. 2021;13(6):999. doi: 10.3390/v13060999
  23. Heo I, Dutta D, Schaefer DA, et al. Modelling cryptosporidium infection in human small intestinal and lung organoids. Nat Microbiol. 2018;3(7):814-823. doi: 10.1038/s41564-018-0177-8
  24. Bartfeld S, Bayram T, van de Wetering M, et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology. 2015;148(1):126-136.e6. doi: 10.1053/j.gastro.2014.09.042
  25. Aguirre Garcia M, Hillion K, Cappelier J-M, Neunlist M, Mahe MM, Haddad N. Intestinal organoids: new tools to comprehend the virulence of bacterial foodborne pathogens. Foods. 2022;11(1):108. doi: 10.3390/foods11010108
  26. Aguilar C, Alves da Silva M, Saraiva M, Neyazi M, Olsson IAS, Bartfeld S. Organoids as host models for infection biology – a review of methods. Exp Mol Med. 2021;53(10): 1471-1482. doi: 10.1038/s12276-021-00629-4
  27. Co JY, Margalef-Català M, Monack DM, Amieva MR. Controlling the polarity of human gastrointestinal organoids to investigate epithelial biology and infectious diseases. Nat Protoc. 2021;16(11):5171-5192. doi: 10.1038/s41596-021-00607-0
  28. Han X, Mslati MA, Davies E, Chen Y, Allaire JM, Vallance BA. Creating a more perfect union: modeling intestinal bacteria-epithelial interactions using organoids. Cell Mol Gastroenterol Hepatol. 2021;12(2):769-782. doi: 10.1016/j.jcmgh.2021.04.010
  29. Holly MK, Smith JG. Adenovirus infection of human enteroids reveals interferon sensitivity and preferential infection of goblet cells. J Virol. 2018;92(9):e00250-18. doi: 10.1128/JVI.00250-18
  30. Lamers MM, Beumer J, van der Vaart J, et al. SARS-CoV-2 productively infects human gut enterocytes. Science. 2020;369(6499):50-54. doi: 10.1126/science.abc1669
  31. Zhou J, Li C, Liu X, et al. Infection of bat and human intestinal organoids by SARS-CoV-2. Nat Med. 2020;26(7):1077-1083. doi: 10.1038/s41591-020-0912-6
  32. Stanifer ML, Kee C, Cortese M, et al. Critical role of type III interferon in controlling SARS-CoV-2 infection in human intestinal epithelial cells. Cell Rep. 2020;32(1):107863. doi: 10.1016/j.celrep.2020.107863
  33. Beumer J, Geurts MH, Lamers MM, et al. A CRISPR/ Cas9 genetically engineered organoid biobank reveals essential host factors for coronaviruses. Nat Commun. 2021;12(1):5498. doi: 10.1038/s41467-021-25729-7
  34. Zang R, Castro MFG, McCune BT, et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol. 2020;5(47):eabc3582. doi: 10.1126/sciimmunol.abc3582
  35. Triana S, Metz-Zumaran C, Ramirez C, et al. Single-cell analyses reveal SARS-CoV-2 interference with intrinsic immune response in the human gut. Mol Syst Biol. 2021;17(4):e10232. doi: 10.15252/msb.202110232
  36. Zhou J, Li C, Zhao G, et al. Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus. Sci Adv. 2017;3(11):eaao4966. doi: 10.1126/sciadv.aao4966
  37. Wang Y, Li P, Lavrijsen M, et al. Immunosuppressants exert differential effects on pan-coronavirus infection and distinct combinatory antiviral activity with molnupiravir and nirmatrelvir. United European Gastroenterol J. 2023;11(5):431-447. doi: 10.1002/ueg2.12417
  38. Li J, Wang Y, Solanki K, et al. Nirmatrelvir exerts distinct antiviral potency against different human coronaviruses. Antiviral Res. 2023;211:105555. doi: 10.1016/j.antiviral.2023.105555
  39. Li P, Wang Y, Lamers MM, et al. Recapitulating infection, thermal sensitivity and antiviral treatment of seasonal coronaviruses in human airway organoids. eBioMedicine. 2022;81:104132. doi: 10.1016/j.ebiom.2022.104132
  40. Hashimoto R, Tamura T, Watanabe Y, et al. Evaluation of broad anti-coronavirus activity of autophagy-related compounds using human airway organoids. Mol Pharmaceutics. 2023;20(4):2276-2287. doi: 10.1021/acs.molpharmaceut.3c00114
  41. Calistri A, Luganini A, Mognetti B, et al. The new generation hDHODH inhibitor MEDS433 hinders the in vitro replication of SARS-CoV-2 and other human coronaviruses. Microorganisms. 2021;9(8):1731. doi: 10.3390/microorganisms9081731
  42. Kim M-H, van Noort D, Sung JH, Park S. Organ-on-a-chip for studying gut-brain interaction mediated by extracellular vesicles in the gut microenvironment. Int J Mol Sci. 2021;22(24):13513. doi: 10.3390/ijms222413513
  43. Leung CM, de Haan P, Ronaldson-Bouchard K, et al. A guide to the organ-on-a-chip. Nat Rev Methods Primers. 2022;2(1):33. doi: 10.1038/s43586-022-00118-6
  44. Xian C, Zhang J, Zhao S, Li X-G. Gut-on-a-chip for disease models. J Tissue Eng. 2023;14:20417314221149882. doi: 10.1177/20417314221149882
  45. Fois CAM, Le TYL, Schindeler A, et al. Models of the gut for analyzing the impact of food and drugs. Adv Healthc Mater. 2019;8:1900968. doi: 10.1002/adhm.201900968
  46. Ensari A, Marsh MN. Exploring the villus. Gastroenterol Hepatol Bed Bench. 2018;11:181-190.
  47. Parker A, Maclaren OJ, Fletcher AG, et al. Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi. FASEB J. 2017;31:636-649. doi: 10.1096/fj.201601002
  48. Sommer F, Bäckhed F. Know your neighbor: microbiota and host epithelial cells interact locally to control intestinal function and physiology. BioEssays. 2016;38:455-464. doi: 10.1002/bies.201500151
  49. Kim SH, Chi M, Yi B, et al. Three-dimensional intestinal villi epithelium enhances protection of human intestinal cells from bacterial infection by inducing mucin expression. Integr Biol. 2014;6:1122-1131. doi: 10.1039/C4IB00157E
  50. Fois CAM, Schindeler A, Valtchev P, Dehghani F. Dynamic flow and shear stress as key parameters for intestinal cells morphology and polarization in an organ-on-a-chip model. Biomed Microdevices. 2021;23:55. doi: 10.1007/s10544-021-00591-y
  51. Delon LC, Guo Z, Oszmiana A, et al. A systematic investigation of the effect of the fluid shear stress on Caco- 2 cells towards the optimization of epithelial organ-on-chip models. Biomaterials. 2019;225:119521. doi: 10.1016/j.biomaterials.2019.119521
  52. Chi M, Yi B, Oh S, Park D-J, Sung JH, Park S. A microfluidic cell culture device (μFCCD) to culture epithelial cells with physiological and morphological properties that mimic those of the human intestine. Biomed Microdevices. 2015;17:58. doi: 10.1007/s10544-015-9966-5
  53. Gayer CP, Basson MD. The effects of mechanical forces on intestinal physiology and pathology. Cell Signal. 2009;21:1237-1244. doi: 10.1016/j.cellsig.2009.02.011
  54. Feaugas T, Sauvonnet N. Organ-on-chip to investigate host-pathogens interactions. Cell Microbiol. 2021;23:e13336. doi: 10.1111/cmi.13336
  55. Grassart A, Malardé V, Gobaa S, et al. Bioengineered human organ-on-chip reveals intestinal microenvironment and mechanical forces impacting shigella infection. Cell Host Microbe. 2019;26:435-444.e4. doi: 10.1016/j.chom.2019.08.007
  56. Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 2012;12(12):2165-2174. doi: 10.1039/C2LC40074J
  57. Tovaglieri A, Sontheimer-Phelps A, Geirnaert A, et al. Species-specific enhancement of enterohemorrhagic E. coli pathogenesis mediated by microbiome metabolites. Microbiome. 2019;7(1):43. doi: 10.1186/s40168-019-0650-5
  58. Wang Y, Wang P, Qin J. Human organoids and organs-on-chips for addressing COVID-19 challenges. Adv Sci. 2022;9(10):2105187. doi: 10.1002/advs.202105187
  59. Tang H, Abouleila Y, Si L, et al. Human organs-on-chips for virology. Trends Microbiol. 2020;28(11):934-946. doi: 10.1016/j.tim.2020.06.005
  60. Ortega-Prieto AM, Skelton JK, Wai SN, et al. 3D microfluidic liver cultures as a physiological preclinical tool for hepatitis B virus infection. Nat Commun. 2018;9(1):682. doi: 10.1038/s41467-018-02969-8
  61. Wang J, Wang C, Xu N, Liu Z-F, Pang D-W, Zhang Z-L. A virus-induced kidney disease model based on organ-on-a-chip: pathogenesis exploration of virus-related renal dysfunctions. Biomaterials. 2019;219:119367. doi: 10.1016/j.biomaterials.2019.119367
  62. Han Y, Yang L, Lacko LA, Chen S. Human organoid models to study SARS-CoV-2 infection. Nat Methods. 2022;19(4):418-428. doi: 10.1038/s41592-022-01453-y
  63. Zhang M, Wang P, Luo R, et al. Biomimetic human disease model of SARS-CoV-2-induced lung injury and immune responses on organ chip system. Adv Sci. 2021;8(3):2002928. doi: 10.1002/advs.202002928
  64. Deguchi S, Kosugi K, Hashimoto R, et al. Elucidation of the liver pathophysiology of COVID-19 patients using liver-on-a-chips. PNAS Nexus. 2023;2(3):pgad029. doi: 10.1093/pnasnexus/pgad029
  65. Lu RXZ, Lai BFL, Rafatian N, et al. Vasculature-on-a-chip platform with innate immunity enables identification of angiopoietin-1 derived peptide as a therapeutic for SARS-CoV-2 induced inflammation. Lab Chip. 2022;22(6):1171-1186. doi: 10.1039/D1LC00817J
  66. Villenave R, Wales SQ, Hamkins-Indik T, et al. Human gut-on-a-chip supports polarized infection of Coxsackie B1 virus in vitro. PLOS ONE. 2017;12(2):e0169412. doi: 10.1371/journal.pone.0169412
  67. Bein A, Kim S, Goyal G, et al. Enteric coronavirus infection and treatment modeled with an immunocompetent human intestine-on-a-chip. Front Pharmacol. 2021;12:718484. doi: 10.3389/fphar.2021.718484
  68. Hikmet F, Méar L, Edvinsson Å, Micke P, Uhlén M, Lindskog C. The protein expression profile of ACE2 in human tissues. Mol Syst Biol. 2020;16(7):e9610. doi: 10.15252/msb.20209610
  69. Guo Y, Luo R, Wang Y, et al. SARS-CoV-2 induced intestinal responses with a biomimetic human gut-on-chip. Sci Bull. 2021;66(8):783-793. doi: 10.1016/j.scib.2020.11.015
  70. Yeager CL, Ashmun RA, Williams RK, et al. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature. 1992;357(6377):420-422. doi: 10.1038/357420a0
  71. Tobey N, Heizer W, Yeh R, Huang T-I, Hoffner C. Human intestinal brush border peptidases. Gastroenterology. 1985;88(4):913-926. doi: 10.1016/S0016-5085(85)80008-1
  72. Shim K-Y, Lee D, Han J, Nguyen N-T, Park S, Sung JH. Microfluidic gut-on-a-chip with three-dimensional villi structure. Biomed Microdevices. 2017;19(2):37. doi: 10.1007/s10544-017-0179-y
  73. Tan H-Y, Trier S, Rahbek UL, Dufva M, Kutter JP, Andresen TL. A multi-chamber microfluidic intestinal barrier model using Caco-2 cells for drug transport studies. PLOS ONE. 2018;13(5):e0197101. doi: 10.1371/journal.pone.0197101
  74. Park SE, Georgescu A, Huh D. Organoids-on-a-chip. Science. 2019;364(6444):960-965. doi: 10.1126/science.aaw7894
  75. Hofer M, Lutolf MP. Engineering organoids. Nat Rev Mater. 2021;6(5):402-420. doi: 10.1038/s41578-021-00279-y
  76. Workman MJ, Gleeson JP, Troisi EJ, et al. Enhanced utilization of induced pluripotent stem cell–derived human intestinal organoids using microengineered chips. Cell Mol Gastroenterol Hepatol. 2018;5(4):669-677.e2. doi: 10.1016/j.jcmgh.2017.12.008
  77. Kasendra M, Tovaglieri A, Sontheimer-Phelps A, et al. Development of a primary human small intestine-on-a-chip using biopsy-derived organoids. Sci Rep. 2018; 8(1):2871. doi: 10.1038/s41598-018-21201-7
  78. Kasendra M, Luc R, Yin J, et al. Duodenum intestine-chip for preclinical drug assessment in a human relevant model. eLife. 2020;9:e50135. doi: 10.7554/eLife.50135
  79. Shin W, Hinojosa CD, Ingber DE, Kim HJ. Human intestinal morphogenesis controlled by transepithelial morphogen gradient and flow-dependent physical cues in a microengineered gut-on-a-chip. iScience. 2019;15: 391-406. doi: 10.1016/j.isci.2019.04.037
  80. Jalili-Firoozinezhad S, Gazzaniga FS, Calamari EL, et al. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat Biomed Eng. 2019;3(7):520-531. doi: 10.1038/s41551-019-0397-0
  81. Madden LR, Nguyen TV, Garcia-Mojica S, et al. Bioprinted 3D primary human intestinal tissues model aspects of native physiology and ADME/Tox functions. iScience. 2018;2: 156-167. doi: 10.1016/j.isci.2018.03.015
  82. Torras N, Zabalo J, Abril E, Carré A, García-Díaz M, Martínez E. A bioprinted 3D gut model with crypt-villus structures to mimic the intestinal epithelial-stromal microenvironment. Biomater Adv. 2023;153:213534. doi: 10.1016/j.bioadv.2023.213534
  83. Han H, Park Y, Choi Y-M, et al. A bioprinted tubular intestine model using a colon-specific extracellular matrix bioink. Adv Healthc Mater. 2022;11(2):2101768. doi: 10.1002/adhm.202101768
  84. Lampart FL, Iber D, Doumpas N. Organoids in high-throughput and high-content screenings. Front Chem Eng. 2023;5:1120348. doi: 10.3389/fceng.2023.1120348
  85. Szymański P, Markowicz M, Mikiciuk-Olasik E. Adaptation of high-throughput screening in drug discovery—toxicological screening tests. Int J Mol Sci. 2012;13(1):427-452. doi: 10.3390/ijms13010427
  86. Bajorath J. Integration of virtual and high-throughput screening. Nat Rev Drug Discov. 2002;1(11):882-894. doi: 10.1038/nrd941
  87. Probst C, Schneider S, Loskill P. High-throughput organ-on-a-chip systems: current status and remaining challenges. Curr Opin Biomed Eng. 2018;6:33-41. doi: 10.1016/j.cobme.2018.02.004
  88. Beaurivage C, Naumovska E, Chang YX, et al. Development of a gut-on-a-chip model for high throughput disease modeling and drug discovery. Int J Mol Sci. 2019;20(22):5661. doi: 10.3390/ijms20225661
  89. Azizgolshani H, Coppeta JR, Vedula EM, et al. High-throughput organ-on-chip platform with integrated programmable fluid flow and real-time sensing for complex tissue models in drug development workflows. Lab Chip. 2021;21(8):1454-1474. doi: 10.1039/D1LC00067E
  90. Mazrouei R, Velasco V, Esfandyarpour R. 3D-bioprinted all-inclusive bioanalytical platforms for cell studies. Sci Rep. 2020;10(1):14669. doi: 10.1038/s41598-020-71452-6
  91. Lind JU, Busbee TA, Valentine AD, et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat Mater. 2017;16(3):303-308. doi: 10.1038/nmat4782
  92. Trampe E, Koren K, Akkineni AR, et al. Functionalized bioink with optical sensor nanoparticles for O2 imaging in 3D-bioprinted constructs. Adv Funct Mater. 2018;28(45):1804411. doi: 10.1002/adfm.201804411
  93. Vancamelbeke M, Vermeire S. The intestinal barrier: a fundamental role in health and disease. Expert Rev Gastroenterol Hepatol. 2017;11(9):821-834. doi: 10.1080/17474124.2017.1343143
  94. Lee Y, Kim M-H, Alves DR, et al. Gut–kidney axis on chip for studying effects of antibiotics on risk of hemolytic uremic syndrome by shiga toxin-producing escherichia coli. Toxins. 2021;13(11):775. doi: 10.3390/toxins13110775
  95. Skardal A, Murphy SV, Devarasetty M, et al. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci Rep. 2017;7(1):8837. doi: 10.1038/s41598-017-08879-x
  96. Goldstein Y, Spitz S, Turjeman K, et al. Breaking the third wall: implementing 3D-printing techniques to expand the complexity and abilities of multi-organ-on-a-chip devices. Micromachines. 2021;12(6):627. doi: 10.3390/mi12060627
  97. Díaz Lantada A, Pfleging W, Besser H, et al. Research on the methods for the mass production of multi-scale organs-on-chips. Polymers. 2018;10(11):1238. doi: 10.3390/polym10111238
  98. Picollet-D’hahan N, Zuchowska A, Lemeunier I, Le Gac S. Multiorgan-on-a-chip: a systemic approach to model and decipher inter-organ communication. Trends Biotechnol. 2021;39:788-810. doi: 10.1016/j.tibtech.2020.11.014
  99. Lee H, Cho D-W. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. Lab Chip. 2016;16(14):2618-2625. doi: 10.1039/C6LC00450D
  100. Zandrini T, Florczak S, Levato R, Ovsianikov A. Breaking the resolution limits of 3D bioprinting: future opportunities and present challenges. Trends Biotechnol. 2023;41(5): 604-614. doi: 10.1016/j.tibtech.2022.10.009
  101. Tian C-m, Yang M-f, Xu H-m, et al. Stem cell-derived intestinal organoids: a novel modality for IBD. Cell Death Discov. 2023;9(1):255. doi: 10.1038/s41420-023-01556-1
  102. van Berlo D, Nguyen VVT, Gkouzioti V, Leineweber K, Verhaar MC, van Balkom BWM. Stem cells, organoids, and organ-on-a-chip models for personalized in vitro drug testing. Curr Opin Toxicol. 2021;28:7-14. doi: 10.1016/j.cotox.2021.08.006
  103. Kim J, Koo B-K, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol. 2020;21(10):571-584. doi: 10.1038/s41580-020-0259-3
  104. Piergiovanni M, Leite SB, Corvi R, Whelana M. Standardisation needs for organ on chip devices. Lab Chip. 2021;21(15):2857-2868. doi: 10.1039/D1LC00241D
  105. Kesti M, Fisch P, Pensalfini M, Mazza E, Zenobi-Wong M. Guidelines for standardization of bioprinting: a systematic study of process parameters and their effect on bioprinted structures. BioNanoMaterials. 2016;17(3-4):193-204. doi: 10.1515/bnm-2016-0004
  106. Ren Y, Yang X, Ma Z, et al. Developments and opportunities for 3D bioprinted organoids. Int J Bioprint. 2021; 7(3):364. doi: 10.18063/ijb.v7i3.364
  107. Ashammakhi N, Ahadian S, Xu C, et al. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio. 2019;1:100008. doi: 10.1016/j.mtbio.2019.100008
  108. Mazzocchi A, Soker S, Skardal A. 3D bioprinting for high-throughput screening: drug screening, disease modeling, and precision medicine applications. Appl Phys Rev. 2019;6(1):011302. doi: 10.1063/1.5056188
  109. Kim W, Kim G. Intestinal villi model with blood capillaries fabricated using collagen-based bioink and dual-cell-printing process. ACS Appl Mater Interfaces. 2018;10(48): 41185-41196. doi: 10.1021/acsami.8b17410
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing