Efficacy of 3D-printed customized titanium implants and its clinical validation in foot and ankle surgery

In foot and ankle surgery, internal fixation was crucial to maintain the stability of bony structure, and bone grafting material is commonly used to treat bone defects. With rapid development of three-dimensional (3D) printing technology, new advances were made in these two aspects. In this study, digital image correlation method (DICM) data of the patient’s ankle via computed tomography (CT) examination were obtained and imported into a series of software. The engineer cooperated with the surgeon to design the customized implants. Ti-6Al-4V spherical metal powder was chosen as raw material and fused together by selective electron beam melting (SEBM), a type of 3D printing technology, to prepare the implant. The implants were sterilized with ethylene oxide. The customized 3D-printed implants were successfully utilized in tibiotalocalcaneal (TTC) arthrodesis to maintain the bony structures at the functional position. In another case, the 3D-printed fusion cage was applied in subtalar arthrodesis to treat bone defects. In these clinical cases, 3D-printed customized titanium implants helped improve the surgical operation flow, and no obvious tissue reaction was observed. The successful implementation suggested that the application of 3D printing technology to prepare customized titanium implants would play an important role in future foot and ankle surgery.
- Yang K, Wang J, Tang H, Li Y. Additive manufacturing of in-situ reinforced Ti-35Nb-5Ta-7Zr (TNTZ) alloy by selective electron beam melting (SEBM). J Alloys Compounds. 2020;826:154178. doi: 10.1016/j.jallcom.2020.154178
- Yadroitsev I, Krakhmalev P, Yadroitsava I. Selective laser melting of Ti6A14V alloy for biomedical applications: Temperature monitoring and microstructural evolution. J Alloys Compounds. 2014;583:404-409. doi: 10.1016/j.jallcom.2013.08.183
- Mehboob H, Tarlochan F, Mehboob A, et al. A novel design, analysis and 3D printing of Ti-6Al-4V alloy bio-inspired porous femoral stem. J Mater Sci Mater Med. 2020;31(9):78. doi: 10.1007/s10856-020-06420-7
- Tan XP, Tan YJ, Chow CSL, Tor SB, Yeong WY. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Mater Sci Eng C Mater Biol Appl. 2017;76:1328-1343. doi: 10.1016/j.msec.2017.02.094
- Giovinco NA, Dunn SP, Dowling L, et al. A novel combination of printed 3‐dimensional anatomic templates and computer‐assisted surgical simulation for virtual preoperative planning in Charcot foot reconstruction. J Foot Ankle Surg. 2012;51(3):387-393. doi: 10.1053/j.jfas.2012.01.014
- Cha YH, Lee KH, Ryu HJ, et al. Ankle-foot orthosis made by 3D printing technique and automated design software. Appl Bionics Biomech. 2017; 9610468. doi: 10.1155/2017/9610468
- Chung KJ, Hong DY, Kim YT, Yang Ik, Park YW, Kim HN. Preshaping plates for minimally invasive fixation of calcaneal fractures using a real‐size 3D‐printed model as a preoperative and intraoperative tool. Foot Ankle Int. 2014;35(11):1231-1236. doi: 10.1177/1071100714544522
- Hamid KS, Parekh SG, Adams SB. Salvage of severe foot and ankle trauma with a 3D printed scaffold. Foot Ankle Int. 2016;37(4):433-439. doi: 10.1177/1071100715620895
- Jastifer JR, Gustafson PA. Three-dimensional printing and surgical simulation for preoperative planning of deformity correction in foot and ankle surgery. J Foot Ankle Surg. 2017;56(1):191-195. doi: 10.1053/j.jfas.2016.01.052
- Ren X, Yang L, Duan XJ. Three‐dimensional printing in the surgical treatment of osteoid osteoma of the calcaneus: A case report. J Int Med Res. 2017;45(1):372-380. doi: 10.1177/0300060516686514
- Li H, Qu X, Mao Y, Dai K, Zhu Z. Custom acetabular cages offer stable fixation and improved hip scores for revision THA with severe bone defects. Clin Orthop Relat Res. 2016;474(3):731-740. doi: 10.1007/s11999-015-4587-0
- Gorman TM, Beals TC, Nickisch F, et al. Hindfoot arthrodesis with the blade plate: Increased risk of complications and nonunion in a complex patient population. Clin Orthop Relat Res. 2016;474(10):2280-2299. doi: 10.1007/s11999-016-4955-4
- McGarvey WC, Braly WG. Bone graft in hindfoot arthrodesis: Allograft vs autograft. Orthopedics. 1996;19(5):389-394. doi: 10.3928/0147-7447-19960501-08
- Mulligan RP, Adams SB Jr, Easley ME, DeOrio JK, Nunley JA. Comparison of posterior approach with intramedullary nailing versus lateral transfibular approach with fixed-angle plating for tibiotalocalcaneal arthrodesis. Foot Ankle Int. 2017;38(12):1343-1351. doi: 10.1177/1071100717731728
- Fan J, Zhang X, Luo Y, You GW, Ng WK, Yang YF. Tibiotalocalcaneal (TTC) arthrodesis with reverse PHILOS plate and medial cannulated screws with lateral approach. BMC Musculoskelet Disord. 2017;18(1):317. doi: 10.1186/s12891-017-1666-2
- Kreulen C, Lian E, Giza E. Technique for use of trabecular metal spacers in tibiotalocalcaneal arthrodesis with large bony defects. Foot Ankle Int. 2017;38(1):96-106. doi: 10.1177/1071100716681743
- Li X, Wang CT, Zhang WG, Li Y. Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process. J Materials Letters. 2009;63:403-405. doi: 10.1016/j.matlet.2008.10.065
- Hrabe NW, Heinl P, Bordia RK, Körner C, Fernandes RJ. Maintenance of a bone collagen phenotype by osteoblast-like cells in 3D periodic porous titanium (Ti-6Al-4 V) structures fabricated by selective electron beam melting. Connect Tissue Res. 2013;54(6):351-360. doi: 10.3109/03008207.2013.822864
- Heinl P, Müller L, Körner C, Singer RF, Müller FA. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 2008;4(5):1536-1544. doi: 10.1016/j.actbio.2008.03.013
- Diment LE, Thompson MS, Bergmann JHM. Clinical efficacy and effectiveness of 3D printing: A systematic review. BMJ Open. 2017;7(12):e016891. doi: 10.1136/bmjopen-2017-016891
- Zheng W, Tao Z, Lou Y, et al. Comparison of the conventional surgery and the surgery assisted by 3D printing technology in the treatment of calcaneal fractures. J Invest Surg. 2017;19:1-11. doi: 10.1080/08941939.2017.1363833
- Ma H, Luo J, Sun Z, et al. 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration. Biomaterials. 2016;111:138-148. doi: 10.1016/j.biomaterials.2016.10.005
- Pati F, Ha DH, Jang J, Han HH, Rhie J-W, Cho D-W. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials. 2015;62:164-175. doi: 10.1016/j.biomaterials.2015.05.043
- Zhang M, Leung AK, Fan YB. Three-dimensional finite element analysis of the foot during standing: A material sensitivity study. J Biomech. 2005; 38(5):1045-1054. doi: 10.1016/j.jbiomech.2004.05.035
- Duan XJ, Fan HQ, Wang FY, He P, Yang L. Application of 3D-printed customized guides in subtalar joint arthrodesis. Orthop Surg. 2019;11(3):405-413. doi: 10.1111/os.12464
- Rengier F, Mehndiratta A, von Tengg-Kobligk H, et al. 3D printing based on imaging data: Review of medical applications. Int J Comput Assist Radiol Surg. 2010;5(4):335-341. doi: 10.1007/s11548-010-0476-x
- Naftulin JS, Kimchi EY, Cash SS. Streamlined, inexpensive 3D printing of the brain and skull. PLoS One. 2015;10(8):e0136198. doi: 10.1371/journal.pone.0136198
- Cohen J, Reyes SA. Creation of a 3D printed temporal bone model from clinical CT data. Am J Otolaryngol. 2015;36(5):619-624. doi: 10.1016/j.amjoto.2015.02.012
- Lee J, Aoki H. Hydroxyapatite coating on Ti plate by a dipping method. Biomed Mater Eng. 1995;5(2):49-58. doi: 10.3233/BME-1995-5201
- Russotti GM, Johnson KA, Cass JR. Tibiotalocalcaneal arthrodesis for arthritis and deformity of the hind part of the foot. J Bone Joint Surg Am. 1988;70(9):1304-1307. doi: 10.2106/00004623-198870090-00004
- Chou LB, Mann RA, Yaszay B, et al. Tibiotalocalcaneal arthrodesis. Foot Ankle Int, 2000;21(10):804-808. doi: 10.1177/107110070002101002
- Bennett GL, Cameron B, Njus G, Saunders M, Kay DB. Tibiotalocalcaneal arthrodesis: A biomechanical assessment of stability. Foot Ankle Int. 2005;26(7):530-536. doi: 10.1177/107110070502600706
- Kile TA, Donnelly RE, Gehrke JC, Werner ME, Johnson KA. Tibiotalocalcaneal arthrodesis with an intramedullary device. Foot Ankle Int. 1994;15(12):669-673. doi: 10.1177/107110079401501208
- Berend ME, Glisson RR, Nunley JA. A biomechanical comparison of intramedullary nail and crossed lag screw fixation for tibiotalocalcaneal arthrodesis. Foot Ankle Int. 1997;18(10):639-643. doi: 10.1177/107110079701801007
- Lowery NJ, Joseph AM, Burns PR. Tibiotalocalcaneal arthrodesis with the use of a humeral locking plate. Clin Podiatr Med Surg. 2009;26(3):485-492. doi: 10.1016/j.cpm.2009.03.011
- Chiodo CP, Acevedo JI, Sammarco VJ, et al. Intramedullary rod fixation compared with blade-plate-and-screw fixation for tibiotalocalcaneal arthrodesis: A biomechanical investigation. J Bone Joint Surg Am. 2003;85-A(12): 2425-2428. doi: 10.2106/00004623-200312000-00022
- García-Alonso MC, Saldaña L, Vallés G, et al. In vitro corrosion behaviour and osteoblast response of thermally oxidised Ti6Al4V alloy. Biomaterials. 2003;24(1):19-26. doi: 10.1016/s0142-9612(02)00237-5
- Yuan W, He X, Zhou X, Zhu Y. Hydroxyapatite nanoparticle-coated 3D-printed porous Ti6Al4V and CoCrMo alloy scaffolds and their biocompatibility to human osteoblasts. J Nanosci Nanotechnol. 2018;18(6):4360-4365. doi: 10.1166/jnn.2018.15207
- Fernandes DJ, Marques RG, Elias CN. Influence of acid treatment on surface properties and in vivo performance of Ti6Al4V alloy for biomedical applications. J Mater Sci Mater Med. 2017;28(10):164. doi: 10.1007/s10856-017-5977-5
- Zhou L, You J, Wang Z, et al. 3D printing monetite-coated Ti-6Al-4V surface with osteoimmunomodulatory function to enhance osteogenesis. Biomater Adv. 2022;134:112562. doi: 10.1016/j.msec.2021.112562
- Bobbert FSL, Lietaert K, Eftekhari AA, et al. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties. Acta Biomater. 2017;53:572-584. doi: 10.1016/j.actbio.2017.02.024
- Li X, Wang C, Zhang W, Li Y. Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process. Mater Lett. 2009; 63(3-4):403-405. doi: 10.1016/j.matlet.2008.10.065
- Feng JY, Wei DX, Zhang PL, et al. Preparation of TiNbTaZrMo high-entropy alloy with tunable Young’s modulus by selective laser melting. J Manuf Process. 2023;85:160-165. doi: 10.1016/j.jmapro.2022.11.046
- Guo L, Naghavi SA, Wang Z, et al. On the design evolution of hip implants: A review. Mater Design. 2022;216:110552. doi: 10.1016/j.matdes.2022.110552
- Niedźwiedzki T, Dabrowski Z, Miszta H, Pawlikowski M. Bone healing after bone marrow stromal cell transplantation to the bone defect. Biomaterials. 1993;14(2): 115-121. doi: 10.1016/0142-9612(93)90221-m
- Xu L, Zhou J, Wang Z, Xiong J, Qiu Y, Wang S. Reconstruction of bone defect with allograft and retrograde intramedullary nail for distal tibia osteosarcoma. Foot Ankle Surg. 2018;24(2):149-153. doi: 10.1016/j.fas.2017.01.006
- Zhang C, Lin Y, Duan X. 3D printing-assisted supramalleolar osteotomy for ankle osteoarthritis. ACS Omega. 2022;7(46):42191-42198. doi: 10.1021/acsomega.2c04764
- Kim SE, Shim KM, Jang K, Shim J-H, Kang SS. Three-dimensional printing-based reconstruction of a maxillary bone defect in a dog following tumor removal. In Vivo. 2018;32(1):63-70. doi: 10.21873/invivo.11205
- Abar B, Kwon N, Allen NB, et al. Outcomes of surgical reconstruction using custom 3D-printed porous titanium implants for critical-sized bone defects of the foot and ankle. Foot Ankle Int. 2022;43(6):750-761. doi: 10.1177/10711007221077113
- Parthasarathy J. 3D modeling, custom implants and its future perspectives in craniofacial surgery. Ann Maxillofac Surg. 2014;4(1):9-18. doi: 10.4103/2231-0746.133065
- Martelli N, Serrano C, van den Brink H, et al. Advantages and disadvantages of 3-dimensional printing in surgery: A systematic review. Surgery. 2016;159(6): 1485-1500. doi: 10.1016/j.surg.2015.12.017
- 52. Duan X, Wang B, Yang L, Kadakia AR. Applications of 3D printing technology in orthopedic treatment. Biomed Res Int. 2021:9892456. doi: 10.1155/2021/9892456