AccScience Publishing / IJB / Volume 4 / Issue 2 / DOI: 10.18063/ijb.v4i2.151
Cite this article
61
Download
1703
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
PERSPECTIVE ARTICLE

3D bioprinting processes: A perspective on classification and terminology 

Jia Min Lee1 Swee Leong Sing1 Miaomiao Zhou1 Wai Yee Yeong*
Show Less
1 Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore
© Invalid date by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

This article aims to provide further classification of cell-compatible bioprinting processes and examine the concept of 3D bioprinting within the general technology field of 3D printing. These technologies are categorized into four distinct process categories, namely material jetting, vat photopolymerization, material extrusion and free-form spatial printing. Discussion will be presented on the definition of classification with example of techniques grouped under the same category. The objective of this article is to establish a basic framework for standardization of process terminology in order to accelerate the implementation of bioprinting technologies in research and commercial landscape. 

Keywords
additive manufacturing
3D bioprinting
material jetting
material extrusion
vat photopolymerization
bioassembly
References

[1]Groll J, Boland T, Blunk T, et al., 2016, Biofabrication: Reappraising the definition of an evolving field. Biofabrication, 8(1): 013001. http://dx.doi.org/10.1088/1758 5090/8/1/013001
[2]Moroni L, Boland T, Burdick J A, et al., 2017, Biofabrication: A guide to technology and terminology. Trends Biotechnol, 36(4): 384–402. http://dx.doi.org/10.1016/j.tibtech.2017.10.0153. 
[3]Murphy S V, Atala A, 2014, 3D bioprinting of tissues and organs. Nat Biotechnol, 2014. 32(8): 773–785. http://dx.doi.org/10.1038/nbt.2958
[4]Mandrycky C, Wang C, Kim K, et al., 2016, 3D bioprinting for engineering complex tissues. Biotechnol Adv, 34(4): 422–434. http://dx.doi.org/10.1016/j.biotechadv.2015.12.011
[5]Zhang Y S, Yue K, Aleman J, et al., 2017, 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng, 45(1): 148–163. http://dx.doi.org/10.1007/s10439-016-1612-8
[6]Suntornnond R, An J, Chua C K, 2017, Bioprinting of thermoresponsive hydrogels for next generation tissue engineering: A review. Macromol Mater Eng, 302: 1600266. http://dx.doi.org/10.1002/mame.201600266
[7]Gudapati H, Dey M,  Ozbolat I, 2016, A comprehensive review on droplet-based bioprinting: Past, present and future. Biomaterials, 102: 20–42. http://dx.doi.org/10.1016/j.biomaterials.2016.06.012
[8]Vijayavenkataraman S, Lu W F, Fuh J Y, 2016, 3D bioprinting of skin: A state-of-the-art review on modelling, materials, and processes. Biofabrication, 8(3): 032001. http://dx.doi.org/10.1088/1758-5090/8/3/032001
[9]Boland T,  Ovslanikov A, Chickov B N, et al., 2007, Rapid prototyping of artificial tissues and medical devices. Adv Mater Process, 165(4): 51–53.
