Angiogenesis-promoting composite TPMS bone tissue engineering scaffold for mandibular defect regeneration

Mandibular defects severely impact the patient’s quality of life and are difficult problems to treat in the clinical setting. Due to the limitations of current gold-standard therapies, there is a tremendous need for tissue engineering approaches to meet this rising clinical demand. Injectable platelet-rich fibrin (I-PRF) containing a variety of pro-regenerative growth factors and stromal cell-derived factor-1 (SDF-1) has been shown to be beneficial in stimulating angiogenesis. In this study, we developed a three-cycle minimally curved biomimetic bone tissue engineering scaffold made of β-tricalcium phosphate, modified with I-PRF and SDF-1. I-PRF was loaded at a concentration of 5% onto a triply periodic minimal surface (TPMS) scaffold with a porosity of 70%. CCK-8 experiments and live-dead staining confirmed the scaffold’s good biocompatibility and its ability to promote cell proliferation. Wound healing assays showed that the TPMS scaffold loaded with I-PRF and SDF-1 (SIT) enhanced cell migration of MC3T3 cells. Moreover, angiogenesis experiments showed that the SIT scaffold promoted angiogenesis. Importantly, alkaline phosphatase and alizarin red staining confirmed that the bone scaffold accelerated MC3T3 cells’ osteogenic differentiation and mineralization. The SIT bone scaffold was then implanted into a rabbit mandible defect model. After a 2-month post-implantation period, micro- CT analysis revealed the growth of new bone tissue around the SIT construct, while histological analysis which included hematoxylin-eosin (H&E) staining and masson’s trichrome staining, alkaline phosphatase (ALP) staining, osteoprotegerin (OPG) staining demonstrated that the SIT scaffold substantially promoted the growth of a highly vascularized fibrous and bone tissue in the defect site. Taken together, these findings demonstrate the considerable potential of TPMS scaffolds loaded with I-PRF and SDF-1 in promoting the repair of mandible defects.
- Chanchareonsook N, Junker R, Jongpaiboonkit L, Jansen JA. Tissue-engineered mandibular bone reconstruction for continuity defects: A systematic approach to the literature. Tissue Eng Part B Rev. 2014;20(2): 147–162. doi: 10.1089/ten.TEB.2013.0131
- Wong RC, Tideman H, Kin L, Merkx MAW. Biomechanics of mandibular reconstruction: A review. Int J Oral Maxillofac Surg. 2010;39(4): 313–319. doi: 10.1016/j.ijom.2009.11.003
- Zhao K, Wang F, Huang W, Wu Y. Clinical outcomes of vertical distraction osteogenesis for dental implantation: A systematic review and meta-analysis. Int J Oral Maxillofac Implants. 2018;33(3): 549–564. doi: 10.11607/jomi.6140
- Benic GI, Hämmerle CH. Horizontal bone augmentation by means of guided bone regeneration. Periodontology. 2014;66(1): 13–40. doi: 10.1111/prd.12039
- Doonquah L, Holmes PJ, Ranganathan LK, et al. Bone grafting for implant surgery. Oral Maxillofac Surg Clin North Am. 2021;33(2): 211–229. doi: 10.1016/j.coms.2021.01.006
- Calori GM, Mazza E, Colombo M, Ripamonti C. The use of bone-graft substitutes in large bone defects: Any specific needs? Injury. 2011;42(Suppl 2): S56–S63. doi: 10.1016/j.injury.2011.06.011
- Shegarfi H, Reikeras O. Review article: Bone transplantation and immune response. J Orthop Surg. 2009;17(2): 206–211. doi: 10.1177/230949900901700218
- Liu X, Wang J, Xu X, Zhu H, Man K, Zhang J. SDF-1 functionalized hydrogel microcarriers for skin flap repair. Acs Biomater Sci Eng. 2022;8(8): 3576–3588. doi: 10.1021/acsbiomaterials.2c00755
- Man K, Barroso IA, Brunet MY, et al. Controlled release of epigenetically-enhanced extracellular vesicles from a GelMA/nanoclay composite hydrogel to promote bone repair. Int J Mol Sci. 2022;23(2). doi: 10.3390/ijms23020832
- Man K, Brunet MY, Fernandez-Rhodes M, et al. Epigenetic reprogramming enhances the therapeutic efficacy of osteoblast-derived extracellular vesicles to promote human bone marrow stem cell osteogenic differentiation. J Extracell Vesicles. 2021;10(9): e12118. doi: 10.1002/jev2.12118
- Choukroun J, Adda F, Schoeffler C, Vervelle A. Une opportunit?? en paro-implantologie: Le PRF. Implantodontie. 2001;42: 55–62.
- Jankovic S, Aleksic Z, Klokkevold P, et al. Use of platelet-rich fibrin membrane following treatment of gingival recession: A randomized clinical trial. Int J Periodontics Restor Dent. 2012;32(2): e41–50.
- Dohan DM, Choukroun J, Diss A, et al. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part II: Platelet-related biologic features. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(3): e45–50. doi: 10.1016/j.tripleo.2005.07.009
- Melek L, Taalab M. The use of injectable platelet rich fibrin in conjunction to guided bone regeneration for the management of well contained ridge defect at the time of extraction. Egypt Dent J. 2017;63: 1197–1208. doi: 10.21608/edj.2017.73912
- Wang X, Zhang Y, Choukroun J, Ghanaati S, Miron RJ. Effects of an injectable platelet-rich fibrin on osteoblast behavior and bone tissue formation in comparison to platelet-rich plasma. Platelets. 2018;29(1): 48–55. doi: 10.1080/09537104.2017.1293807
- Miron RJ, Fujioka-Kobayashi M, Hernandez M, et al. Injectable platelet rich fibrin (i-PRF): Opportunities in regenerative dentistry? Clin Oral investig. 2017;21(8): 2619–2627. doi: 10.1007/s00784-017-2063-9
- Kobayashi E, Flückiger L, Fujioka-Kobayashi M, et al. Comparative release of growth factors from PRP, PRF, and advanced-PRF. Clin Oral Investig. 2016;20(9): 2353–2360. doi: 10.1007/s00784-016-1719-1
- Arango Duque G, Descoteaux A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front Immunol. 2014;5: 491. doi: 10.3389/fimmu.2014.00491
- Dohan DM, Choukroun J, Diss A, et al. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part I: Technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(3): e37–44. doi: 10.1016/j.tripleo.2005.07.008
- Mijiritsky E, Assaf HD, Peleg O, Shacham M, Cerroni L, Mangani L. Use of PRP, PRF and CGF in periodontal regeneration and facial rejuvenation-A narrative review. Biology. 2021;10(4). doi: 10.3390/biology10040317
- Castro AB, Van Dessel J, Temmerman A, Jacobs R, Quirynen M. Effect of different platelet-rich fibrin matrices for ridge preservation in multiple tooth extractions: A split-mouth randomized controlled clinical trial. J Clin Periodontol. 2021;48(7): 984–995. doi: 10.1111/jcpe.13463
- Kosmidis K, Ehsan K, Pitzurra L, Loos B, Jansen I. An in vitro study into three different PRF preparations for osteogenesis potential. J Periodontal Res. 2023;58(3):483–492. doi: 10.1111/jre.13116
- Aydinyurt HS, Sancak T, Taskin C, Basbugan Y, Akinci Levent. Effects of ınjectable platelet-rich fibrin in experimental periodontitis in rats. Odontology. 2021;109(2): 422–432. doi: 10.1007/s10266-020-00557-1
- Valladao C, Monteiro M, Joly J. Guided bone regeneration in staged vertical and horizontal bone augmentation using platelet-rich fibrin associated with bone grafts: A retrospective clinical study. Int J Implant Dent. 2020;6(1): 72. doi: 10.1186/s40729-020-00266-y
- Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR. Platelet-rich plasma: Growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85(6): 638–646. doi: 10.1016/s1079-2104(98)90029-4
- Li Q, Pan S, Dangaria SJ, et al. Platelet-rich fibrin promotes periodontal regeneration and enhances alveolar bone augmentation. BioMed Res Int. 2013: 638043. doi: 10.1155/2013/638043
- Farshidfar N, Jafarpour D, Firoozi P, et al. The application of injectable platelet-rich fibrin in regenerative dentistry: A systematic scoping review of In vitro and In vivo studies. Jpn Dent Sci Rev. 2022;58: 89–123. doi: 10.1016/j.jdsr.2022.02.003
- Del Corso M, Mazor Z, Rutkowski JL, Ehrenfest DMD. The use of leukocyte- and platelet-rich fibrin during immediate postextractive implantation and loading for the esthetic replacement of a fractured maxillary central incisor. J Oral Implantol. 2012;38(2): 181–187. doi: 10.1563/aaid-joi-d-12-cl.3802
- Amiri MA, Farshidfar N, Hamedani S. The potential application of platelet-rich fibrin (PRF) in vestibuloplasty. Maxillofac Plast Reconstr Surg. 2021;43(1): 20. doi: 10.1186/s40902-021-00308-4
- Amiri MA, Farshidfar N, Hamedani S. The prospective relevance of autologous platelet concentrates for the treatment of oral mucositis. Oral Oncol. 2021;122: 105549. doi: 10.1016/j.oraloncology.2021.105549
- Simunovic F, Finkenzeller G. Vascularization strategies in bone tissue engineering. Cells. 2021;10(7): 1749. doi: 10.3390/cells10071749
- Shi Y, Riese DJ, 2nd, Shen J. The role of the CXCL12/ CXCR4/CXCR7 chemokine axis in cancer. Front Pharmacol. 2020;11: 574667. doi: 10.3389/fphar.2020.574667
- Chen J, Li F, Xu Y, et al. Cholesterol modification of SDF-1- specific siRNA enables therapeutic targeting of angiogenesis through Akt pathway inhibition. Exp Eye Res. 2019;184: 64–71. doi: 10.1016/j.exer.2019.03.006
- IUIS/WHO Subcommittee on Chemokine Nomenclature. Chemokine/chemokine receptor nomenclature. Cytokine. 2003;21(1): 48–49. doi: 10.1016/s1043-4666(02)00493-3
- Janssens R, Struyf S, Proost P. The unique structural and functional features of CXCL12. Cell Mol Immunol. 2018;15(4): 299–311. doi: 10.1038/cmi.2017.107
- van Weel V, Seghers L, de Vries MR, et al. Expression of vascular endothelial growth factor, stromal cell-derived factor-1, and CXCR4 in human limb muscle with acute and chronic ischemia. Arterioscler Thromb Vasc Biol. 2007;27(6): 1426–1432. doi: 10.1161/atvbaha.107.139642
- Man KAC, Mekhileri NV, Lim KS, et al. GelMA hydrogel reinforced with 3D printed PEGT/PBT scaffolds for supporting epigenetically-activated human bone marrow stromal cells for bone repair. J Funct Biomater. 2022;13(2). doi: 10.3390/jfb13020041
- Man KB, Federici AS, Hoey DA, Hoey DA, Cox SC. An ECM-mimetic hydrogel to promote the therapeutic efficacy of osteoblast-derived extracellular vesicles for bone regeneration. Front Bioeng Biotechnol. 2022;10: 829969. doi: 10.3389/fbioe.2022.829969
- Han L, Che S. An overview of materials with triply periodic minimal surfaces and related geometry: From biological structures to self-assembled systems. Adv Mater. 2018;30(17): e1705708. doi: 10.1002/adma.201705708
- Barba D, Alabort E, Reed RC. Synthetic bone: Design by additive manufacturing. Acta Biomater. 2019;97: 637–656. doi: 10.1016/j.actbio.2019.07.049
- Mustafa NS, Akhmal NH, Izman S, Talib H. Application of computational method in designing a unit cell of bone tissue engineering scaffold: A review. Polymers. 2021;13(10). doi: 10.3390/polym13101584
- Kladovasilakis N, Tsongas K, Karalekas D, Tzetzis D. Architected materials for additive manufacturing: A comprehensive review. Materials. 2022;15(17). doi: 10.3390/ma15175919
- Song K, Wang Z, Lan J, Ma S. Porous structure design and mechanical behavior analysis based on TPMS for customized root analogue implant. J Mech Behav Biomed Mater. 2021;115: 104222. doi: 10.1016/j.jmbbm.2020.104222
- Shen M, Li Y, Lu F, et al. Bioceramic scaffolds with triply periodic minimal surface architectures guide early-stage bone regeneration. Bioact Mater. 2023;25: 374–386. doi: 10.1016/j.bioactmat.2023.02.012
- Yan X, Rao C, Lu L, Sharf A, Zhao H, Chen B. Strong 3D printing by TPMS injection. IEEE Trans Vis Comput. 2020;26(10): 3037–3050. doi: 10.1109/tvcg.2019.2914044
- Thanasrisuebwong P, Kiattavorncharoen S, Deeb GR, Deeb GR, Bencharit S. Implant site preparation application of injectable platelet-rich fibrin for vertical and horizontal bone regeneration: A clinical report. J Oral Implantol. 2022;48(1): 43–50. doi: 10.1563/aaid-joi-D-20-00031
- Gasparro R, Adamo D, Masucci M, Sammartino G, Mignogna MD. Use of injectable platelet-rich fibrin in the treatment of plasma cell mucositis of the oral cavity refractory to corticosteroid therapy: A case report. Dermatol Ther. 2019;32(5): e13062. doi: 10.1111/dth.13062
- Suresh N. “The Magic Wand”: A novel treatment option for delayed replantation of an avulsed permanent tooth using injectable platelet-rich fibrin. J Indian Soc Periodontol. 2021;25(3): 262–266. doi: 10.4103/jisp.jisp_533_19
- Lu F, Wu R, Shen M, et al. Rational design of bioceramic scaffolds with tuning pore geometry by stereolithography: Microstructure evaluation and mechanical evolution. J Eur Ceram Soc. 2021;41(2): 1672–1682. doi: 10.1016/j.jeurceramsoc.2020.10.002
- Bobbert FSL, Lietaert K, Eftekhari AA, et al. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties. Acta Biomater. 2017;53: 572–584. doi: 10.1016/j.actbio.2017.02.024
- Park S-Y, Kim KS, Al-Mangour B, Grzesiak D, Lee K-A. Effect of unit cell topology on the tensile loading responses of additive manufactured CoCrMo triply periodic minimal surface sheet lattices. Mater Des. 2021;206: 109778. doi: 10.1016/j.matdes.2021.109778
- He D, Li H. Biomaterials affect cell-cell interactions in vitro in tissue engineering. J Mater Sci Technol. 2021;63: 62–72. doi: 10.1016/j.jmst.2020.03.022
- Hsieh M-T, Begley MR, Valdevit L. Architected implant designs for long bones: Advantages of minimal surface-based topologies. Mater Des. 2021;207: 109838. doi: 10.1016/j.matdes.2021.109838
- Lawrence LM, Salary RR, Miller V, et al. Osteoregenerative potential of 3D-printed poly ε-caprolactone tissue scaffolds in vitro using minimally manipulative expansion of primary human bone marrow stem cells. Int J Mol Sci. 2023; 24(5): 4940. doi: 10.3390/ijms24054940
- Castro APG, Pires T, Santos JE, Gouveia BP, Fernandes PR. Permeability versus design in TPMS scaffolds. Materials. 2019;12(8). doi: 10.3390/ma12081313
- O’Mahony AM, Williams JL, Katz JO, Spencer P. Anisotropic elastic properties of cancellous bone from a human edentulous mandible. Clin Oral Implant Res. 2000;11(5): 415–421. doi: 10.1034/j.1600-0501.2000.011005415.x
- van Eijden TM. Biomechanics of the mandible. Crit Rev Oral Biol Med. 2000;11(1): 123–136. doi: 10.1177/10454411000110010101
- Wang J, Li W, He X, Li Simei, Pan H, Yin Lihua. Injectable platelet-rich fibrin positively regulates osteogenic differentiation of stem cells from implant hole via the ERK1/2 pathway. Platelets. 2023;34(1): 2159020. doi: 10.1080/09537104.2022.2159020
- He L, Lin Y, Hu X, Zhang Y, Wu H. A comparative study of platelet-rich fibrin (PRF) and platelet-rich plasma (PRP) on the effect of proliferation and differentiation of rat osteoblasts in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(5): 707–713. doi: 10.1016/j.tripleo.2009.06.044
- Sánchez AR, Sheridan PJ, Kupp LI. Is platelet-rich plasma the perfect enhancement factor? A current review. Int J Oral Maxillofac Implants. 2003;18(1): 93–103.
- Mu Z, He Q, Xin L, et al. Effects of injectable platelet rich fibrin on bone remodeling in combination with DBBM in maxillary sinus elevation: A randomized preclinical study. Am J Transl Res. 2020;12(11); 7312–7325.
- Kannan S, Ghosh J, Dhara SK. Osteogenic differentiation potential of porcine bone marrow mesenchymal stem cell subpopulations selected in different basal media. Biol Open. 2020;9(10). doi: 10.1242/bio.053280
- Man K, Joukhdar H, Manz XD, et al. Bone tissue engineering using 3D silk scaffolds and human dental pulp stromal cells epigenetic reprogrammed with the selective histone deacetylase inhibitor MI192. Cell Tissue Res. 2022;388(3): 565–581. doi: 10.1007/s00441-022-03613-0
- Kyyak S, Blatt S, Pabst A, Thiem D, Al-Nawas B, Kämmerer PW. Combination of an allogenic and a xenogenic bone substitute material with injectable platelet-rich fibrin - A comparative in vitro study. J Biomater Appl. 2020;35(1): 83–96. doi: 10.1177/0885328220914407
- 65. Man K, Jiang LH, Foster R, Yang XB. Immunological responses to total hip arthroplasty. J Funct Biomater. 2017;8(3). doi: 10.3390/jfb8030033