Meniscus heterogeneity and 3D-printed strategies for engineering anisotropic meniscus
The meniscus is a fibrocartilaginous tissue of the knee joint that plays an important role in load transmission, shock absorption, joint stability maintenance, and contact stress reduction. Mild meniscal injuries can be treated with simple sutures, whereas severe injuries inevitably require meniscectomy. Meniscectomy destroys the mechanical microenvironment of the knee joint, leading to cartilage degeneration and osteoarthritis. Tissue engineering techniques, as a strategy with diverse sources and customizable and adjustable mechanical and biological properties, have emerged as promising approaches for the treatment of meniscal injuries and are represented by 3D printing. Notably, the heterogeneity of the meniscus, including its anatomical structure, cell phenotype, extracellular matrix, and biomechanical properties, is crucial for its normal function. Therefore, the construction of heterogeneous tissue-engineered menisci (TEM) has become a research hotspot in this field. In this review, we systematically summarize the heterogeneity of menisci and 3D-printed strategies for tissue-engineered anisotropic menisci. The manufacturing techniques, biomaterial combinations, surface functionalization, growth factors, and bioreactors related to 3D-printed strategies are introduced and a promising direction for the future research is proposed.
1. Syed S, Zaki MN, Lakshmanan J, et al., 2022, Knee meniscal retears after repair: A systematic review comparing diagnostic imaging modalities. Libyan J Med, 17: 2030024. https://doi.org/10.1080/19932820.2022.2030024
2. Gee SM, Posner M, 2021, Meniscus anatomy and basic science. Sports Med Arthrosc Rev, 29: e18–23. https://doi.org/10.1097/jsa.0000000000000327
3. Canciani B, Millar VR, Pallaoro M, et al., 2021, Testing hypoxia in pig meniscal culture: Biological role of the vascular-related factors in the differentiation and viability of neonatal meniscus. Int J Mol Sci, 22: 12465. https://doi.org/10.3390/ijms222212465
4. Logerstedt DS, Ebert JR, MacLeod TD, et al., 2022, Effects of and response to mechanical loading on the knee. Sports Med, 52: 201–235. https://doi.org/10.1007/s40279-021-01579-7
5. Morejon A, Mantero AM, Best TM, et al., 2022, Mechanisms of energy dissipation and relationship with tissue composition in human meniscus. Osteoarthritis Cartilage, 30: 605–612. https://doi.org/10.1016/j.joca.2022.01.001
6. Hart DA, Nakamura N, Shrive NG, 2021, Perspective: Challenges presented for regeneration of heterogeneous musculoskeletal tissues that normally develop in unique biomechanical environments. Front Bioeng Biotechnol, 9: 760273. https://doi.org/10.3389/fbioe.2021.760273
7. Perrone D, 1946, Upon a case of right internal meniscus injur; meniscectomy. Med Cir Farm, 8: 20–23.
8. Garrett WE Jr., Swiontkowski MF, Weinstein JN, et al., 2006, American Board of Orthopaedic Surgery Practice of the Orthopaedic Surgeon: Part-II, certification examination case mix. J Bone Joint Surg Am, 88: 660–667. https://doi.org/10.2106/00004623-200603000-00027
9. Sheffield R, 1978, Community health education fostered by hospital program. Hospitals, 52: 113–114, 118–119.
10. Brutico JM, Wright ML, Kamel SI, et al., 2021, The relationship between discoid meniscus and articular cartilage thickness: A quantitative observational study with MRI. Orthop J Sports Med, 9: 23259671211062256. https://doi.org/10.1177/23259671211062258
11. Poulsen E, Goncalves GH, Bricca A, et al., 2019, Knee osteoarthritis risk is increased 4-6 fold after knee injury-a systematic review and meta-analysis. Br J Sports Med, 53: 1454–1463. https://doi.org/10.1136/bjsports-2018-100022
12. Pattappa G, Johnstone B, Zellner J, et al., 2019, The importance of physioxia in mesenchymal stem cell chondrogenesis and the mechanisms controlling its response. Int J Mol Sci, 20: E484. https://doi.org/10.3390/ijms20030484
13. Travascio F, Jackson AR, 2017, The nutrition of the human meniscus: A computational analysis investigating the effect of vascular recession on tissue homeostasis. J Biomech, 61: 151–159. https://doi.org/10.1016/j.jbiomech.2017.07.019
14. Di Giancamillo A, Deponti D, Modina S, et al., 2017, Age-related modulation of angiogenesis-regulating factors in the swine meniscus. J Cell Mol Med, 21: 3066–3075. https://doi.org/10.1111/jcmm.13218
15. Monllau JC, Poggioli F, Erquicia J, et al., 2018, Magnetic resonance imaging and functional outcomes after a polyurethane meniscal scaffold implantation: Minimum 5-year follow-up. Arthroscopy, 34: 1621–1627. https://doi.org/10.1016/j.arthro.2017.12.019
16. Houck DA, Kraeutler MJ, Belk JW, et al., 2018, Similar clinical outcomes following collagen or polyurethane meniscal scaffold implantation: A systematic review. Knee Surg Sports Traumatol Arthrosc, 26: 2259–2269. https://doi.org/10.1007/s00167-018-4838-1
17. Perera K, Ivone R, Natekin E, et al., 2021, 3D bioprinted implants for cartilage repair in intervertebral discs and knee menisci. Front Bioeng Biotechnol, 9: 754113. https://doi.org/10.3389/fbioe.2021.754113
18. Dai W, Wu T, Leng X, et al., 2021, Advances in biomechanical and biochemical engineering methods to stimulate meniscus tissue. Am J Transl Res, 13: 8540–8560.
19. Kwon H, Brown WE, Lee CA, et al., 2019, Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat Rev Rheumatol, 15: 550–570. https://doi.org/10.1038/s41584-019-0255-1
20. Smith BD, Grande DA, 2015, The current state of scaffolds for musculoskeletal regenerative applications. Nat Rev Rheumatol, 11: 213–222. https://doi.org/10.1038/nrrheum.2015.27
21. Makris EA, Hadidi P, Athanasiou KA, 2011, The knee meniscus: Structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials, 32: 7411–7431. https://doi.org/10.1016/j.biomaterials.2011.06.037
22. Wang H, Wang Z, Liu H, et al., 2021, Three-dimensional printing strategies for irregularly shaped cartilage tissue engineering: Current state and challenges. Front Bioeng Biotechnol, 9: 777039. https://doi.org/10.3389/fbioe.2021.777039
23. Bryceland JK, Powell AJ, Nunn T, 2017, Knee menisci. Cartilage, 8: 99–104. https://doi.org/10.1177/1947603516654945
24. Fox AJ, Bedi A, Rodeo SA, 2012, The basic science of human knee menisci: Structure, composition, and function. Sports Health, 4: 340–351. https://doi.org/10.1177/1941738111429419
25. Li Q, Qu F, Han B, et al, 2017, Micromechanical anisotropy and heterogeneity of the meniscus extracellular matrix. Acta Biomater, 54: 356–366. https://doi.org/10.1016/j.actbio.2017.02.043
26. Han WM, Heo SJ, et al., 2016, Microstructural heterogeneity directs micromechanics and mechanobiology in native and engineered fibrocartilage. Nat Mater, 15: 477–484. https://doi.org/10.1038/nmat4520
27. Leslie BW, Gardner DL, McGeough JA, et al., 2000, Anisotropic response of the human knee joint meniscus to unconfined compression. Proc Inst Mech Eng H, 214: 631–635. https://doi.org/10.1243/0954411001535651
28. Coluccino L, Peres C, Gottardi R, et al., 2017, Anisotropy in the viscoelastic response of knee meniscus cartilage. J Appl Biomater Funct Mater, 15: e77–e83. https://doi.org/10.5301/jabfm.5000319
29. Gardner E, O’Rahilly R, 1968, The early development of the knee joint in staged human embryos. J Anat, 102: 289–299.
30. McDermott ID, Sharifi F, Bull AM, et al., 2004, An anatomical study of meniscal allograft sizing. Knee Surg Sports Traumatol Arthrosc, 12: 130–135. https://doi.org/10.1007/s00167-003-0366-7
31. Shaffer B, Kennedy S, Klimkiewicz J, et al., 2000, Preoperative sizing of meniscal allografts in meniscus transplantation. Am J Sports Med, 28: 524–533. https://doi.org/10.1177/03635465000280041301
32. Clark CR, Ogden JA, 1983, Development of the menisci of the human knee joint. Morphological changes and their potential role in childhood meniscal injury. J Bone Joint Surg Am, 65: 538–547. https://doi.org/10.2106/00004623-198365040-00018
33. Natsis K, Karasavvidis T, Kola D, et al., 2020, Meniscofibular ligament: How much do we know about this structure of the posterolateral corner of the knee: Anatomical study and review of literature. Surg Radiol Anat, 42: 1203–1208. https://doi.org/10.1007/s00276-020-02459-x
34. Guy S, Ferreira A, Carrozzo A, et al., 2022, Isolated meniscotibial ligament rupture: The medial meniscus “Belt Lesion. ”Arthrosc Tech, 11: e133–e138. https://doi.org/10.1016/j.eats.2021.09.013
35. Arner JW, Ruzbarsky JJ, Vidal AF, et al., 2022, Meniscus repair part 1: Biology, function, tear morphology, and special considerations. J Am Acad Orthop Surg, 30: e852–e858. https://doi.org/10.5435/jaaos-d-21-00993
36. Gee SM, Posner M, 2021, Meniscus anatomy and basic science. Sports Med Arthrosc Rev, 29: e18–e23.
https://doi.org/10.1097/jsa.0000000000000327
37. Abbadessa A, Crecente-Campo J, Alonso MJ, 2021, Engineering anisotropic meniscus: Zonal functionality and spatiotemporal drug delivery. Tissue Eng Part B Rev, 27: 133–154. https://doi.org/10.1089/ten.teb.2020.0096
38. Williams LB, Adesida AB, 2018, Angiogenic approaches to meniscal healing. Injury, 49: 467–472. https://doi.org/10.1016/j.injury.2018.01.028
39. Roughley PJ, 2006, The structure and function of cartilage proteoglycans. Eur Cell Mater, 12: 92–101.
40. Dye SF, Vaupel GL, Dye CC, 1998, Conscious neurosensory mapping of the internal structures of the human knee without intraarticular anesthesia. Am J Sports Med, 26: 773–777. https://doi.org/10.1177/03635465980260060601
41. Herwig J, Egner E, Buddecke E, 1984, Chemical changes of human knee joint menisci in various stages of degeneration. Ann Rheum Dis, 43: 635–640. https://doi.org/10.1136/ard.43.4.635
42. Proctor CS, Schmidt MB, Whipple RR, et al., 1989, Material properties of the normal medial bovine meniscus. J Orthop Res, 7: 771–782. https://doi.org/10.1002/jor.1100070602
43. Sweigart MA, Athanasiou KA, 2001, Toward tissue engineering of the knee meniscus. Tissue Eng, 7: 111–129. https://doi.org/10.1089/107632701300062697
44. McDevitt CA, Webber RJ, 1990, The ultrastructure and biochemistry of meniscal cartilage. Clin Orthop Relat Res, 252: 8–18.
45. Miller GK, 1996, A prospective study comparing the accuracy of the clinical diagnosis of meniscus tear with magnetic resonance imaging and its effect on clinical outcome. Arthroscopy, 12: 406–413. https://doi.org/10.1016/s0749-8063(96)90033-x
46. Li H, Wang X, Liu J, et al., 2021, Nanofiber configuration affects biological performance of decellularized meniscus extracellular matrix incorporated electrospun scaffolds. Biomed Mater, 16: 065013. https://doi.org/10.1088/1748-605x/ac28a5
47. Ghadially FN, Lalonde JM, Wedge JH, 1983, Ultrastructure of normal and torn menisci of the human knee joint. J Anat, 136: 773–791.
48. Ghadially FN, Thomas I, Yong N, 1978, Ultrastructure of rabbit semilunar cartilages. J Anat, 125: 499–517.
49. Le Graverand MP, Ou Y, Schield-Yee T, et al., 2001, The cells of the rabbit meniscus: Their arrangement, interrelationship, morphological variations and cytoarchitecture. J Anatomy, 198: 525–535. https://doi.org/10.1046/j.1469-7580.2000.19850525.x
50. Zhang X, Aoyama T, Ito A, et al., 2014, Regional comparisons of porcine menisci. J Orthop Res, 32: 1602–1611. https://doi.org/10.1002/jor.22687
51. Vanderploeg EJ, Wilson CG, Imler SM, et al., 2012, Regional variations in the distribution and colocalization of extracellular matrix proteins in the juvenile bovine meniscus. J Anat, 221: 174–186. https://doi.org/10.1111/j.1469-7580.2012.01523.x
52. Di Giancamillo A, Deponti D, Addis A, et al., 2014, Meniscus maturation in the swine model: Changes occurring along with anterior to posterior and medial to lateral aspect during growth. J Cell Mol Med, 18: 1964–1974. https://doi.org/10.1111/jcmm.12367
53. Zhang Z, Guo W, Gao S, et al., 2018, Native tissue-based strategies for meniscus repair and regeneration. Cell Tissue Res, 373: 337–350. https://doi.org/10.1007/s00441-017-2778-6
54. Pillai MM, Gopinathan J, Selvakumar R, et al., 2018, Human knee meniscus regeneration strategies: A review on recent advances. Curr Osteoporos Rep, 16: 224–235. https://doi.org/10.1007/s11914-018-0436-x
55. Seitz AM, Galbusera F, Krais C, et al., 2013, Stress-relaxation response of human menisci under confined compression conditions. J Mech Behav Biomed Mater, 26: 68–80. https://doi.org/10.1016/j.jmbbm.2013.09.012
56. Higashioka MM, Chen JA, Hu JC, et al., 20147, Building an anisotropic meniscus with zonal variations. Tissue Eng Part A, 20: 294–302. https://doi.org/10.1089/ten.tea.2013.0098
57. Ahmed AM, Burke DL, 1983, In-vitro measurement of static pressure distribution in synovial joints--part I: Tibial surface of the knee. J Biomech Eng, 105: 216–225. https://doi.org/10.1115/1.3138409
58. Shrive NG, O’Connor JJ, Goodfellow JW, 1978, Load-bearing in the knee joint. Clin Orthop Relat Res, 131: 279–287.
59. Kurosawa H, Fukubayashi T, Nakajima H, 1980, Load-bearing mode of the knee joint: Physical behavior of the knee joint with or without menisci. Clin Orthop Relat Res, 149, 283–290. https://doi.org/10.1097/00003086-198006000-00039
60. Kawahara Y, Uetani M, Fuchi K, et al., 1999, MR assessment of movement and morphologic change in the menisci during knee flexion. Acta Radiol, 40: 610–614. https://doi.org/10.3109/02841859909175596
61. Freutel M, Seitz AM, Galbusera F, et al., 2014, Medial meniscal displacement and strain in three dimensions under compressive loads: MR assessment: 3D Displacement and strain of the meniscus. J Magn Reson Imaging, 40: 1181–1188. https://doi.org/10.1002/jmri.24461
62. Beaupré A, Choukroun R, Guidouin R, et al., 1986, Knee menisci. Correlation between microstructure and biomechanics. Clin Orthop Relat Res, 208: 72–75. https://doi.org/10.1097/00003086-198607000-00016
63. Bullough PG, Munuera L, Murphy J, et al., 1970, The strength of the menisci of the knee as it relates to their fine structure. J Bone Joint Surg Br, 52: 564–567. https://doi.org/10.1302/0301-620x.52b3.564
64. Moyer JT, Priest R, Bouman T, et al., 2013, Indentation properties and glycosaminoglycan content of human menisci in the deep zone. Acta Biomater, 9: 6624–6629. https://doi.org/10.1016/j.actbio.2012.12.033
65. Gonzalez-Leon EA, Hu JC, Athanasiou KA, 2022, Yucatan minipig knee meniscus regional biomechanics and biochemical structure support its suitability as a large animal model for translational research. Front Bioeng Biotechnol, 10: 844416. https://doi.org/10.3389/fbioe.2022.844416
66. Skaggs DL, Warden WH, Mow VC, 1994, Radial Tie fibers influence the tensile properties of the bovine medial meniscus. J Orthop Res, 12: 176–185. https://doi.org/10.1002/jor.1100120205
67. Joshi MD, Suh JK, Marui T, et al., 1995, Interspecies variation of compressive biomechanical properties of the meniscus. J Biomed Mater Res, 29: 823–828. https://doi.org/10.1002/jbm.820290706
68. Danso EK, Mäkelä JT, Tanska P, et al., 2015, Characterization of site-specific biomechanical properties of human meniscus-importance of collagen and fluid on mechanical nonlinearities. J Biomech, 48: 1499–1507. https://doi.org/10.1016/j.jbiomech.2015.01.048
69. Berni M, Marchiori G, Cassiolas G, et al., 2021, Anisotropy and inhomogeneity of permeability and fibrous network response in the pars intermedia of the human lateral meniscus. Acta Biomater, 135: 393–402. https://doi.org/10.1016/j.actbio.2021.08.020
70. Upton ML, Hennerbichler A, Fermor B, et al., 2006, Biaxial strain effects on cells from the inner and outer regions of the meniscus. Connect Tissue Res, 47: 207–214. https://doi.org/10.1080/03008200600846663
71. Furumatsu T, Kanazawa T, Miyake Y, et al., 2012, Mechanical stretch increases Smad3-dependent CCN2 expression in inner meniscus cells: Stretch-induced CCN2 in the meniscus. J Orthop Res, 30: 1738–1745. https://doi.org/10.1002/jor.22142
72. Guo W, Liu S, Zhu Y, et al., 2015, Advances and prospects in tissue-engineered meniscal scaffolds for meniscus regeneration. Stem Cells Int, 2015: 517520. https://doi.org/10.1155/2015/517520
73. Vasiliadis AV, Koukoulias N, Katakalos K, 2021, Three-dimensional-printed scaffolds for meniscus tissue engineering: Opportunity for the future in the orthopaedic world. J Funct Biomater, 12: 69. https://doi.org/10.3390/jfb12040069
74. Yang Y, Chen Z, Song X, et al., 2017, Biomimetic anisotropic reinforcement architectures by electrically assisted nanocomposite 3D printing. Adv Mater, 29: 1605750. https://doi.org/10.1002/adma.201770076
75. Bahcecioglu G, Bilgen B, Hasirci N, et al., 2019, Anatomical meniscus construct with zone specific biochemical composition and structural organization. Biomaterials, 218: 119361. https://doi.org/10.1016/j.biomaterials.2019.119361
76. Din US, Sian TS, Deane CS, et al., 2021, Green tea extract concurrent with an oral nutritional supplement acutely enhances muscle microvascular blood flow without altering leg glucose uptake in healthy older adults. Nutrients, 13: 3895. https://doi.org/10.3390/nu13113895
77. Terpstra ML, Li J, Mensinga A, et al., 2022, Bioink with cartilage-derived extracellular matrix microfibers enables spatial control of vascular capillary formation in bioprinted constructs. Biofabrication, 14: 034104. https://doi.org/10.1088/1758-5090/ac6282
78. Kumar G, Tison CK, Chatterjee K, et al., 2011, The determination of stem cell fate by 3D scaffold structures through the control of cell shape. Biomaterials, 32: 9188–9196. https://doi.org/10.1016/j.biomaterials.2011.08.054
79. Neffe AT, Pierce BF, Tronci G, et al., 2015, One step creation of multifunctional 3D architectured hydrogels inducing bone regeneration. Adv Mater, 27: 1738–1744. https://doi.org/10.1002/adma.201404787
80. Zhang ZZ, Jiang D, Ding JX, et al., 2016, Role of scaffold mean pore size in meniscus regeneration. Acta Biomater, 43: 314–326. https://doi.org/10.1016/j.actbio.2016.07.050
81. Di Luca A, Szlazak K, Lorenzo-Moldero I, et al., 2016, Influencing chondrogenic differentiation of human mesenchymal stromal cells in scaffolds displaying a structural gradient in pore size. Acta Biomater, 36: 210–219. https://doi.org/10.1016/j.actbio.2016.03.014
82. van der Wal WA, Meijer DT, Hoogeslag RA, et al., 2022, Meniscal tears, posterolateral and posteromedial corner injuries, increased coronal plane, and increased sagittal plane tibial slope all influence anterior cruciate ligament-related knee kinematics and increase forces on the native and reconstructed anterior cruciate ligament: A Systematic review of cadaveric studies. Arthroscopy, 38: 1664–1688.e1. https://doi.org/10.1016/j.arthro.2021.11.044
83. Stocco TD, Silva MC, Corat MA, et al., 2022, Towards bioinspired meniscus-regenerative scaffolds: Engineering a novel 3D bioprinted patient-specific construct reinforced by biomimetically aligned nanofibers. Int J Nanomed, 17: 1111–1124. https://doi.org/10.2147/ijn.s353937
84. Cengiz IF, Maia FR, da Silva Morais A, et al., 2020, Entrapped in cage (EiC) scaffolds of 3D-printed polycaprolactone and porous silk fibroin for meniscus tissue engineering. Biofabrication, 12: 025028. https://doi.org/10.1088/1758-5090/ab779f
85. Li H, Li P, Yang Z, et al., 2021, Meniscal regenerative scaffolds based on biopolymers and polymers: Recent status and applications. Front Cell Dev Biol, 9: 661802. https://doi.org/10.3389/fcell.2021.661802
86. Bahcecioglu G, Hasirci N, Bilgen B, et al., 2019, A 3D printed PCL/hydrogel construct with zone-specific biochemical composition mimicking that of the meniscus. Biofabrication, 11: 025002. https://doi.org/10.1088/1758-5090/aaf707
87. Romanazzo S, Vedicherla S, Moran C, et al., 2018, Meniscus ECM-functionalised hydrogels containing infrapatellar fat pad-derived stem cells for bioprinting of regionally defined meniscal tissue. J Tissue Eng Regen Med, 12: e1826–e1835. https://doi.org/10.1002/term.2602
88. Li H, Liao Z, Yang Z, et al., 2021, 3D printed poly(ε- caprolactone)/meniscus extracellular matrix composite scaffold functionalized with kartogenin-releasing PLGA microspheres for meniscus tissue engineering. Front Bioeng Biotechnol, 9: 662381. https://doi.org/10.3389/fbioe.2021.662381
89. Hao L, Tianyuan Z, Zhen Y, et al., 2021, Biofabrication of cell-free dual drug-releasing biomimetic scaffolds for meniscal regeneration. Biofabrication, 14: 015001. https://doi.org/10.1088/1758-5090/ac2cd7
90. Gomes JM, Silva SS, Fernandes EM, et al., 2022, Silk fibroin/ cholinium gallate-based architectures as therapeutic tools. Acta Biomater, 147: 168–184. https://doi.org/10.1016/j.actbio.2022.05.020
91. Yu Q, Han F, Yuan Z, et al., 2022, Fucoidan-loaded nanofibrous scaffolds promote annulus fibrosus repair by ameliorating the inflammatory and oxidative microenvironments in degenerative intervertebral discs. Acta Biomater, 148: 73–89. https://doi.org/10.1016/j.actbio.2022.05.054
92. Xu B, Ye J, Fan BS, et al., 2023, Protein-spatiotemporal partition releasing gradient porous scaffolds and anti-inflammatory and antioxidant regulation remodel tissue engineered anisotropic meniscus. Bioact Mater, 20: 194–207. https://doi.org/10.1016/j.bioactmat.2022.05.019
93. Lammel AS, Hu X, Park SH, et al., 2010, Controlling silk fibroin particle features for drug delivery. Biomaterials, 31: 4583–4591. https://doi.org/10.1016/j.biomaterials.2010.02.024
94. Gou S, Chen N, Wu X, et al., 2022, Multi-responsive nanotheranostics with enhanced tumor penetration and oxygen self-producing capacities for multimodal synergistic cancer therapy. Acta Pharm Sin B, 12: 406–423. https://doi.org/10.1016/j.apsb.2021.07.001
95. Li Z, Wu N, Cheng J, et al., 2020, Biomechanically, structurally and functionally meticulously tailored polycaprolactone/ silk fibroin scaffold for meniscus regeneration. Theranostics, 10: 5090–5106. https://doi.org/10.7150/thno.44270
96. Pillai MM, Gopinathan J, Kumar RS, et al., 2018, Tissue engineering of human knee meniscus using functionalized and reinforced silk-polyvinyl alcohol composite three-dimensional scaffolds: Understanding the in vitro and in vivo behavior. J Biomed Mater Res A, 106: 1722–1731. https://doi.org/10.1002/jbm.a.36372
97. Spang MT, Christman KL, 2018, Extracellular matrix hydrogel therapies: In vivo applications and development. Acta Biomater, 68: 1–14. https://doi.org/10.1016/j.actbio.2017.12.019
98. Hu X, Xia Z, Cai K, 2022, Recent advances in 3D hydrogel culture systems for mesenchymal stem cell-based therapy and cell behavior regulation. J Mater Chem B, 10: 1486–1507. https://doi.org/10.1039/D1TB02537F
99. Yu Z, Lili J, Tiezheng Z, et al., 2019, Development of decellularized meniscus extracellular matrix and gelatin/ chitosan scaffolds for meniscus tissue engineering. Biomed Mater Eng, 30: 125–132. https://doi.org/10.3233/bme-191038
100. Gao S, Guo W, Chen M, et al., 2017, Fabrication and characterization of electrospun nanofibers composed of decellularized meniscus extracellular matrix and polycaprolactone for meniscus tissue engineering. J Mater Chem B, 5: 2273–2285. https://doi.org/10.1039/c6tb03299k
101. Shimomura K, Rothrauff BB, Tuan RS, 2017, Region-specific effect of the decellularized meniscus extracellular matrix on mesenchymal stem cell-based meniscus tissue engineering. Am J Sports Med, 45: 604–611. https://doi.org/10.1177/0363546516674184
102. Gao S, Yuan Z, Guo W, et al., 2017, Comparison of glutaraldehyde and carbodiimides to crosslink tissue engineering scaffolds fabricated by decellularized porcine menisci. Mater Sci Eng C Mater Biol Appl, 71: 891–900. https://doi.org/10.1016/j.msec.2016.10.074
103. Sun Y, Zhang Y, Wu Q, et al., 2021, 3D-bioprinting ready-to-implant anisotropic menisci recapitulate healthy meniscus phenotype and prevent secondary joint degeneration. Theranostics, 11: 5160–5173. https://doi.org/10.7150/thno.54864
104. Xia B, Kim DH, Bansal S, et al., 2021, Development of a decellularized meniscus matrix-based nanofibrous scaffold for meniscus tissue engineering. Acta Biomater, 128: 175–185. https://doi.org/10.1016/j.actbio.2021.03.074
105. Wu J, Xu J, Huang Y, et al., 2021, Regional-specific meniscal extracellular matrix hydrogels and their effects on cell-matrix interactions of fibrochondrocytes. Biomed Mater, 17: 014105. https://doi.org/10.1088/1748-605x/ac4178
106. Zhong G, Yao J, Huang X, et al., 2020, Injectable ECM hydrogel for delivery of BMSCs enabled full-thickness meniscus repair in an orthotopic rat model. Bioact Mater, 5: 871–879. https://doi.org/10.1016/j.bioactmat.2020.06.008
107. Guo W, Chen M, Wang Z, et al., 2021, 3D-printed cell-free PCL-MECM scaffold with biomimetic micro-structure and micro-environment to enhance in situ meniscus regeneration. Bioact Mater, 6: 3620–3633. https://doi.org/10.1016/j.bioactmat.2021.02.019
108. Vassiliou G, 1986, Current concepts of cervical fractures of the teeth and their treatment. Stomatologia (Athenai), 43: 399–411.
109. Rothrauff BB, Shimomura K, Gottardi R, et al., 2017, Anatomical region-dependent enhancement of 3-dimensional chondrogenic differentiation of human mesenchymal stem cells by soluble meniscus extracellular matrix. Acta Biomater, 49: 140–151. https://doi.org/10.1016/j.actbio.2016.11.046
110. Zhang CY, Fu CP, Li XY, et al., 2022, Three-dimensional bioprinting of decellularized extracellular matrix-based bioinks for tissue engineering. Molecules, 27: 3442. https://doi.org/10.3390/molecules27113442
111. Szojka A, Lalh K, Andrews SH, et al., 2017, Biomimetic 3D printed scaffolds for meniscus tissue engineering. Bioprinting, 8: 1–7. https://doi.org/10.1016/j.bprint.2017.08.001
112. Sooriyaarachchi D, Wu J, Feng A, et al., 2019, Hybrid fabrication of biomimetic meniscus scaffold by 3D printing and parallel electrospinning. Proc Manuf, 34: 528–534. https://doi.org/10.1016/j.promfg.2019.06.216
113. Lan X, Ma Z, Szojka AR, et al., 2021, TEMPO-oxidized cellulose nanofiber-alginate hydrogel as a bioink for human meniscus tissue engineering. Front Bioeng Biotechnol, 9: 766399. https://doi.org/10.3389/fbioe.2021.766399
114. Costa JB, Park J, Jorgensen AM, et al., 2020, 3D bioprinted highly elastic hybrid constructs for advanced fibrocartilaginous tissue regeneration. Chem Mater, 32: 8733–8746. https://doi.org/10.1021/acs.chemmater.0c03556
115. Jian Z, Zhuang T, Qinyu T, et al., 2021, 3D bioprinting of a biomimetic meniscal scaffold for application in tissue engineering. Bioact Mater, 6: 1711–1726. https://doi.org/10.1016/j.bioactmat.2020.11.027
116. Gupta S, Sharma A, Kumar JV, et al., 2020, Meniscal tissue engineering via 3D printed PLA monolith with carbohydrate based self-healing interpenetrating network hydrogel. Int J Biol Macromol, 162: 1358–13571. https://doi.org/10.1016/j.ijbiomac.2020.07.238
117. Deng X, Chen X, Geng F, et al., 2021, Precision 3D printed meniscus scaffolds to facilitate hMSCs proliferation and chondrogenic differentiation for tissue regeneration. J Nanobiotechnology, 19: 400. https://doi.org/10.1186/s12951-021-01141-7
118. Zhou ZX, Chen YR, Zhang JY, et al., 2020, Facile strategy on hydrophilic modification of poly(ε-caprolactone) scaffolds for assisting tissue-engineered meniscus constructs in vitro. Front Pharmacol, 11: 471. https://doi.org/10.3389/fphar.2020.00471
119. Rodeo SA, Monibi F, Dehghani B, et al., 2020, Biological and mechanical predictors of meniscus function: Basic science to clinical translation. J Orthop Res, 38: 937–945. https://doi.org/10.1002/jor.24552
120. Mononen ME, Jurvelin JS, Korhonen RK, 2013, Effects of radial tears and partial meniscectomy of lateral meniscus on the knee joint mechanics during the stance phase of the gait cycle--a 3D finite element study. J Orthop Res, 31: 1208–1217. https://doi.org/10.1002/jor.22358
121. Halonen KS, Mononen ME, Jurvelin JS, et al., 2014, Deformation of articular cartilage during static loading of a knee joint--experimental and finite element analysis. J Biomech, 47: 2467–2474. https://doi.org/10.1016/j.jbiomech.2014.04.013
122. Khoshgoftar M, Torzilli PA, Maher SA, 2018, Influence of the pericellular and extracellular matrix structural properties on chondrocyte mechanics. J Orthop Res, 36: 721–729. https://doi.org/10.1002/jor.23774
123. Yang N, Nayeb-Hashemi H, Canavan PK, 2009, The combined effect of frontal plane tibiofemoral knee angle and meniscectomy on the cartilage contact stresses and strains. Ann Biomed Eng, 37: 2360–2372. https://doi.org/10.1007/s10439-009-9781-3
124. Peña E, Calvo B, Martínez MA, et al., 2005, Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics. Clin Biomech (Bristol, Avon), 20: 498–507. https://doi.org/10.1016/j.clinbiomech.2005.01.009
125. Scotti C, Hirschmann MT, Antinolfi P, et al., 2013, Meniscus repair and regeneration: Review on current methods and research potential. Eur Cell Mater, 26: 150–170. https://doi.org/10.22203/ecm.v026a11
126. Zhang ZZ, Chen YR, Wang SJ, et al., 2019, Orchestrated biomechanical, structural, and biochemical stimuli for engineering anisotropic meniscus. Sci Transl Med, 11: eaao0750. https://doi.org/10.1126/scitranslmed.aao0750
127. Longobardi L, O’Rear L, Aakula S, et al., 2006, Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J Bone Miner Res, 21: 626–636. https://doi.org/10.1359/jbmr.051213
128. Worster AA, Nixon AJ, Brower-Toland BD, et al., 2000, Effect of transforming growth factor beta1 on chondrogenic differentiation of cultured equine mesenchymal stem cells. Am J Vet Res, 61: 1003–1010. https://doi.org/10.2460/ajvr.2000.61.1003
129. Lee CH, Shah B, Moioli EK, et al., 2015, CTGF directs fibroblast differentiation from human mesenchymal stem/ stromal cells and defines connective tissue healing in a rodent injury model. J Clin Invest, 125: 3992. https://doi.org/10.1172/jci84508
130. Furumatsu T, Kanazawa T, Miyake Y, et al., 2012, Mechanical stretch increases Smad3-dependent CCN2 expression in inner meniscus cells. J Orthop Res, 30: 1738–1745. https://doi.org/10.1002/jor.22142
131. Lee CH, Rodeo SA, Fortier LA, et al., 2014, Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep. Sci Transl Med, 6: 266ra171. https://doi.org/10.1126/scitranslmed.3009696
132. Nakagawa Y, Fortier LA, Mao JJ, et al., 2019, Long-term evaluation of meniscal tissue formation in 3-dimensional-printed scaffolds with sequential release of connective tissue growth factor and TGF-β3 in an ovine model. Am J Sports Med, 47: 2596–25607. https://doi.org/10.1177/0363546519865513