[10]Yap Y L, Wang C C, Sing S L, et al., 2017, Material jetting additive manufacturing: An experimental study using designed metrological benchmarks. Precis Eng, 50: 275–285. http://dx.doi.org/10.1016/j.precisioneng.2017.05.015
[11]Derby B, 2018, Bioprinting: Inkjet printing proteins and hybrid cell-containing materials and structures. J Mater Chem, 18(47): 5717. http://dx.doi.org/10.1039/B807560C
[12]Fang Y, Frampton J P, S Raghavan S, et al., 2012, Rapid generation of multiplexed cell cocultures using acoustic droplet ejection followed by aqueous two-phase exclusion patterning. Tissue Eng Part C Methods,  18(9): 647–657. http://dx.doi.org/10.1089/ten.tec.2011.0709
[13]Eagles P A , Qureshi A N,  Jayasinghe S N, 2006, Electrohydrodynamic jetting of mouse neuronal cells. Biochem J, 394(Pt 2): 375–378. http://dx.doi.org/10.1042/BJ20051838
[14]Jayasinghe S N,  Qureshi A, Eagles P A, 2006, Electrohydrodynamic jet processing: An advanced electric-field-driven jetting phenomenon for processing living cells. Small, 2(2): 216–219. http://dx.doi.org/10.1002/smll.200500291
[15]Abeyewickreme A,  Kwok A, Mcewan J R, et al., 2009, Bio-electrospraying embryonic stem cells: Interrogating cellular viability and pluripotency. Integr Biol (Camb), 2009. 1(3): 260–266. http://dx.doi.org/10.1039/b819889f
[16]Guillemot  F, Guillotin B,  Fontaine A, et al., 2011, Laser-assisted bioprinting to deal with tissue complexity in regenerative medicine. Mrs Bulletin, 36(12): 1015–1019. http://dx.doi.org/10.1557/mrs.2011.272
[17]Gaebel, R, Ma N, Liu J, et al., 2011, Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials, 32(35): 9218–9230. http://dx.doi.org/10.1016/j.biomaterials.2011.08.071
[18]Xu C, 2014, Freeform vertical and horizontal fabrication of alginate-based vascular-like tubular constructs using inkjetting. Journal of Manufacturing Science and Engineering, 136(6): 061020. http://dx.doi.org/10.1115/1.4028578
[19]Xu C, Zhang M, Huang Y, et al., 2014, Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink. Langmuir, 30(30): 9130–9138. http://dx.doi.org/10.1021/la501430x
[20]De Coppi P, Bartsch G, Siddiquiet M M, et al., 2007, Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol, 25(1): 100. http://dx.doi.org/10.1038/nbt1274
[21]Michael S, Sorg H, Pecket C T, et al., 2013, Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PloS One, 8(3): e57741. 10.1371/journal.pone.0057741
[22]Demirci U, Montesano G, 2007, Single cell epitaxy by acoustic picolitre droplets. Lab Chip, 7(9): 1139–1145. http://dx.doi.org/10.1039/b704965j
[23]Cui H, Nowicki M, Fisher J P, et al., 2017, 3D bioprinting for organ regeneration. Adv Healthc Mater, 6(1): 1601118. http://dx.doi.org/10.1002/adhm.201601118
[24]Guillotin B, Souquet A S, Duocastella M, et al., 2010, Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials, 2010. 31(28): 7250–7256. http://dx.doi.org/10.1016/j.biomaterials.2010.05.055
[25]Murphy S V,  Atala A, 2014, 3D bioprinting of tissues and organs. Nat Biotechnol, 32(8): 773. http://dx.doi.org/10.1038/nbt.2958
[26]Tan E Y S, Yeong W Y, 2015, Concentric bioprinting of alginate-based tubular constructs using multi-nozzle extrusion-based technique. International Journal of Bioprinting,1(1): 49–56.
[27]Agarwala S, Lee J M, Ng W L, et al., 2018, A novel 3D bioprinted flexible and biocompatible hydrogel bioelectronic platform. Biosens Bioelectron, 102: 365–371. http://dx.doi.org/10.1016/j.bios.2017.11.039
[28]Lee J M, Sing S L, Tan E Y S, et al., 2016, Bioprinting in cardiovascular tissue engineering: A review. International Journal of Bioprinting, 2(2): 27–36.
[29]Ahn S, Lee H,  Kim G, 2013, Functional cell-laden alginate scaffolds consisting of core/shell struts for tissue regeneration. Carbohydr Polym, 98(1): 936–942. http://dx.doi.org/10.1016/j.carbpol.2013.07.008
[30]Billiet T, Gevaert E, Schryver T D, et al., 2014, The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials, 35(1): 49–62. http://dx.doi.org/10.1016/j.biomaterials.2013.09.078.
