AccScience Publishing / IJB / Volume 10 / Issue 1 / DOI: 10.36922/ijb.0125
Cite this article
225
Download
1629
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Efficacy of 3D-printed customized titanium implants and its clinical validation in foot and ankle surgery

Yangjing Lin1 Peng He2 Guangyu Yang3 Fuyou Wang1 Liang Jia3 Huaquan Fan1 Liu Yang1 Huiping Tang3* Xiaojun Duan1*
Show Less
1 Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
2 Chongqing Institute of Optics and Machines, Chongqing 401122, China
3 State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi’an 710016, China
IJB 2024, 10(1), 0125 https://doi.org/10.36922/ijb.0125
Submitted: 9 April 2023 | Accepted: 17 June 2023 | Published: 24 July 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

In foot and ankle surgery, internal fixation was crucial to maintain the stability of bony structure, and bone grafting material is commonly used to treat bone defects. With rapid development of three-dimensional (3D) printing technology, new advances were made in these two aspects. In this study, digital image correlation method (DICM) data of the patient’s ankle via computed tomography (CT) examination were obtained and imported into a series of software. The engineer cooperated with the surgeon to design the customized implants. Ti-6Al-4V spherical metal powder was chosen as raw material and fused together by selective electron beam melting (SEBM), a type of 3D printing technology, to prepare the implant. The implants were sterilized with ethylene oxide. The customized 3D-printed implants were successfully utilized in tibiotalocalcaneal (TTC) arthrodesis to maintain the bony structures at the functional position. In another case, the 3D-printed fusion cage was applied in subtalar arthrodesis to treat bone defects. In these clinical cases, 3D-printed customized titanium implants helped improve the surgical operation flow, and no obvious tissue reaction was observed. The successful implementation suggested that the application of 3D printing technology to prepare customized titanium implants would play an important role in future foot and ankle surgery.

Keywords
3D printing
Customized implants
Metal material
Ankle
Subtalar joint
Surgery
Funding
This work was supported by the State Key Research and Development Program of the Ministry of Science and Technology of the People’s Republic of China (No. 2016YFB1101400), We would like to thank Xin Chen from the Center for Joint Surgery, Southwest Hospital, Third Military Medical University for the language support for this article.
References
  1. Yang K, Wang J, Tang H, Li Y. Additive manufacturing of in-situ reinforced Ti-35Nb-5Ta-7Zr (TNTZ) alloy by selective electron beam melting (SEBM). J Alloys Compounds. 2020;826:154178. doi: 10.1016/j.jallcom.2020.154178
  2. Yadroitsev I, Krakhmalev P, Yadroitsava I. Selective laser melting of Ti6A14V alloy for biomedical applications: Temperature monitoring and microstructural evolution. J Alloys Compounds. 2014;583:404-409. doi: 10.1016/j.jallcom.2013.08.183
  3. Mehboob H, Tarlochan F, Mehboob A, et al. A novel design, analysis and 3D printing of Ti-6Al-4V alloy bio-inspired porous femoral stem. J Mater Sci Mater Med. 2020;31(9):78. doi: 10.1007/s10856-020-06420-7
  4. Tan XP, Tan YJ, Chow CSL, Tor SB, Yeong WY. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Mater Sci Eng C Mater Biol Appl. 2017;76:1328-1343. doi: 10.1016/j.msec.2017.02.094
  5. Giovinco NA, Dunn SP, Dowling L, et al. A novel combination of printed 3‐dimensional anatomic templates and computer‐assisted surgical simulation for virtual preoperative planning in Charcot foot reconstruction. J Foot Ankle Surg. 2012;51(3):387-393. doi: 10.1053/j.jfas.2012.01.014
  6. Cha YH, Lee KH, Ryu HJ, et al. Ankle-foot orthosis made by 3D printing technique and automated design software. Appl Bionics Biomech. 2017; 9610468. doi: 10.1155/2017/9610468
  7. Chung KJ, Hong DY, Kim YT, Yang Ik, Park YW, Kim HN. Preshaping plates for minimally invasive fixation of calcaneal fractures using a real‐size 3D‐printed model as a preoperative and intraoperative tool. Foot Ankle Int. 2014;35(11):1231-1236. doi: 10.1177/1071100714544522
  8. Hamid KS, Parekh SG, Adams SB. Salvage of severe foot and ankle trauma with a 3D printed scaffold. Foot Ankle Int. 2016;37(4):433-439. doi: 10.1177/1071100715620895
  9. Jastifer JR, Gustafson PA. Three-dimensional printing and surgical simulation for preoperative planning of deformity correction in foot and ankle surgery. J Foot Ankle Surg. 2017;56(1):191-195. doi: 10.1053/j.jfas.2016.01.052
  10. Ren X, Yang L, Duan XJ. Three‐dimensional printing in the surgical treatment of osteoid osteoma of the calcaneus: A case report. J Int Med Res. 2017;45(1):372-380. doi: 10.1177/0300060516686514
  11. Li H, Qu X, Mao Y, Dai K, Zhu Z. Custom acetabular cages offer stable fixation and improved hip scores for revision THA with severe bone defects. Clin Orthop Relat Res. 2016;474(3):731-740. doi: 10.1007/s11999-015-4587-0
  12. Gorman TM, Beals TC, Nickisch F, et al. Hindfoot arthrodesis with the blade plate: Increased risk of complications and nonunion in a complex patient population. Clin Orthop Relat Res. 2016;474(10):2280-2299. doi: 10.1007/s11999-016-4955-4
  13. McGarvey WC, Braly WG. Bone graft in hindfoot arthrodesis: Allograft vs autograft. Orthopedics. 1996;19(5):389-394. doi: 10.3928/0147-7447-19960501-08
  14. Mulligan RP, Adams SB Jr, Easley ME, DeOrio JK, Nunley JA. Comparison of posterior approach with intramedullary nailing versus lateral transfibular approach with fixed-angle plating for tibiotalocalcaneal arthrodesis. Foot Ankle Int. 2017;38(12):1343-1351. doi: 10.1177/1071100717731728
  15. Fan J, Zhang X, Luo Y, You GW, Ng WK, Yang YF. Tibiotalocalcaneal (TTC) arthrodesis with reverse PHILOS plate and medial cannulated screws with lateral approach. BMC Musculoskelet Disord. 2017;18(1):317. doi: 10.1186/s12891-017-1666-2
  16. Kreulen C, Lian E, Giza E. Technique for use of trabecular metal spacers in tibiotalocalcaneal arthrodesis with large bony defects. Foot Ankle Int. 2017;38(1):96-106. doi: 10.1177/1071100716681743
  17. Li X, Wang CT, Zhang WG, Li Y. Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process. J Materials Letters. 2009;63:403-405. doi: 10.1016/j.matlet.2008.10.065
  18. Hrabe NW, Heinl P, Bordia RK, Körner C, Fernandes RJ. Maintenance of a bone collagen phenotype by osteoblast-like cells in 3D periodic porous titanium (Ti-6Al-4 V) structures fabricated by selective electron beam melting. Connect Tissue Res. 2013;54(6):351-360. doi: 10.3109/03008207.2013.822864
  19. Heinl P, Müller L, Körner C, Singer RF, Müller FA. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 2008;4(5):1536-1544. doi: 10.1016/j.actbio.2008.03.013
  20. Diment LE, Thompson MS, Bergmann JHM. Clinical efficacy and effectiveness of 3D printing: A systematic review. BMJ Open. 2017;7(12):e016891. doi: 10.1136/bmjopen-2017-016891
  21. Zheng W, Tao Z, Lou Y, et al. Comparison of the conventional surgery and the surgery assisted by 3D printing technology in the treatment of calcaneal fractures. J Invest Surg. 2017;19:1-11. doi: 10.1080/08941939.2017.1363833
  22. Ma H, Luo J, Sun Z, et al. 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration. Biomaterials. 2016;111:138-148. doi: 10.1016/j.biomaterials.2016.10.005
  23. Pati F, Ha DH, Jang J, Han HH, Rhie J-W, Cho D-W. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials. 2015;62:164-175. doi: 10.1016/j.biomaterials.2015.05.043
  24. Zhang M, Leung AK, Fan YB. Three-dimensional finite element analysis of the foot during standing: A material sensitivity study. J Biomech. 2005; 38(5):1045-1054. doi: 10.1016/j.jbiomech.2004.05.035
  25. Duan XJ, Fan HQ, Wang FY, He P, Yang L. Application of 3D-printed customized guides in subtalar joint arthrodesis. Orthop Surg. 2019;11(3):405-413. doi: 10.1111/os.12464
  26. Rengier F, Mehndiratta A, von Tengg-Kobligk H, et al. 3D printing based on imaging data: Review of medical applications. Int J Comput Assist Radiol Surg. 2010;5(4):335-341. doi: 10.1007/s11548-010-0476-x
  27. Naftulin JS, Kimchi EY, Cash SS. Streamlined, inexpensive 3D printing of the brain and skull. PLoS One. 2015;10(8):e0136198. doi: 10.1371/journal.pone.0136198
  28. Cohen J, Reyes SA. Creation of a 3D printed temporal bone model from clinical CT data. Am J Otolaryngol. 2015;36(5):619-624. doi: 10.1016/j.amjoto.2015.02.012
  29. Lee J, Aoki H. Hydroxyapatite coating on Ti plate by a dipping method. Biomed Mater Eng. 1995;5(2):49-58. doi: 10.3233/BME-1995-5201
  30. Russotti GM, Johnson KA, Cass JR. Tibiotalocalcaneal arthrodesis for arthritis and deformity of the hind part of the foot. J Bone Joint Surg Am. 1988;70(9):1304-1307. doi: 10.2106/00004623-198870090-00004
  31. Chou LB, Mann RA, Yaszay B, et al. Tibiotalocalcaneal arthrodesis. Foot Ankle Int, 2000;21(10):804-808. doi: 10.1177/107110070002101002
  32. Bennett GL, Cameron B, Njus G, Saunders M, Kay DB. Tibiotalocalcaneal arthrodesis: A biomechanical assessment of stability. Foot Ankle Int. 2005;26(7):530-536. doi: 10.1177/107110070502600706
  33. Kile TA, Donnelly RE, Gehrke JC, Werner ME, Johnson KA. Tibiotalocalcaneal arthrodesis with an intramedullary device. Foot Ankle Int. 1994;15(12):669-673. doi: 10.1177/107110079401501208
  34. Berend ME, Glisson RR, Nunley JA. A biomechanical comparison of intramedullary nail and crossed lag screw fixation for tibiotalocalcaneal arthrodesis. Foot Ankle Int. 1997;18(10):639-643. doi: 10.1177/107110079701801007
  35. Lowery NJ, Joseph AM, Burns PR. Tibiotalocalcaneal arthrodesis with the use of a humeral locking plate. Clin Podiatr Med Surg. 2009;26(3):485-492. doi: 10.1016/j.cpm.2009.03.011
  36. Chiodo CP, Acevedo JI, Sammarco VJ, et al. Intramedullary rod fixation compared with blade-plate-and-screw fixation for tibiotalocalcaneal arthrodesis: A biomechanical investigation. J Bone Joint Surg Am. 2003;85-A(12): 2425-2428. doi: 10.2106/00004623-200312000-00022
  37. García-Alonso MC, Saldaña L, Vallés G, et al. In vitro corrosion behaviour and osteoblast response of thermally oxidised Ti6Al4V alloy. Biomaterials. 2003;24(1):19-26. doi: 10.1016/s0142-9612(02)00237-5
  38. Yuan W, He X, Zhou X, Zhu Y. Hydroxyapatite nanoparticle-coated 3D-printed porous Ti6Al4V and CoCrMo alloy scaffolds and their biocompatibility to human osteoblasts. J Nanosci Nanotechnol. 2018;18(6):4360-4365. doi: 10.1166/jnn.2018.15207
  39. Fernandes DJ, Marques RG, Elias CN. Influence of acid treatment on surface properties and in vivo performance of Ti6Al4V alloy for biomedical applications. J Mater Sci Mater Med. 2017;28(10):164. doi: 10.1007/s10856-017-5977-5
  40. Zhou L, You J, Wang Z, et al. 3D printing monetite-coated Ti-6Al-4V surface with osteoimmunomodulatory function to enhance osteogenesis. Biomater Adv. 2022;134:112562. doi: 10.1016/j.msec.2021.112562
  41. Bobbert FSL, Lietaert K, Eftekhari AA, et al. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties. Acta Biomater. 2017;53:572-584. doi: 10.1016/j.actbio.2017.02.024
  42. Li X, Wang C, Zhang W, Li Y. Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process. Mater Lett. 2009; 63(3-4):403-405. doi: 10.1016/j.matlet.2008.10.065
  43. Feng JY, Wei DX, Zhang PL, et al. Preparation of TiNbTaZrMo high-entropy alloy with tunable Young’s modulus by selective laser melting. J Manuf Process. 2023;85:160-165. doi: 10.1016/j.jmapro.2022.11.046
  44. Guo L, Naghavi SA, Wang Z, et al. On the design evolution of hip implants: A review. Mater Design. 2022;216:110552. doi: 10.1016/j.matdes.2022.110552
  45. Niedźwiedzki T, Dabrowski Z, Miszta H, Pawlikowski M. Bone healing after bone marrow stromal cell transplantation to the bone defect. Biomaterials. 1993;14(2): 115-121. doi: 10.1016/0142-9612(93)90221-m
  46. Xu L, Zhou J, Wang Z, Xiong J, Qiu Y, Wang S. Reconstruction of bone defect with allograft and retrograde intramedullary nail for distal tibia osteosarcoma. Foot Ankle Surg. 2018;24(2):149-153. doi: 10.1016/j.fas.2017.01.006
  47. Zhang C, Lin Y, Duan X. 3D printing-assisted supramalleolar osteotomy for ankle osteoarthritis. ACS Omega. 2022;7(46):42191-42198. doi: 10.1021/acsomega.2c04764
  48. Kim SE, Shim KM, Jang K, Shim J-H, Kang SS. Three-dimensional printing-based reconstruction of a maxillary bone defect in a dog following tumor removal. In Vivo. 2018;32(1):63-70. doi: 10.21873/invivo.11205
  49. Abar B, Kwon N, Allen NB, et al. Outcomes of surgical reconstruction using custom 3D-printed porous titanium implants for critical-sized bone defects of the foot and ankle. Foot Ankle Int. 2022;43(6):750-761. doi: 10.1177/10711007221077113
  50. Parthasarathy J. 3D modeling, custom implants and its future perspectives in craniofacial surgery. Ann Maxillofac Surg. 2014;4(1):9-18. doi: 10.4103/2231-0746.133065
  51. Martelli N, Serrano C, van den Brink H, et al. Advantages and disadvantages of 3-dimensional printing in surgery: A systematic review. Surgery. 2016;159(6): 1485-1500. doi: 10.1016/j.surg.2015.12.017
  52. 52. Duan X, Wang B, Yang L, Kadakia AR. Applications of 3D printing technology in orthopedic treatment. Biomed Res Int. 2021:9892456. doi: 10.1155/2021/9892456
Conflict of interest
The authors declare no conflict of interests.
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing