AccScience Publishing / IJB / Volume 12 / Issue 1 / DOI: 10.36922/IJB025310310
RESEARCH ARTICLE

Black phosphorus scaffolds for efficient bone defect repair via anti-inflammatory, osteogenic, and photothermal therapeutic effects

Peng Xue1†* Hongzhong Xi2† Wei Zhang1 Anlong Liu1 Aoyun Hu1 Chenjian Peng1 Jianning Zhao1* Jun Wang1*
Show Less
1 Department of Orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
2 Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
†These authors contributed equally to this work.
IJB 2026, 12(1), 586–606; https://doi.org/10.36922/IJB025310310
Received: 31 July 2025 | Accepted: 22 December 2025 | Published online: 24 December 2025
(This article belongs to the Special Issue 3D Printing for Advancing Orthopedic Applications)
© 2025 by the Author(s).. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Bone defects pose a high risk of non-union and permanent disability, making effective bone regeneration a critical focus in the development of bone repair materials. Current research primarily emphasizes enhancing the single osteogenic function of bone repair materials, while neglecting the impact of the complex microenvironment in bone defect areas. This has resulted in the failure of many developed bone repair materials to achieve effective in vivo bone regeneration. In this study, a multifunctional near-infrared light-responsive black phosphorus (BP) bone repair scaffold was fabricated via low-temperature deposition 3D printing. In vitro characterization demonstrated that the scaffold possesses a cancellous bone-like structure, moderate compressive strength, and cytocompatibility, with the ability to promote osteogenesis under inflammatory conditions. In vivo studies further confirmed its favorable photothermal responsiveness, enabling photothermal therapy (PTT) to accelerate bone regeneration while reducing inflammation in the defect area. These findings indicate that the multifunctional BP scaffold achieves superior bone repair outcomes through synergistic effects of anti-inflammation, promotion of osteogenic differentiation, and PTT, thereby improving the success rate of defect repair. Moreover, the simple fabrication process and satisfactory therapeutic efficacy of this multifunctional BP scaffold highlight its high potential for clinical translation.

Graphical abstract
Keywords
Anti-inflammation
Black phosphorus
Bone repair scaffold
Osteogenic differentiation
Photothermal therapy
Funding
This research was funded by the Eaglet Take-off Project of Jiangsu Provincial Association of Chinese Medicine (No. CYTF2024022) and the Feihong Plan of Nanjing TCM Hospital Affiliated to Nanjing University of Chinese Medicine (No. FHJH202405).
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this article.
References
  1. Wang J, Wu Y, Li G, et al. Engineering large-scale self-mineralizing bone organoids with bone matrix-inspired hydroxyapatite hybrid bioinks. Adv Mater. 2024;36(30):e2309875. doi: 10.1002/adma.202309875
  2. Chen H, Xi H, Guo M, et al. PLGA/β-TCP/ICT composite scaffold incorporating MXene (Ti3C2Tx) promotes osteogenesis through near-infrared-mediated mild photothermal therapy. Mater Des. 2024;244:113083. doi: 10.1016/j.matdes.2024.113083
  3. Chen H, Tan X, Fu J, et al. γ-Fe2O3/polydopamine/ TiO2 nano-porous array composite coating (FPTCC) to modulate antibacterial, osteogenesis, and osseointegration through photothermal-magnetic response. Mater Des. 2024;248:113516. doi: 10.1016/j.matdes.2024.113516
  4. Hu X, Chen J, Yang S, et al. 3D printed multifunctional biomimetic bone scaffold combined with TP-Mg nanoparticles for the infectious bone defects repair. Small. 2024;20(40):e2403681. doi: 10.1002/smll.202403681
  5. Xie C, Ye J, Liang R, et al. Advanced strategies of biomimetic tissue-engineered grafts for bone regeneration. Adv Healthc Mater. 2021;10(14):e2100408. doi: 10.1002/adhm.202100408
  6. Huang Y, Wan X, Su Q, et al. Ultrasound-activated piezo-hot carriers trigger tandem catalysis coordinating cuproptosis-like bacterial death against implant infections. Nat Commun. 2024;15(1):1643. doi: 10.1038/s41467-024-45619-y
  7. Robin M, Mouloungui E, Castillo Dali G, et al. Mineralized collagen plywood contributes to bone autograft performance. Nature. 2024;636(8041):100-107. doi: 10.1038/s41586-024-08208-z
  8. Shen X, Zhang Z, Cheng C, et al. Bone regeneration and antibacterial properties of calcium-phosphorus coatings induced by gentamicin-loaded polydopamine on magnesium alloys. Biomed Technol. 2024;5:87-101. doi: 10.1515/bmt-2023-0104
  9. Liu X, Zhou J, Chen M, et al. 3D-printed biomimetic bone scaffold loaded with lyophilized concentrated growth factors promotes bone defect repair by regulation the VEGFR2/PI3K/AKT signaling pathway. Int J Biol Macromol. 2024;282(Pt 2):136938. doi: 10.1016/j.ijbiomac.2024.136938
  10. Liang W, Zhou C, Liu X, Pan B, Qian Y, Yang W. Current status of nano-embedded growth factors and stem cells delivery to bone for targeted repair and regeneration. J Orthop Transl. 2025;50:257-273. doi: 10.1016/j.jot.2024.12.003
  11. Zhao R, Han F, Yu Q, et al. A multifunctional scaffold that promotes the scaffold-tissue interface integration and rescues the ROS microenvironment for repair of annulus fibrosus defects. Bioact Mater. 2024;41:257-270. doi: 10.1016/j.bioactmat.2024.06.025
  12. Sun X, Gao Y, Li Z, He J, Wu Y. Magnetic responsive hydroxyapatite scaffold modulated macrophage polarization through PPAR/JAK-STAT signaling and enhanced fatty acid metabolism. Biomaterials. 2023;295: 122051. doi: 10.1016/j.biomaterials.2023.122051
  13. Xue P, Tan X, Xi H, et al. Low-temperature deposition 3D printing biotin-doped PLGA/β-TCP scaffold for repair of bone defects in osteonecrosis of femoral head. IJB. 2023;10(1):1152. doi: 10.36922/ijb.1152
  14. Xue P, Chen H, Xi H, et al. Magnesium dopped calcium-fluoride/icaritin composite multi-layer coating functionalized 3D printed β-TCP scaffold induces sustained bone regeneration in a rabbit model. Mater Des. 2022;223:111156. doi: 10.1016/j.matdes.2022.111156
  15. Sun H, Xu J, Wang Y, et al. Bone microenvironment regulative hydrogels with ROS scavenging and prolonged oxygen-generating for enhancing bone repair. Bioact Mater. 2023;24:477-496. doi: 10.1016/j.bioactmat.2022.12.021
  16. Yang X, Yang X, Luo P, et al. Novel one-pot strategy for fabrication of a pH-responsive bone-targeted drug self-frame delivery system for treatment of osteoporosis. Mater Today Bio. 2023;20:100688. doi: 10.1016/j.mtbio.2023.100688
  17. Xue P, Xi H, Chen H, He S, Liu X, Du B. Predictive value of clinical features and CT radiomics in the efficacy of hip preservation surgery with fibula allograft. J Orthop Surg Res. 2023;18(1):940. doi: 10.1186/s13018-023-04431-y
  18. Chen H, Xue P, Xi H, et al. A deep-learning model for predicting the efficacy of non-vascularized fibular grafting using digital radiography. Acad Radiol. 2024;31(4):1501-1507. doi: 10.1016/j.acra.2023.10.023
  19. Chen H, Xue P, Xi H, et al. Predicting efficacy and guiding procedure choice in non-vascularized bone grafting: a CT radiomics and clinical predictor approach. BMC Musculoskelet Disord. 2023;24(1):959. doi: 10.1186/s12891-023-07095-1
  20. Couce ML, Saenz de Pipaon M. Bone mineralization and calcium phosphorus metabolism. Nutrients. 2021;13(11):3692. doi: 10.3390/nu13113692
  21. Hou J, Yin S, Jiao R, et al. The combination of hydrogels and rutin-loaded black phosphorus nanosheets treats rheumatoid arthritis. Mater Today Bio. 2024;29:101264. doi: 10.1016/j.mtbio.2024.101264
  22. Huang S, Xu S, Hu Y, et al. Preparation of NIR-responsive, ROS-generating and antibacterial black phosphorus quantum dots for promoting the MRSA-infected wound healing in diabetic rats. Acta Biomater. 2022;137:199-217. doi: 10.1016/j.actbio.2021.10.008
  23. Wang W, Zhang G, Wang Y, et al. An injectable and thermosensitive hydrogel with nano-aided NIR-II phototherapeutic and chemical effects for periodontal antibacteria and bone regeneration. J Nanobiotechnology. 2023;21(1):367. doi: 10.1186/s12951-023-02124-6
  24. Wang M, Lu X, Yin X, et al. Synchrotron radiation-based Fourier-transform infrared spectromicroscopy for characterization of the protein/peptide distribution in single microspheres. Acta Pharm Sin B. 2015;5(3):270-276. doi: 10.1016/j.apsb.2015.03.008
  25. Zairani NAS, Jaafar M, Ahmad N, Abdul Razak K. Fabrication and characterization of porous β-tricalcium phosphate scaffolds coated with alginate. Ceram Int. 2016;42(4):5141-5147. doi: 10.1016/j.ceramint.2015.12.034
  26. Kang KR, Piao ZG, Kim JS, et al. Synthesis and characterization of β-tricalcium phosphate derived from Haliotis sp. shells. Implant Dent. 2017;26(3):378-387. doi: 10.1097/ID.0000000000000559
  27. Ma S, Wei Y, Sun R, et al. Calcium phosphate bone cements incorporated with black phosphorus nanosheets enhanced osteogenesis. ACS Biomater Sci Eng. 2023;9(1):292-302. doi: 10.1021/acsbiomaterials.2c00742
  28. Xue P, Chang Z, Chen H, et al. Macrophage membrane (MMs) camouflaged near-infrared (NIR) responsive bone defect area targeting nanocarrier delivery system (BTNDS) for rapid repair: promoting osteogenesis via phototherapy and modulating immunity. J Nanobiotechnology. 2024;22(1):87. doi: 10.1186/s12951-024-02351-5
  29. Shen G, Ren H, Shang Q, et al. Foxf1 knockdown promotes BMSC osteogenesis in part by activating the Wnt/β-catenin signalling pathway and prevents ovariectomy-induced bone loss. EBioMedicine. 2020;52:102626. doi: 10.1016/j.ebiom.2020.102626
  30. Kennedy A, Waters E, Rowshanravan B, et al. Differences in CD80 and CD86 transendocytosis reveal CD86 as a key target for CTLA-4 immune regulation. Nat Immunol. 2022;23(9):1365-1378. doi: 10.1038/s41590-022-01289-w
  31. He R, Wang Z, Cui M, et al. HIF1A alleviates compression-induced apoptosis of nucleus pulposus derived stem cells via upregulating autophagy. Autophagy. 2021;17(11): 3338-3360. doi: 10.1080/15548627.2021.1872227
  32. Hu L, Yu Y, Shen Y, et al. Ythdf2 promotes pulmonary hypertension by suppressing Hmox1-dependent anti-inflammatory and antioxidant function in alveolar macrophages. Redox Biol. 2023;61:102638. doi: 10.1016/j.redox.2023.102638
  33. Ng JQ, Jafarov TH, Little CB, et al. Loss of Grem1-lineage chondrogenic progenitor cells causes osteoarthritis. Nat Commun. 2023;14(1):6909. doi: 10.1038/s41467-023-42199-1
  34. Agas D, Gabai V, Sufianov AA, Shneider A, Sabbieti MG. P62/SQSTM1 enhances osteogenesis and attenuates inflammatory signals in bone marrow microenvironment. Gen Comp Endocrinol. 2022;320:114009. doi: 10.1016/j.ygcen.2022.114009
  35. Tang D, Kang R. SQSTM1 is a therapeutic target for infection and sterile inflammation. Cytokine. 2023;169: 156317. doi: 10.1016/j.cytokine.2023.156317
  36. Lingli Z, Xing H, Liqiu W, et al. Palmitoylation restricts SQSTM1/p62-mediated autophagic degradation of NOD2 to modulate inflammation. Cell Death Differ. 2022;29(8):1541-1551. doi: 10.1038/s41418-022-00942-z
  37. Li Y, Lu D, Xu F, et al. EGR1 promotes craniofacial bone regeneration via activation of ALPL⁺PDGFD⁺ periosteal stem cells. Adv Sci (Weinh). 2025;12(30):e10243. doi: 10.1002/advs.202410243
  38. Zhang H, Cai D, Bai X. Macrophages regulate the progression of osteoarthritis. Osteoarthritis Cartilage. 2020;28(5):555-561. doi: 10.1016/j.joca.2020.01.007
  39. Wang J, Zhang Y, Cao J, et al. The role of autophagy in bone metabolism and clinical significance. Autophagy. 2023;19(9):2409-2427. doi: 10.1080/15548627.2023.2186112
  40. Katz JN, Arant KR, Loeser RF. Diagnosis and treatment of hip and knee osteoarthritis: a review. JAMA. 2021;325(6):568-578. doi: 10.1001/jama.2020.22171
  41. Xie C, Liang R, Ye J, et al. High-efficient engineering of osteo-callus organoids for rapid bone regeneration within one month. Biomaterials. 2022;288:121741. doi: 10.1016/j.biomaterials.2022.121741

 

 

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing