Advances in tissue engineering and 3D bioprinting for corneal regeneration

Blindness resulting from corneal damage affects millions of people worldwide. The scarcity of corneal donors adds a layer of complexity to patient treatment. Consequently, exploring artificial cornea substitutes has become imperative in the realm of clinical research. Scientific advancements have ushered in a plethora of innovative solutions, including keratoprostheses or decellularized cornea scaffolds. The development of three-dimensional (3D) printing has further expanded the horizons of research in this field, delving into the feasibility of bioprinted corneas and yielding numerous promising outcomes. However, the manufacturing of corneal products via 3D printing poses a substantial challenge, demanding a meticulous selection of materials and techniques to ensure the transparency and preservation of the optical and mechanical properties of the artificial cornea. In the review, we present the artificial cornea substitutes. Additionally, we aim to provide a concise overview of the 3D printing techniques and materials applicable to corneal bioprinting.
- Zare M, Javadi MA, Einollahi B, et al. Changing indications and surgical techniques for corneal transplantation between 2004 and 2009 at a tertiary referral center. Middle East Afr J Ophthalmol. 2012;19(3):323-329. doi: 10.4103/0974-9233.97941
- Pandey AK, Mudgil N, Wadgave Y, Mishra SS. Corneal transplantation during COVID-19 pandemic: need for special considerations-A live review. AIMS Public Health. 2021;8(2):186-195. doi: 10.3934/publichealth.2021014
- Gaum L, Reynolds I, Jones MN, Clarkson AJ, Gillan HL, Kaye SB. Tissue and corneal donation and transplantation in the UK. Br J Anaesth. 2012;108(Suppl 1): i43-47. doi: 10.1093/bja/aer398
- Hatou S, Shimmura S. Review: corneal endothelial cell derivation methods from ES/iPS cells. Inflamm Regen. 2019;39:19. doi: 10.1186/s41232-019-0108-y
- Orash Mahmoud Salehi A, Heidari-Keshel S, Poursamar SA, et al. Bioprinted membranes for corneal tissue engineering: a review. Pharmaceutics. 2022;14(12):2797. doi: 10.3390/pharmaceutics14122797
- Isaacson A, Swioklo S, Connon CJ. 3D bioprinting of a corneal stroma equivalent. Exp Eye Res. 2018;173:188-193. doi: 10.1016/j.exer.2018.05.010
- Zhang B, Xue Q, Li J, et al. 3D bioprinting for artificial cornea: challenges and perspectives. Med Eng Phys. 2019;71: 68-78. doi: 10.1016/j.medengphy.2019.05.002
- Sridhar MS,. Anatomy of cornea and ocular surface. Indian J Ophthalmol. 2018;66(2):190-194. doi: 10.4103/ijo.IJO_646_17
- Meek KM, Knupp C. Corneal structure and transparency. Prog Retin Eye Res. 2015;49:1-16. doi: 10.1016/j.preteyeres.2015.07.001
- Mobaraki M, Soltani M, Zare Harofte S, et al. Biodegradable nanoparticle for cornea drug delivery: focus review. Pharmaceutics. 2020;12(12). doi: 10.3390/pharmaceutics12121232
- Dua HS, Faraj LA, Branch MJ, et al. The collagen matrix of the human trabecular meshwork is an extension of the novel pre-Descemet’s layer (Dua’s layer). Br J Ophthalmol. 2014;98(5):691-697. doi: 10.1136/bjophthalmol-2013-304593
- Ruan Y, Jiang SB, Musayeva A, Pfeiffer N, Gericke A. Corneal epithelial stem cells-physiology, pathophysiology and therapeutic options. Cells. 2021;10(9). doi: 10.3390/cells10092302
- Secker GA, Daniels JT. Limbal epithelial stem cells of the cornea. In: Melton D, Cowan CA, eds. StemBook. Cambridge (MA): Harvard Stem Cell Institute; 2008. doi: 10.3824/stembook.1.48.1
- Collin HB, Ratcliffe J, Collin SP. The functional anatomy of the cornea and anterior chamber in lampreys: insights from the pouched lamprey, Geotria australis (Geotriidae, Agnatha). Front Neuroanat. 2021;15:786729. doi: 10.3389/fnana.2021.786729
- West-Mays JA, Dwivedi DJ. The keratocyte: corneal stromal cell with variable repair phenotypes. Int J Biochem Cell Biol. 2006;38(10):1625-1631. doi: 10.1016/j.biocel.2006.03.010
- Massoudi D, Malecaze F, Galiacy SD. Collagens and proteoglycans of the cornea: importance in transparency and visual disorders. Cell Tissue Res. 2016;363(2):337-349. doi: 10.1007/s00441-015-2233-5
- Zavala J, Lopez Jaime GR, Rodriguez Barrientos CA, Valdez- Garcia J. Corneal endothelium: developmental strategies for regeneration. Eye (Lond). 2013;27(5):579-588. doi: 10.1038/eye.2013.15
- Sie NM, Yam GH, Soh YQ, et al. Regenerative capacity of the corneal transition zone for endothelial cell therapy. Stem Cell Res Ther. 2020;11(1):523. doi: 10.1186/s13287-020-02046-2
- Saghizadeh M, Kramerov AA, Svendsen CN, Ljubimov AV. Concise review: stem cells for corneal wound healing. Stem Cells. 2017;35(10):2105-2114. doi: 10.1002/stem.2667
- Hertsenberg AJ, Shojaati G, Funderburgh ML, Mann MM, Du Y, Funderburgh JL. Corneal stromal stem cells reduce corneal scarring by mediating neutrophil infiltration after wounding. PLoS One. 2017;12(3):e0171712. doi: 10.1371/journal.pone.0171712
- Hertsenberg AJ, Funderburgh JL. Stem cells in the cornea. Prog Mol Biol Transl Sci. 2015;134:25-41. doi: 10.1016/bs.pmbts.2015.04.002
- Espana EM, Birk DE. Composition, structure and function of the corneal stroma. Exp Eye Res. 2020;198:108137. doi: 10.1016/j.exer.2020.108137
- Gipson IK, Spurr-Michaud SJ, Tisdale AS. Anchoring fibrils form a complex network in human and rabbit cornea. Invest Ophthalmol Vis Sci. 1987;28(2):212-220.
- Gipson IK, Spurr-Michaud S, Tisdale A, Keough M. Reassembly of the anchoring structures of the corneal epithelium during wound repair in the rabbit. Invest Ophthalmol Vis Sci. 1989;30(3):425-434.
- Chen S, Mienaltowski MJ, Birk DE. Regulation of corneal stroma extracellular matrix assembly. Exp Eye Res. 2015;133:69-80. doi: 10.1016/j.exer.2014.08.001
- Michelacci YM,. Collagens and proteoglycans of the corneal extracellular matrix. Braz J Med Biol Res. 2003;36(8):1037-1046. doi: 10.1590/s0100-879x2003000800009
- Tanihara H, Inatani M, Koga T, Yano T, Kimura A. Proteoglycans in the eye. Cornea. 2002;21(7 Suppl):S62-69. doi: 10.1097/01.ico.0000263121.45898.d2
- Holland G, Pandit A, Sanchez-Abella L, et al. Artificial cornea: past, current, and future directions. Front Med (Lausanne). 2021;8:770780. doi: 10.3389/fmed.2021.770780
- Ilhan-Sarac O, Akpek EK. Current concepts and techniques in keratoprosthesis. Curr Opin Ophthalmol. 2005;16(4):246-250. doi: 10.1097/01.icu.0000172829.33770.d3
- Lin L, Jin X,. The development of tissue engineering corneal scaffold: which one the history will choose? Ann Eye Sci. 2018;3(1):6. doi: 10.21037/aes.2018.01.01
- Rohaina CM, Then KY, Ng AM, et al. Reconstruction of limbal stem cell deficient corneal surface with induced human bone marrow mesenchymal stem cells on amniotic membrane. Transl Res. 2014;163(3):200-210. doi: 10.1016/j.trsl.2013.11.004
- Ahearne M, Fernandez-Perez J, Masterton S, Madden PW, Bhattacharjee P. Designing scaffolds for corneal regeneration. Adv Funct Mater. 2020;30(44). doi: 10.1002/adfm.201908996
- Liu JB, Lawrence BD, Liu AH, Schwab IR, Oliveira LA, Rosenblatt MI. Silk fibroin as a biomaterial substrate for corneal epithelial cell sheet generation. Invest Ophthalmol Vis Sci. 2012;53(7):4130-4138. doi: 10.1167/iovs.12-9876
- Hussain Z, Pei RJ. Scaffold-free and scaffold-based cellular strategies and opportunities for cornea tissue engineering. Prog Biomed Eng. 2021;3(3). doi: 10.1088/2516-1091/ac12d7
- Xeroudaki M, Thangavelu M, Lennikov A, et al. A porous collagen-based hydrogel and implantation method for corneal stromal regeneration and sustained local drug delivery. Sci Rep. 2020;10(1):16936. doi: 10.1038/s41598-020-73730-9
- Szucs D, Fekete Z, Guba M, et al. Toward better drug development: three-dimensional bioprinting in toxicological research. Int J Bioprint. 2023;9(2):663. doi: 10.18063/ijb.v9i2.663
- Goh KL, Holmes DF. Collagenous extracellular matrix biomaterials for tissue engineering: lessons from the common sea urchin tissue. Int J Mol Sci. 2017;18(5). doi: 10.3390/ijms18050901
- Wang X. Advanced polymers for three-dimensional (3D) organ bioprinting. Micromachines (Basel). 2019;10(12). doi: 10.3390/mi10120814
- Guba M, Szűcs D, Kemény L, Veréb Z. Mesterséges bőrszövetek a kutatásban és a gyógyításban. Orvosi Hetilap. 2022;163(10):375-385. doi: 10.1556/650.2022.32330
- Angelats Lobo D, Ginestra P. Cell bioprinting: the 3D-bioplotter case. Materials (Basel). 2019;12(23). doi: 10.3390/ma12234005
- Elsawy MM, de Mel A,. Biofabrication and biomaterials for urinary tract reconstruction. Res Rep Urol. 2017;9:79-92. doi: 10.2147/RRU.S127209
- Kim H, Kang B, Cui XL, et al. Light-activated decellularized extracellular matrix-based bioinks for volumetric tissue analogs at the centimeter scale. Adv Funct Mater. 2021;31(32). doi: 10.1002/adfm.202011252
- Zhang MS, Yang F, Han DB, et al. 3D bioprinting of corneal decellularized extracellular matrix: GelMA composite hydrogel for corneal stroma engineering. Int J Bioprint. 2023;9(5):474-492. doi: 10.18063/ijb.774
- Lei M, Wang X. Biodegradable polymers and stem cells for bioprinting. Molecules. 2016;21(5). doi: 10.3390/molecules21050539
- Tao O, Kort-Mascort J, Lin Y, et al. The applications of 3D printing for craniofacial tissue engineering. Micromachines (Basel). 2019;10(7). doi: 10.3390/mi10070480
- Aljohani W, Ullah MW, Zhang X, Yang G. Bioprinting and its applications in tissue engineering and regenerative medicine. Int J Biol Macromol. 2018;107(Pt A):261-275. doi: 10.1016/j.ijbiomac.2017.08.171
- Borovjagin AV, Ogle BM, Berry JL, Zhang J. From microscale devices to 3D printing: advances in fabrication of 3D cardiovascular tissues. Circ Res. 2017;120(1):150-165. doi: 10.1161/CIRCRESAHA.116.308538
- Ozbolat IT, Hospodiuk M,. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76:321-343. doi: 10.1016/j.biomaterials.2015.10.076
- Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M. 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact Mater. 2018;3(2):144-156. doi: 10.1016/j.bioactmat.2017.11.008
- Wu Z, Su X, Xu Y, Kong B, Sun W, Mi S. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Sci Rep. 2016;6:24474. doi: 10.1038/srep24474
- Duffy GL, Liang H, Williams RL, Wellings DA, Black K. 3D reactive inkjet printing of poly-varepsilon-lysine/gellan gum hydrogels for potential corneal constructs. Mater Sci Eng C Mater Biol Appl. 2021;131:112476. doi: 10.1016/j.msec.2021.112476
- Dzobo K, Thomford NE, Senthebane DA, et al. Advances in regenerative medicine and tissue engineering: innovation and transformation of medicine. Stem Cells Int. 2018;2018:2495848. doi: 10.1155/2018/2495848
- Turnbull G, Clarke J, Picard F, et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater. 2018;3(3):278-314. doi: 10.1016/j.bioactmat.2017.10.001
- Keriquel V, Oliveira H, Remy M, et al. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci Rep. 2017;7(1):1778. doi: 10.1038/s41598-017-01914-x
- Varkey M, Visscher DO, van Zuijlen PPM, Atala A, Yoo JJ. Skin bioprinting: the future of burn wound reconstruction? Burns Trauma. 2019;7:4. doi: 10.1186/s41038-019-0142-7
- Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A. Additive manufacturing of biomaterials. Prog Mater Sci. 2018;93:45-111. doi: 10.1016/j.pmatsci.2017.08.003
- Sorkio A, Koch L, Koivusalo L, et al. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials. 2018;171:57-71. doi: 10.1016/j.biomaterials.2018.04.034
- Zennifer A, Manivannan S, Sethuraman S, Kumbar SG, Sundaramurthi D. 3D bioprinting and photocrosslinking: emerging strategies & future perspectives. Biomater Adv. 2022;134:112576. doi: 10.1016/j.msec.2021.112576
- Tomal W, Ortyl J. Water-soluble photoinitiators in biomedical applications. Polymers. 2020;12(5):1079. doi: 10.3390/polym12051073
- Barroso IA, Man K, Hall TJ, et al. Photocurable antimicrobial silk-based hydrogels for corneal repair. J Biomed Mater Res Part A. 2022;110(7):1401-1415. doi: 10.1002/jbm.a.37381
- He BB, Wang J, Xie MT, et al. 3D printed biomimetic epithelium/stroma bilayer hydrogel implant for corneal regeneration. Bioact Mater. 2022;17:234-247. doi: 10.1016/j.bioactmat.2022.01.034
- Caliari SR, Burdick JA. A practical guide to hydrogels for cell culture. Nat. Methods. 2016;13(5):405-414. doi: 10.1038/Nmeth.3839
- Liu F, Chen QH, Liu C, et al. Natural polymers for organ 3D bioprinting. Polymers. 2018;10(11):1278. doi: 10.3390/Polym10111278
- Ning LQ, Chen XB. A brief review of extrusion-based tissue scaffold bio-printing. Biotechnol J. 2017;12(8):1600671. doi: 10.1002/Biot.201600671
- Bhardwaj N, Chouhan D, Mandal BB. Tissue engineered skin and wound healing: current strategies and future directions. Curr Pharm Des. 2017;23(24):3455-3482. doi: 10.2174/1381612823666170526094606
- Chan EC, Kuo SM, Kong AM, et al. Three dimensional collagen scaffold promotes intrinsic vascularisation for tissue engineering applications. PLoS One. 2016;11(2):e0149799. doi: 10.1371/journal.pone.0149799
- Furtado M, Chen L, Chen Z, Chen A, Cui W. Development of fish collagen in tissue regeneration and drug delivery. Engineered Regeneration. 2022. 3(3): 217-231. doi: 10.1016/j.engreg.2022.05.002
- Cooperman L, Michaeli D. The immunogenicity of injectable collagen. II. A retrospective review of 72 tested and treated patients. J Am Acad Dermatol. 1984;10(4):647-651. doi: 10.1016/S0190-9622(84)80272-8
- Olsen D, Yang CL, Bodo M, et al. Recombinant collagen and gelatin for drug delivery. Adv Drug Deliv Rev. 2003;55(12):1547-1567. doi: 10.1016/j.addr.2003.08.008
- Nicholas MN, Jeschke MG, Amini-Nik S. Methodologies in creating skin substitutes. Cell Mol Life Sci. 2016;73(18): 3453-3472. doi: 10.1007/s00018-016-2252-8
- Koivusalo L, Kauppila M, Samanta S, et al. Tissue adhesive hyaluronic acid hydrogels for sutureless stem cell delivery and regeneration of corneal epithelium and stroma. Biomaterials. 2019;225:119516. doi: 10.1016/j.biomaterials.2019.119516
- Donderwinkel I, van Hest JCM, Cameron NR. Bio-inks for 3D bioprinting: recent advances and future prospects. Polym Chem. 2017;8(31):4451-4471. doi: 10.1039/c7py00826k
- Lawrence BD, Marchant JK, Pindrus MA, Omenetto FG, Kaplan DL. Silk film biomaterials for cornea tissue engineering. Biomaterials. 2009;30(7):1299-1308. doi: 10.1016/j.biomaterials.2008.11.018
- Yang JZ, Zhang YS, Yue K, Khademhosseini A. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater. 2017;57:1-25. doi: 10.1016/j.actbio.2017.01.036
- Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials. 2005;26(18):3919-3928. doi: 10.1016/j.biomaterials.2004.09.062
- Schoen F, Mitchell R. Tissues, the extracellular matrix, and cell–biomaterial interactions. In: Ratner BD, Hoffman Allan S, Schoen FJ, Lemons JE, eds. Biomaterials Science. 3rd ed. Oxford, UK; Waltham, USA: Academic Press; 2013:452-474. doi: 10.1016/B978-0-08-087780-8.00039-5
- Francisco AT, Mancino RJ, Bowles RD, et al. Injectable laminin-functionalized hydrogel for nucleus pulposus regeneration. Biomaterials. 2013;34(30):7381-7388. doi: 10.1016/j.biomaterials.2013.06.038
- Tayebi T, Baradaran-Rafii A, Hajifathali A, et al. Biofabrication of chitosan/chitosan nanoparticles/ polycaprolactone transparent membrane for corneal endothelial tissue engineering. Sci Rep. 2021;11(1):7060. doi: 10.1038/S41598-021-86340-W
- Ulag S, Ilhan E, Sahin A, et al. 3D printed artificial cornea for corneal stromal transplantation. Eur Polym J. 2020;133:109744. doi: 10.1016/j.eurpolymj.2020.109744
- Chen JS, Li QH, Xu JT, et al. Study on biocompatibility of complexes of collagen-chitosan-sodium hyaluronate and cornea. Artif Organs. 2005;29(2):104-113. doi: 10.1111/j.1525-1594.2005.29021.x
- Si ZZ, Wang X, Sun CH, et al. Adipose-derived stem cells: sources, potency, and implications for regenerative therapies. Biomed Pharmacother. 2019;114:108765. doi: 10.1016/J.Biopha.2019.108765
- Rodriguez-Fuentes DE, Fernandez-Garza LE, Samia-Meza JA, Barrera-Barrera SA, Caplan AI, Barrera-Saldaña HA. Mesenchymal stem cells current clinical applications: a systematic review. Arch Med Res. 2021;52(1):93-101. doi: 10.1016/j.arcmed.2020.08.006
- Irvine SA, Venkatraman SS. Bioprinting and differentiation of stem cells. Molecules. 2016;21(9):1188. doi: 10.3390/molecules21091188
- Tasnim N, De la Vega L, Anil Kumar S, et al. 3D bioprinting stem cell derived tissues. Cell Mol Bioeng. 2018;11(4):219-240. doi: 10.1007/s12195-018-0530-2
- Cui H, Nowicki M, Fisher JP, Zhang LG. 3D bioprinting for organ regeneration. Adv Healthc Mater. 2017;6(1). doi: 10.1002/adhm.201601118
- He P, Zhao J, Zhang J, et al. Bioprinting of skin constructs for wound healing. Burns Trauma. 2018;6:5. doi: 10.1186/s41038-017-0104-x
- Tasoglu S, Demirci U. Bioprinting for stem cell research. Trends Biotechnol. 2013;31(1):10-19. doi: 10.1016/j.tibtech.2012.10.005
- Goncalves ED, Campos M, Paris F, Gomes JAP, de Farias CC. Bullous keratopathy: etiopathogenesis and treatment. Arq Bras Oftalmol. 2008;71(6 Suppl):61-64. doi: 10.1590/s0004-27492008000700012
- Matthyssen S, Van den Bogerd B, Ni Dhubhghaill S, Koppen C, Zakaria N. Corneal regeneration: a review of stromal replacements. Acta Biomater. 2018;69:31-41. doi: 10.1016/j.actbio.2018.01.023
- Ruiz-Alonso S, Villate-Beitia I, Gallego I, et al. Current insights into 3D bioprinting: an advanced approach for eye tissue regeneration. Pharmaceutics. 2021;13(3). doi: 10.3390/pharmaceutics13030308
- Ghezzi CE, Rnjak-Kovacina J, Kaplan DL. Corneal tissue engineering: recent advances and future perspectives. Tissue Eng Part B Rev. 2015;21(3):278-287. doi: 10.1089/ten.TEB.2014.0397
- Mobaraki M, Abbasi R, Omidian Vandchali S, Ghaffari M, Moztarzadeh F, Mozafari M. Corneal repair and regeneration: current concepts and future directions. Front Bioeng Biotechnol. 2019;7:135. doi: 10.3389/fbioe.2019.00135
- Campos DFD, Rohde M, Ross M, et al. Corneal bioprinting utilizing collagen-based bioinks and primary human keratocytes. J Biomed Mater Res Part A. 2019;107(9): 1945-1953. doi: 10.1002/jbm.a.36702
- Boix-Lemonche G, Nagymihaly RM, Niemi EM, et al. Intracorneal implantation of 3D bioprinted scaffolds containing mesenchymal stromal cells using femtosecond-laser-assisted intrastromal keratoplasty. Macromol Biosci. 2023;23(7):e2200422. doi: 10.1002/mabi.202200422
- Murphy SV, De Coppi P, Atala A. Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng. 2020;4(4):370-380. doi: 10.1038/s41551-019-0471-7
- Blackburn BJ, Jenkins MW, Rollins AM, Dupps WJ. A review of structural and biomechanical changes in the cornea in aging, disease, and photochemical crosslinking. Front Bioeng Biotechnol. 2019;7:66. doi: 10.3389/fbioe.2019.00066
- Benzvi A, Rodrigues MM, Krachmer JH, Fujikawa LS. Immunohistochemical characterization of extracellular-matrix in the developing human cornea. Curr Eye Res. 1986;5(2):105-117. doi: 10.3109/02713688609015099
- Millin JA, Golub BM, Foster CS. Human basement membrane components of keratoconus and normal corneas. Invest Ophthalmol Vis Sci. 1986;27(4):604-607.
- Torricelli AA, Singh V, Santhiago MR, Wilson SE. The corneal epithelial basement membrane: structure, function, and disease. Invest Ophthalmol Vis Sci. 2013;54(9): 6390-6400. doi: 10.1167/iovs.13-12547
- Newsome DA, Foidart JM, Hassell JR, Krachmer JH, Rodrigues MM, Katz SI. Detection of specific collagen types in normal and keratoconus corneas. Invest Ophthalmol Vis Sci. 1981;20(6):738-750.
- Tsuchiya S, Tanaka M, Konomi H, Hayashi T. Distribution of specific collagen types and fibronectin in normal and keratoconus corneas. Jpn J Ophthalmol. 1986;30(1):14-31.
- Dua HS, Faraj LA, Said DG, Gray T, Lowe J. Human corneal anatomy redefined: a novel pre-Descemet’s layer (Dua’s layer). Ophthalmology. 2013;120(9):1778-1785. doi: 10.1016/j.ophtha.2013.01.018
- Tamura Y, Konomi H, Sawada H, Takashima S, Nakajima A. Tissue distribution of type VIII collagen in human adult and fetal eyes. Invest Ophthalmol Vis Sci. 1991;32(9): 2636-2644.
- Luo H, Lu Y, Wu T, Zhang M, Zhang Y, Jin Y. Construction of tissue-engineered cornea composed of amniotic epithelial cells and acellular porcine cornea for treating corneal alkali burn. Biomaterials. 2013;34(28):6748-6759. doi: 10.1016/j.biomaterials.2013.05.045
- Rafat M, Li F, Fagerholm P, et al. PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering. Biomaterials. 2008;29(29):3960-3972. doi: 10.1016/j.biomaterials.2008.06.017
- Alaminos M, Del Carmen Sanchez-Quevedo M, Munoz- Avila JI, et al. Construction of a complete rabbit cornea substitute using a fibrin-agarose scaffold. Invest Ophthalmol Vis Sci. 2006;47(8):3311-3317. doi: 10.1167/iovs.05-1647
- Fagerholm P, Lagali NS, Merrett K, et al. A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Sci Transl Med. 2010;2(46):46ra61. doi: 10.1126/scitranslmed.3001022
- Fagerholm P, Lagali NS, Ong JA, et al. Stable corneal regeneration four years after implantation of a cell-free recombinant human collagen scaffold. Biomaterials. 2014;35(8):2420-2427. doi: 10.1016/j.biomaterials.2013.11.079
- Nishida K, Yamato M, Hayashida Y, et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med. 2004;351(12):1187-1196. doi: 10.1056/Nejmoa040455
- Kobayashi T, Kan K, Nishida K, Yamato M, Okano T. Corneal regeneration by transplantation of corneal epithelial cell sheets fabricated with automated cell culture system in rabbit model. Biomaterials. 2013;34(36):9010-9017. doi: 10.1016/j.biomaterials.2013.07.065
- Lawrence BD, Pan Z, Liu AH, Kaplan DL, Rosenblatt MI. Human corneal limbal epithelial cell response to varying silk film geometric topography in vitro. Acta Biomater. 2012;8(10):3732-3743. doi: 10.1016/j.actbio.2012.06.009
- Levis HJ, Massie I, Dziasko MA, Kaasi A, Daniels JT. Rapid tissue engineering of biomimetic human corneal limbal crypts with 3D niche architecture. Biomaterials. 2013;34(35):8860-8868. doi: 10.1016/j.biomaterials.2013.08.002
- Mi SL, Chen B, Wright B, Connon CJ. Ex vivo construction of an artificial ocular surface by combination of corneal limbal epithelial cells and a compressed collagen scaffold containing keratocytes. Tissue Eng Part A. 2010;16(6):2091-2100. doi: 10.1089/ten.tea.2009.0748
- Duan X, Sheardown H. Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions. Biomaterials. 2006;27(26):4608-4617. doi: 10.1016/j.biomaterials.2006.04.022
- Li FF, Carlsson D, Lohmann C, et al. Cellular and nerve regeneration within a biosynthetic extracellular matrix for corneal transplantation. Proc Natl Acad Sci USA. 2003;100(26):15346-15351. doi: 10.1073/pnas.2536767100
- Liu W, Merrett K, Griffith M, et al. Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials. 2008;29(9):1147-1158. doi: 10.1016/j.biomaterials.2007.11.011
- Torbet J, Malbouyres M, Builles N, et al. Orthogonal scaffold of magnetically aligned collagen lamellae for corneal stroma reconstruction. Biomaterials. 2007;28(29):4268-4276. doi: 10.1016/j.biomaterials.2007.05.024
- Builles N, Janin-Manificat H, Malbouyres M, et al. Use of magnetically oriented orthogonal collagen scaffolds for hemi-corneal reconstruction and regeneration. Biomaterials. 2010;31(32):8313-8322. doi: 10.1016/j.biomaterials.2010.07.066
- Crabb RA, Chau EP, Evans MC, Barocas VH, Hubel A. Biomechanical and microstructural characteristics of a collagen film-based corneal stroma equivalent. Tissue Eng. 2006;12(6):1565-1575. doi: 10.1089/ten.2006.12.1565
- Mimura T, Amano S, Yokoo S, et al. Tissue engineering of corneal stroma with rabbit fibroblast precursors and gelatin hydrogels. Mol Vis. 2008;14:1819-1828.
- Wu J, Rnjak-Kovacina J, Du Y, Funderburgh ML, Kaplan DL, Funderburgh JL. Corneal stromal bioequivalents secreted on patterned silk substrates. Biomaterials. 2014;35(12):3744-3755. doi: 10.1016/j.biomaterials.2013.12.078
- Gil ES, Mandal BB, Park SH, Marchant JK, Omenetto FG, Kaplan DL. Helicoidal multi-lamellar features of RGD-functionalized silk biomaterials for corneal tissue engineering. Biomaterials. 2010;31(34):8953-8963. doi: 10.1016/j.biomaterials.2010.08.017
- Fan T, Ma X, Zhao J, et al. Transplantation of tissue-engineered human corneal endothelium in cat models. Mol Vis. 2013;19:400-407.
- Honda N, Mimura T, Usui T, Amano S. Descemet stripping automated endothelial keratoplasty using cultured corneal endothelial cells in a rabbit model. Arch Ophthalmol. 2009;127(10):1321-1326. doi: 10.1001/archophthalmol.2009.253
- Watanabe R, Hayashi R, Kimura Y, et al. A novel gelatin hydrogel carrier sheet for corneal endothelial transplantation. Tissue Eng Part A. 2011;17(17-18):2213-2219. doi: 10.1089/ten.TEA.2010.0568
- Levis HJ, Peh GSL, Toh KP, et al. Plastic compressed collagen as a novel carrier for expanded human corneal endothelial cells for transplantation. PLoS One. 2012;7(11):e50993. doi: 10.1371/journal.pone.0050993
- Fuest M, Yam GHF, Mehta JS, Duarte Campos DF. Prospects and challenges of translational corneal bioprinting. Bioengineering. 2020;7(3):71. doi: 10.3390/bioengineering7030071
- Zhang B, Xue Q, Hu HY, et al. Integrated 3D bioprinting-based geometry-control strategy for fabricating corneal substitutes. J Zhejiang Univ Sci B. 2019;20(12):945-959. doi: 10.1631/jzus.B1900190
- Bektas CK, Hasirci V. Cell loaded 3D bioprinted GelMA hydrogels for corneal stroma engineering. Biomater Sci. 2020;8(1):438-449. doi: 10.1039/c9bm01236b
- Kong B, Chen Y, Liu R, et al. Fiber reinforced GelMA hydrogel to induce the regeneration of corneal stroma. Nat Commun. 2020;11(1):1435. doi: 10.1038/S41467-020-14887-9
- Kim H, Park MN, Kim J, Jang J, Kim H-K, Cho D-W. Characterization of cornea-specific bioink: high transparency, improved in vivo safety. J Tissue Eng. 2019;10. doi: 10.1177/2041731418823382
- Kim H, Jang J, Park J, et al. Shear-induced alignment of collagen fibrils using 3D cell printing for corneal stroma tissue engineering. Biofabrication. 2019;11(3). doi: 10.1088/1758-5090/Ab1a8b
- Kim KW, Lee SJ, Park SH, Kim JC. Ex vivo functionality of 3D bioprinted corneal endothelium engineered with ribonuclease 5-overexpressing human corneal endothelial cells. Adv Healthc Mater. 2018;7(18):e1800398. doi: 10.1002/adhm.201800398