[31]Duan B, Hockaday L A, Kang K H, et al., 2013, 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A, 101(5): 1255–1264. http://dx.doi.org/10.1002/jbm.a.34420.
[32]Fedorovich N E, Wijnberg H M, Dhert W J, et al., 2011, Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells. Tissue Eng Part A, 17(15–16): 2113–2121. http://dx.doi.org/10.1089/ten.TEA.2011.0019
[33]Huang Y, He K, Wang X, 2013, Rapid prototyping of a hybrid hierarchical polyurethane-cell/hydrogel construct for regenerative medicine. Mater Sci Eng C Mater Biol Appl, 33(6): 3220–3229. http://dx.doi.org/10.1016/j.msec.2013.03.048
[34]Lee H, Ahn S H, Bonassar L J, et al., 2013, Cell-laden poly(varepsilon caprolactone)/alginate hybrid scaffolds fabricated by an aerosol cross-linking process for obtaining homogeneous cell distribution: Fabrication, seeding efficiency, and cell proliferation and distribution. Tissue Eng Part C Methods, 19(10): 784–793. http://dx.doi.org/10.1089/ten.TEC.2012.0651
[35]Ozbolat I T, Chen H, Yu Y, 2014, Development of ‘Multi-arm Bioprinter’ for hybrid biofabrication of tissue engineering constructs. Robot Comput Integr Manuf, 30(3): 295–304. http://dx.doi.org/10.1016/j.rcim.2013.10.005
[36]Shim, J H, Lee J S, Kim J Y, et al., 2012, Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng, 22(8): 085014. http://dx.doi.org/10.1088/0960-1317/22/8/085014
[37]Snyder J E, Hamid Q, Wang C, et al., 2011, Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip. Biofabrication, 3(3): 034112. http://dx.doi.org/10.1088/1758-5082/3/3/034112
[38]Wang X H, Yan Y Y, Xiong Z, et al., 2006, Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng, 12(1): 83–90. http://dx.doi.org/10.1089/ten.2006.12.83
[39]Skardal A, Zhang J, Prestwich G D, 2010, Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials, 31(24): 6173–6181. http://dx.doi.org/10.1016/j.biomaterials.2010.04.045
[40]Visser J, Peters B, Burger T J, et al., 2013, Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication, 5(3): 035007. http://dx.doi.org/10.1088/1758-5082/5/3/035007
[41]Lee W, Lee V K, Polio S, et al., 2009, Three-dimensional cell-hydrogel printer using electromechanical microvalve for tissue engineering. in Solid-state sensors, actuators and microsystems conference. TRANSDUCERS 2009. http://dx.doi.org/10.1109/SENSOR.2009.5285591
[42]Shi P, Tan E Y S, Yeong W Y, et al., 2018, A bilayer photoreceptor-retinal tissue model with gradient cell density design: A study of microvalve-based bioprinting. J Tissue Eng Regen Med, 12(5): 1297–1306. http://dx.doi.org/10.1002/term.2661
[43]Ng W L, Tan J Q J, Yeong W Y, et al., 2018, Proof-of-concept: 3D bioprinting of pigmented human skin constructs. Biofabrication, 10(2): 025005. http://dx.doi.org/10.1088/1758-5090/aa9e1e
[44]Liliang O, Yao R, Zhao Y, et al., 2016, Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication, 8(3): 035020. http://dx.doi.org/10.1088/1758-5090/8/3/035020
[45]Lee H, Ahn S H, Bonassar L J, et al., 2013, Cell-laden poly(varepsilon-caprolactone)/alginate hybrid scaffolds fabricated by an aerosol cross-linking process for obtaining homogeneous cell distribution: Fabrication, seeding efficiency, and cell proliferation and distribution. Tissue Eng Part C Methods, 19(10): 784–793. http://dx.doi.org/10.1089/ten.TEC.2012.0651
[46]Schuurman W, Khristov V, Pot M W, et al., 2011, Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication, 3(2): 021001. http://dx.doi.org/10.1088/1758-5082/3/2/021001
[47]Shim J H, Kim J Y, Park M, et al., 2011, Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology. Biofabrication, 3(3): 034102. http://dx.doi.org/10.1088/1758-5082/3/3/034102
[48]Xu T, W Zhao W, Zhu J M, et al., 2013, Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials, 2013. 34(1): 130–139. http://dx.doi.org/10.1016/j.biomaterials.2012.09.035
[49]Shim J H, Lee J S, Kim J Y, et al., 2012, Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng, 22(8): 085014. http://dx.doi.org/10.1088/0960-1317/22/8/085014
[50]Pati F, J Jang J, Ha D H, et al., 2014, Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun, 5: 3935. http://dx.doi.org/10.1038/ncomms4935
[51]Kang H W, Lee S J, Ko I K, et al., 2016, A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol, 34(3): 312–319. http://dx.doi.org/10.1038/nbt.3413
[52]Webb B, Doyle B J, 2017, Parameter optimization for 3D bioprinting of hydrogels. Bioprinting, 8: 8–12. http://dx.doi.org/10.1016/j.bprint.2017.09.001
[53]Lee J M, Yeong W Y, 2015, A preliminary model of time-pressure dispensing system for bioprinting based on printing and material parameters. Virtual Phys Prototyp, 10(1): 3–8. http://dx.doi.org/10.1080/17452759.2014.979557
[54]Ozbolat I T, Chen H, Yu Y, 2014, Development of ‘Multi-arm Bioprinter’ for hybridbiofabrication of tissue engineering constructs. Robot Comput Integr Manuf, 30(3): 295–304. http://dx.doi.org/10.1016/j.rcim.2013.10.005
[55]Ahn S, Lee H, Kim G, 2013, Functional cell-laden alginate scaffolds consisting of core/shell struts for tissue regeneration. Carbohydr Polym, 98(1): 936–942. http://dx.doi.org/10.1016/j.carbpol.2013.07.008
[56]Huang Y, He K, Wang X, 2013, Rapid prototyping of a hybrid hierarchical polyurethane-cell/hydrogel construct for regenerative medicine. Mater Sci Eng C Mater Biol Appl, 33(6): 3220–3229. http://dx.doi.org/10.1016/j.msec.2013.03.048
[57]Duan B, Hockaday L A, Kang K H, et al., 2013, 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A, 101(5): 1255–1264. http://dx.doi.org/10.1002/jbm.a.34420
[58]Fedorovich N E, Wijnberg H M, Dhert W J, et al., 2011, Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells. Tissue Eng Part A, 17(15–16): 2113–2121. http://dx.doi.org/10.1089/ten.TEA.2011.0019
[59]Wang X H, Yan Y Y, Xiong Z, et al., 2006, Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng, 12(1): 83–90. http://dx.doi.org/10.1089/ten.2006.12.83
[60]Soman P, Chung P H, Zhang A P, et al., 2013, Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels. Biotechnol Bioeng, 110(11): 3038–3047. http://dx.doi.org/10.1002/bit.24957
[61]Zhu W, Qu X, Zhu J, et al., 2017, Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials, 124: 106–115. http://dx.doi.org/10.1016/j.biomaterials.2017.01.042
[62]Gauvin R,  Chen Y C, Jin W L, et al., 2012, Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials, 33(15): 3824–3834. http://dx.doi.org/10.1016/j.biomaterials.2012.01.048
[63]Zongjie W, Abdulla R, Parker B, et al., 2015, A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication, 7(4): 045009. http://dx.doi.org/10.1088/1758-5090/7/4/045009
[64]Shanjani Y, Pan C C, Elomaa L, et al., 2015, A novel bioprinting method and system for forming hybrid tissue engineering constructs. Biofabrication, 7(4): 045008. http://dx.doi.org/10.1088/1758-5090/7/4/045008
[65]Yu S L, Lee S K, 2017, Ultraviolet radiation: DNA damage, repair, and human disorders. Mol Cell Toxicol, 13(1): 21–28. http://dx.doi.org/10.1007/s13273-017-0002-0
[66]de Gruijil F R, v. Kranen H J,  Mullenders L H F, 2001, UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer. J Photochem Photobiol B, 63(1–3): 19–27.
[67]Ma X,  Qu X, Zhu W, et al., 2016, Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci U S A, 113(8): 2206–2211. http://dx.doi.org/10.1073/pnas.1524510113
[68]Odde D J, Renn M J, 1999, Laser-guided direct writing for applications in biotechnology. Trends Biotechnol, 17(10): 385–389.
[69]Mironov V, Khesuani Y D, Bulanova E A, et al., 2016, Patterning of tissue spheroids biofabricated from human fibroblasts on the surface of electrospun polyurethane matrix using 3D bioprinter. Observationum Medicarum, 2(1): 8. http://dx.doi.org/10.18063/IJB.2016.01.007
[70]Norotte C, Marga F S, Niklason L E, et al., 2009, Scaffold-free vascular tissue engineering using bioprinting. Biomaterials, 30(30): 5910–5917. http://dx.doi.org/10.1016/j.biomaterials.2009.06.034
[71]Ludwig G, Kartmann S, Troendle K, et al., 2017, Large scale production and controlled deposition of single HUVEC spheroids for bioprinting applications. Biofabrication,  9(2): 025027. http://dx.doi.org/10.1088/1758-5090/aa7218
[72]Blakely A M,  Manning K L, Tripathi A, et al., 2015, Bio-pick, place, and perfuse: A new instrument for three-dimensional tissue engineering. Tissue Eng Part C Methods,21(7): 737–746. http://dx.doi.org/10.1089/ten.TEC.2014.0439
[73]Itoh M, K Nakayama K, Noguchi R, et al., 2015, Scaffold-free tubular tissues created by a bio-3D printer undergo remodeling and endothelialization when implanted in rat aortae. PLOS ONE, 10(9): e0136681. http://dx.doi.org/10.1371/journal.pone.0145971
[74]Ong C S, Fukunishi T, Zhang H, et al., 2017, Biomaterial-free three-dimensional bioprinting of cardiac tissue using human induced pluripotent stem cell derived cardiomyocytes. Sci Rep, 7(1): 4566. http://dx.doi.org/10.1038/s41598-017-05018-4
[75]Blanche C I, Cui F, Tripathi A, et al., 2016, The bio-gripper: A fluid-driven micro-manipulator of living tissue constructs for additive bio-manufacturing. Biofabrication, 8(2): 025015. http://dx.doi.org/10.1088/1758-5090/8/2/025015
[76]Fattah A R A, Meleca E, Mishriki S, et al., 2016, In situ 3D label-free contactless bioprinting of cells through diamagnetophoresis. ACS Biomater Sci Eng, 2(12): 2133–2138. http://dx.doi.org/10.1021/acsbiomaterials.6b00614
[77]Souza G,  Tseng H, Gage J A, et al., 2017, Magnetically bioprinted human myometrial 3D cell rings as a model for uterine contractility. Int J Mol Sci, 18(4): 683. http://dx.doi.org/10.3390/ijms18040683
[78]Tseng H, Gage J A, Haisler W L, et al., 2016, A high-throughput in vitro ring assay for vasoactivity using magnetic 3D bioprinting. Sci Rep, 6: 30640. 10.1038/srep30640
[79]Whatley B R, Li X, Zhang N, et al., 2014, Magnetic-directed patterning of cell spheroids. J Biomed Mater Res A, 102(5): 1537–1547. http://dx.doi.org/10.1002/jbm.a.34797
[80]Goh G D, Dikshit V, Nagalingam A P, et al., 2018, Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics. Mater Design, 137: 79–89. http://dx.doi.org/10.1016/j.matdes.2017.10.021

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing