AccScience Publishing / IJB / Volume 10 / Issue 5 / DOI: 10.36922/ijb.3679
RESEARCH ARTICLE

3D-printed devices for optimized generation of cold atmospheric plasma to improve decontamination of surfaces from respiratory pathogens

Asma Bouazizi1,2 Klára Obrová1 Eva Vaňková3,4 Anna Machková3 Josef Khun3 Romana Hadravová5 Jan Hodek5 Lucie Ulrychová5,6 Abdelhalim Trabelsi2 Jan Weber5 Leonardo Zampieri7 Fabio Avino8 Ivo Furno8 Vladimír Scholtz3* Thomas Lion1,9*
Show Less
1 St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
2 Research Laboratory of Epidemiology and Immunogenetics of Viral Infections (LR14SP02), Faculty of Pharmacy, University of Monastir, Tunisia
3 Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czech Republic
4 Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
5 Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
6 Department of Genetics and Microbiology, Charles University, Faculty of Sciences, Czech Republic
7 Department of Physics, University of Milano Bicocca, Milano, Italy
8 Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), Lausanne, Switzerland
9 Department of Pediatrics, Medical University of Vienna, Vienna, Austria
IJB 2024, 10(5), 3679 https://doi.org/10.36922/ijb.3679
Submitted: 16 May 2024 | Accepted: 11 July 2024 | Published: 28 August 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Three-dimensional (3D)-printing technology is instrumental in creating devices for biological applications, including the exploitation of cold atmospheric plasma (CAP). CAP, a partially ionized gas that functions at ambient temperatures, serves as a safe, inexpensive, and effective tool for the inactivation of various pathogens on different surfaces. In this study, we compared three different 3D-printed devices with respect to their ability to provide optimized CAP compositions effective against select respiratory viruses (SARS-CoV-2, influenza virus, adenovirus, and rhinovirus) and the bacterium Pseudomonas aeruginosa, which is associated with serious lung diseases. The transmission of respiratory pathogens via surface contamination may pose a serious health threat, thus highlighting the biological importance of the current study. The properties of a prototype 3D-printed CAP-generating device and two optimized versions were characterized by detecting reactive oxygen and nitrogen species (RONS) in a gaseous environment via infrared spectroscopy and analyzing the composition of the reactive compounds. The virucidal effects of CAP were examined by determining virus infectivity and particle integrity. The bactericidal effect was documented by viability testing and visualization via transmission electron microscopy. The findings indicate that optimization of the 3D-printed devices for CAP production yielded an environment with relatively high amounts of RONS (O3, N2O, NO2, and H2O2), reducing the exposure time required for inactivation of respiratory pathogens by approximately 50%. In addition to reducing infectivity and viability, CAP treatment led to the destruction of viral nucleic acids and physical damage to bacterial cells. Owing to its flexibility and easy implementation, optimized CAP generated by 3D-printed devices provides an attractive inactivation method adaptable for different biological applications, including surface decontamination from viral and bacterial pathogens.   

Keywords
3D-printed devices
Adenovirus
Disinfection
Influenza A
Pseudomonas aeruginosa
Reactive oxygen species
Rhinovirus
SARS-CoV-2
Funding
This study was supported by the FWF I 5293-B/GACR GF21-39019 L grant and by the National Institute Virology and Bacteriology project (Programme EXCELES; Project No. LX22NPO5103), funded by the European Union (EU) under the Next Generation EU initiative.
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as potential conflicts of interest.
References
  1. Fernández A, Noriega E, Thompson A. Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology. Food Microbiol. 2013;33(1):24-29. doi: 10.1016/j.fm.2012.08.007
  2. Baier M, Görgen M, Ehlbeck J, Knorr D, Herppich WB, Schlüter O. Non-thermal atmospheric pressure plasma: Screening for gentle process conditions and antibacterial efficiency on perishable fresh produce. Innov Food Sci Emerg Technol. 2014;22:147-157. doi: 10.1016/j.ifset.2014.01.011
  3. Hertwig C, Reineke K, Ehlbeck J, Knorr D, Schlüter O. Decontamination of whole black pepper using different cold atmospheric pressure plasma applications. Food Control. 2015;55:221-229. doi: 10.1016/j.foodcont.2015.03.003
  4. Choi S, Puligundla P, Mok C. Corona discharge plasma jet for inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on inoculated pork and its impact on meat quality attributes. Ann Microbiol. 2016;66(2):685-694. doi: 10.1007/S13213-015-1147-5
  5. Oh YJ, Song AY, Min SC. Inhibition of Salmonella typhimurium on radish sprouts using nitrogen-cold plasma. Int J Food Microbiol. 2017;249:66-71. doi: 10.1016/J.IJFOODMICRO.2017.03.005
  6. Van Gils CAJ, Hofmann S, Boekema BKHL, Brandenburg R, Bruggeman PJ. Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet. J Phys D Appl Phys. 2013;46(17):175203. doi: 10.1088/0022-3727/46/17/175203
  7. Alkawareek MY, Algwari QT, Laverty G, et al. Eradication of Pseudomonas aeruginosa Biofilms by Atmospheric Pressure Non-Thermal Plasma. PLoS One. 2012;7(8):44289. doi: 10.1371/JOURNAL.PONE.0044289
  8. Laroussi M. Low-temperature plasmas for medicine? IEEE Trans Plasma Sci. 2009;37(6 PART 1):714-725 doi: 10.1109/TPS.2009.2017267
  9. Moreau M, Orange N, Feuilloley MGJ. Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol Adv. 2008;26(6):610-617. doi: 10.1016/j.biotechadv.2008.08.001
  10. Kong MG, Kroesen G, Morfill G, et al. Plasma medicine: an introductory review. New J Phys. 2009;11(11):115012. doi: 10.1088/1367-2630/11/11/115012
  11. Nosenko T, Shimizu T, Morfill GE. Designing plasmas for chronic wound disinfection. New J Phys. 2009;11(11):115013. doi: 10.1088/1367-2630/11/11/115013
  12. Heinlin J, Isbary G, Stolz W, et al. Plasma applications in medicine with a special focus on dermatology. J Eur Acad Dermatology Venereol. 2011;25(1):1-11. doi: 10.1111/j.1468-3083.2010.03702.x
  13. Von Woedtke T, Haertel B, Weltmann KD, Lindequist U. Plasma pharmacy - physical plasma in pharmaceutical applications. Pharmazie. 2013;68(7):492-498. doi: 10.1691/ph.2013.6521
  14. von Woedtke T, Reuter S, Masur K, Weltmann KD. Plasmas for medicine. Phys Rep. 2013;530(4):291-320. doi: 10.1016/j.physrep.2013.05.005
  15. Theus AS, Ning L, Kabboul G, et al. 3D bioprinting of nanoparticle-laden hydrogel scaffolds with enhanced antibacterial and imaging properties. iScience. 2022;25(9):104947. doi: 10.1016/j.isci.2022.104947
  16. Liu H, Xing F, Yu P, et al. A review of biomacromolecule-based 3D bioprinting strategies for structure‒function integrated repair of skin tissues. Int J Biol Macromol. 2024;268(Pt 2). doi: 10.1016/J.IJBIOMAC.2024.131623
  17. Dubey A, Vahabi H, Kumaravel V. Antimicrobial and Biodegradable 3D Printed Scaffolds for Orthopedic Infections. ACS Biomater Sci Eng. 2023;9(7):4020-4044. doi: 10.1021/acsbiomaterials.3c00115
  18. Vaňková E, Kašparová P, Khun J, et al. Polylactic acid as a suitable material for 3D printing of protective masks in times of COVID-19 pandemic. PeerJ. 2020;8:1-20. doi: 10.7717/peerj.10259
  19. Obrová K, Vaňková E, Sláma M, et al. Decontamination of high-efficiency mask filters from respiratory pathogens including SARS-CoV-2 by non-thermal plasma. Front Bioeng Biotechnol. 2022;10(February):1-13. doi: 10.3389/fbioe.2022.815393
  20. Aboubakr HA, Williams P, Gangal U, et al. Virucidal effect of cold atmospheric gaseous plasma on feline calicivirus, a surrogate for human norovirus. Appl Environ Microbiol. 2015;81(11):3612-3622. doi: 10.1128/AEM.00054-15
  21. Ahlfeld B, Li Y, Boulaaba A, et al. Inactivation of a foodborne norovirus outbreak strain with nonthermal atmospheric pressure plasma. MBio. 2015;6(1). doi: 10.1128/MBIO.02300-14
  22. Bae SC, Park SY, Choe W, Ha S Do. Inactivation of murine norovirus-1 and hepatitis A virus on fresh meats by atmospheric pressure plasma jets. Food Res Int. 2015;76: 342-347. doi: 10.1016/j.foodres.2015.06.039
  23. Lacombe A, Niemira BA, Gurtler JB, et al. Nonthermal inactivation of norovirus surrogates on blueberries using atmospheric cold plasma. Food Microbiol. 2017;63:1-5. doi: 10.1016/j.fm.2016.10.030
  24. Nayak G, Aboubakr HA, Goyal SM, Bruggeman PJ. Reactive species responsible for the inactivation of feline calicivirus by a two-dimensional array of integrated coaxial microhollow dielectric barrier discharges in air. Plasma Process Polym. 2018;15(1):1700119. doi: 10.1002/PPAP.201700119
  25. Mohamed H, Nayak G, Rendine N, et al. Non-thermal plasma as a novel strategy for treating or preventing viral infection and associated disease. Front Phys. 2021;9(June):1-25. doi: 10.3389/fphy.2021.683118
  26. Assadi I, Guesmi A, Baaloudj O, et al. Review on inactivation of airborne viruses using nonthermal plasma technologies: from MS2 to coronavirus. Environ Sci Pollut Res. 2022;29:4880-4892. doi: 10.1007/s11356-021-17486-3
  27. Filipić A, Gutierrez-Aguirre I, Primc G, Mozetič M, Dobnik D. Cold Plasma, a new hope in the field of virus inactivation. Trends Biotechnol. 2020;38(11):1278-1291. doi: 10.1016/j.tibtech.2020.04.003
  28. Scholtz V, Vaňková E, Kašparová P, Premanath R, Karunasagar I, Julák J. Nonthermal plasma treatment of ESKAPE pathogens: a review. Front Microbiol. 2021;12(October):1-20. doi: 10.3389/fmicb.2021.737635
  29. Scholtz V, Julák J, Kříha V. The microbicidal effect of low-temperature plasma generated by corona discharge: comparison of various microorganisms on an agar surface or in aqueous suspension. Plasma Process Polym. 2010; 7(3-4):237-243. doi: 10.1002/ppap.200900072
  30. Mai-Prochnow A, Murphy AB, McLean KM, Kong MG, Ostrikov K. Atmospheric pressure plasmas: infection control and bacterial responses. Int J Antimicrob Agents. 2014;43(6):508-517. doi: 10.1016/J.IJANTIMICAG.2014.01.025
  31. Aboubakr HA, Mor SK, Higgins L, et al. Cold argon-oxygen plasma species oxidize and disintegrate capsid protein of feline calicivirus. PLoS One. 2018;13(3):e0194618. doi: 10.1371/journal.pone.0194618
  32. Aboubakr HA, Nauertz A, Luong NT, et al. In vitro antiviral activity of clove and ginger aqueous extracts against feline calicivirus, a surrogate for human norovirus. J Food Prot. 2016;79(6):1001-1012. doi: 10.4315/0362-028X.JFP-15-593
  33. Xu D, Ning N, Xu Y, et al. Effect of cold atmospheric plasma treatment on the metabolites of human leukemia cells. Cancer Cell Int. 2019;19(1):1-12. doi: 10.1186/s12935-019-0856-4
  34. Zimmermann JL, Dumler K, Shimizu T, et al. Effects of cold atmospheric plasmas on adenoviruses in solution. J Phys D Appl Phys. 2011;44(50):505201. doi: 10.1088/0022-3727/44/50/505201
  35. Sakudo A, Toyokawa Y, Imanishi Y, Murakami T. Crucial roles of reactive chemical species in modification of respiratory syncytial virus by nitrogen gas plasma. Mater Sci Eng C. 2017;74:131-136. doi: 10.1016/j.msec.2017.02.007
  36. Sakudo A, Misawa T, Shimizu N, Imanishi Y. N₂ gas plasma inactivates influenza virus mediated by oxidative stress. Front Biosci (Elite Ed). 2014;6(1):69-79. doi: 10.2741/E692
  37. Sakudo A, Toyokawa Y, Imanishi Y. Nitrogen gas plasma generated by a static induction thyristor as a pulsed power supply inactivates adenovirus. PLoS One. 2016;11(6):e0157922. doi: 10.1371/JOURNAL.PONE.0157922
  38. Alkawareek MY, Algwari QT, Gorman SP, Graham WG, O’Connell D, Gilmore BF. Application of atmospheric pressure nonthermal plasma for the in vitro eradication of bacterial biofilms. FEMS Immunol Med Microbiol. 2012;65(2):381-384. doi: 10.1111/j.1574-695X.2012.00942.x
  39. Haertel B, Woedtke T von, Weltmann KD, Lindequist U. Non-thermal atmospheric-pressure plasma possible application in wound healing. Biomol Ther. 2014;22(6):477-490. doi: 10.4062/biomolther.2014.105
  40. Guo L, Xu R, Gou L, et al. Mechanism of virus inactivation by cold atmospheric-pressure plasma and plasma-activated water. Appl Environ Microbiol. 2018;84(17):1-10. doi: 10.1128/AEM.00726-18
  41. Dolezalova E, Lukes P. Membrane damage and active but nonculturable state in liquid cultures of Escherichia coli treated with an atmospheric pressure plasma jet. Bioelectrochemistry. 2015;103:7-14. doi: 10.1016/J.BIOELECHEM.2014.08.018
  42. Haas M, Fürhacker P, Hodek J, et al. Detection of viable SARS-CoV-2 on the hands of hospitalized children with COVID-19. Clin Microbiol Infect. 2023;29(9):1211-1213. doi: 10.1016/J.CMI.2023.06.012
  43. Nogueira F, Obrova K, Haas M, et al. Intestinal shedding of SARS-CoV-2 in children: no evidence for infectious potential. Microorganisms. 2023;11(1):33. doi: 10.3390/microorganisms11010033
  44. Lion T. Adenovirus persistence, reactivation, and clinical management. FEBS Lett. 2019;593(24):3571-3582. doi: 10.1002/1873-3468.13576
  45. Lion T, Wold W. Adenoviruses. In: Knipe D, Howley P, eds. Chapter in Fields Virology, 7th ed. Wolters Kluver Health / Lippincott, Williams Wilkins 2022, 129-171. https://www.livres-medicaux.com/infectiologie-virologie-bacteriologie/23602-fields-virology-dna-viruses-vol-2-7th-ed.html. Accessed July 25, 2023.
  46. Leung NHL. Transmissibility and transmission of respiratory viruses. Nat Rev Microbiol. 2021;19(8):528-545. doi: 10.1038/s41579-021-00535-6
  47. Kirtipal N, Bharadwaj S, Gu S. From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. Infect Genet Evol. 2020;85(January):15. doi: 10.1016/j.meegid.2020.104502
  48. Kumar V. Influenza in children. Indian J Pediatr. 2017;84(2):139-143. doi: 10.1007/s12098-016-2232-x
  49. Lion T. Adenovirus infections in immunocompetent and immunocompromised patients. Clin Microbiol Rev. 2014;27(3):441-462. doi: 10.1128/CMR.00116-13
  50. Piotrowska Z, Vázquez M, Shapiro ED, et al. Rhinoviruses are a major cause of wheezing and hospitalization in children less than 2 years of age. Pediatr Infect Dis J. 2009;28(1):25-29. doi: 10.1097/INF.0b013e3181861da0
  51. Fazeli N, Momtaz H. Virulence gene profiles of multidrug-resistant Pseudomonas aeruginosa isolated from Iranian hospital infections. Iran Red Crescent Med J. 2014;16(10). doi: 10.5812/ircmj.15722
  52. Ranjan Prasad R, Shree V, Kumar R, Kala K, Kumar P. Prevalence and antibiotic sensitivity of Pseudomonas aeruginosa isolated from CSOM in NMCH, Patna, India. Int J Curr Microbiol Appl Sci. 2017;6(6):2912-2916. doi: 10.20546/ijcmas.2017.606.345
  53. Khun J, Machková A, Kašparová P, et al. Non-thermal plasma sources based on cometary and point-to-ring discharges. Molecules. 2022;27(1):238. doi: 10.3390/molecules27010238
  54. Kašparová P, Vaňková E, Paldrychová M, et al. Nonthermal plasma causes Pseudomonas aeruginosa biofilm release to planktonic form and inhibits production of Las-B elastase, protease and pyocyanin. Front Cell Infect Microbiol. 2022;12(September):1-16. doi: 10.3389/fcimb.2022.993029
  55. Ngaosuwankul N, Noisumdaeng P, Komolsiri P, et al. Research influenza A viral loads in respiratory samples collected from patients infected with pandemic H1N1, seasonal H1N1 and H3N2 viruses. Virol J. 2010;7(1):1-7. doi: 10.1186/1743-422X-7-75/TABLES/4
  56. Machala Z, Tarabová B, Sersenová D, Janda M, Hensel K. Chemical and antibacterial effects of plasma activated water: correlation with gaseous and aqueous reactive oxygen and nitrogen species, plasma sources and air flow conditions. J Phys D Appl Phys. 2019;52(3):034002. doi: 10.1088/1361-6463/aae807
  57. Kučerová K, Machala Z, Hensel K. Transient spark discharge generated in various N2/O2 gas mixtures: reactive species in the gas and water and their antibacterial effects. Plasma Chem Plasma Process. 2020;40(3):749-773. doi: 10.1007/s11090-020-10082-2
  58. Lukes P, Dolezalova E, Sisrova I, Clupek M. Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order postdischarge reaction of H2O2 and HNO2. Plasma Sources Sci Technol. 2014;23(1):015019. doi: 10.1088/0963-0252/23/1/015019
  59. Wang Z, Liu L, Liu D, et al. Combination of NOx mode and O3 mode air discharges for water activation to produce a potent disinfectant. Plasma Sources Sci Technol. 2022;31(5):05LT01. doi: 10.1088/1361-6595/ac60c0
  60. Dasan BG, Onal-Ulusoy B, Pawlat J, Diatczyk J, Sen Y, Mutlu M. A New and Simple Approach for Decontamination of Food Contact Surfaces with Gliding Arc Discharge Atmospheric Non-Thermal Plasma. Food Bioprocess Technol. 2017;10(4):650-661. doi: 10.1007/S11947-016-1847-2
  61. Belgacem Z Ben, Carre G, Charpentier E, et al. Innovative nonthermal plasma disinfection process inside sealed bags: Assessment of bactericidal and sporicidal effectiveness in regard to current sterilization norms. PLoS One. 2017;12(6):e0180183. doi: 10.1371/JOURNAL.PONE.0180183
  62. Lunov O, Zablotskii V, Churpita O, et al. The interplay between biological and physical scenarios of bacterial death induced by nonthermal plasma. Biomaterials. 2016; 82:71-83. doi: 10.1016/J.BIOMATERIALS.2015.12.027
  63. Scholtz V, Pazlarova J, Souskova H, Khun J, Julak J. Nonthermal plasma---a tool for decontamination and disinfection. Biotechnol Adv. 2015;33(6 Pt 2):1108-1119. doi: 10.1016/J.BIOTECHADV.2015.01.002
  64. Alkawareek MY, Gorman SP, Graham WG, Gilmore BF. Potential cellular targets and antibacterial efficacy of atmospheric pressure nonthermal plasma. Int J Antimicrob Agents. 2014;43(2):154-160. doi: 165.
  65. Jablonowski H, Hänsch MAC, Dünnbier M, et al. Plasma jet’s shielding gas impact on bacterial inactivation. Biointerphases. 2015;10(2):029506. doi: 10.1116/1.4916533
  66. Machala Z, Tarabova B, Hensel K, Spetlikova E, Sikurova L, Lukes P. Formation of ROS and RNS in water electro-sprayed through transient spark discharge in air and their bactericidal effects. Plasma Process Polym. 2013;10(7):649-659. doi: 10.1002/PPAP.201200113
  67. Oehmigen K, Hähnel M, Brandenburg R, Wilke C, Weltmann KD, Von Woedtke T. The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Process Polym. 2010;7(3-4):250-257. doi: 10.1002/PPAP.200900077
  68. Liu Z, Xu D, Liu D, et al. Production of simplex RNS and ROS by nanosecond pulse N2/O2 plasma jets with homogeneous shielding gas for inducing myeloma cell apoptosis. J Phys D Appl Phys. 2017;50(19):195204. doi: 10.1088/1361-6463/aa66f0
  69. Ke Z, Thopan P, Fridman G, et al. Effect of N2/O2 composition on inactivation efficiency of Escherichia coli by discharge plasma at the gas-solution interface. Clin Plasma Med. 2017;7-8:1-8. doi: 10.1016/j.cpme.2017.05.001
  70. Thurston-Enriquez JA, Haas CN, Jacangelo J, Riley K, Gerba CP. Inactivation of Feline Calicivirus and Adenovirus Type 40 by UV Radiation. Appl Environ Microbiol. 2003;69(1): 577-582. doi: 10.1128/AEM.69.1.577-582.2003
  71. Von Woedtke T, Laroussi M, Gherardi M. Foundations of plasmas for medical applications. Plasma Sources Sci Technol. 2022;31(5):054002. doi: 10.1088/1361-6595/AC604F
  72. Bisag A, Isabelli P, Laurita R, et al. Cold atmospheric plasma inactivation of aerosolized microdroplets containing bacteria and purified SARS-CoV-2 RNA to contrast airborne indoor transmission. Plasma Process Polym. 2020;17(10):1-8. doi: 10.1002/ppap.202000154
  73. Kobza J, Geremek M, Dul L. Ozone concentration levels in urban environments—upper Silesia region case study. Int J Environ Res Public Heal 2021, Vol 18, Page 1473. 2021;18(4):1473. doi: 10.3390/IJERPH18041473
  74. Wolfgruber S, Loibner M, Puff M, Melischnig A, Zatloukal K. SARS-CoV-2 neutralizing activity of ozone on porous and nonporous materials. N Biotechnol. 2022;66:36-45. doi: 10.1016/j.nbt.2021.10.001
  75. Mileto D, Mancon A, Staurenghi F, et al. Inactivation of SARS-CoV-2 in the liquid phase: are aqueous hydrogen peroxide and sodium percarbonate efficient decontamination agents? ACS Chem Heal Saf. 2021;28(4):260-267. doi: 10.1021/acs.chas.0c00095
  76. Mentel R, Schirrmacher R, Kewitsch A. Inactivation of viruses with hydrogen dioxide. Vopr Virusol. 1977;22(6): 731-733. Accessed March 30, 2023. http://www.ncbi.nlm.nih.gov/pubmed/203115
  77. Amanna IJ, Raué HP, Slifka MK. Development of a new hydrogen peroxide–based vaccine platform. Nat Med 2012 186. 2012;18(6):974-979. doi: 10.1038/nm.2763
  78. Termini J. Hydroperoxide-induced DNA damage and mutations. Mutat Res Mol Mech Mutagen. 2000; 450(1-2):107-124. doi: 10.1016/S0027-5107(00)00019-1
  79. Wang H, Zhao T, Yang S, Zou L, Wang X, Zhang Y. Reactive force field-based molecular dynamics simulation of the interaction between plasma reactive oxygen species and the receptor-binding domain of the spike protein in the capsid protein of SARS-CoV-2. J Phys D Appl Phys. 2021;55(9):095401. doi: 10.1088/1361-6463/AC360E
  80. Sahun M, Privat-Maldonado A, Lin A, et al. Inactivation of SARS-CoV-2 and other enveloped and non-enveloped viruses with non-thermal plasma for hospital disinfection. ACS Sustain Chem Eng. 2023;11(13):5206-5215. doi: 10.1021/acssuschemeng.2c07622
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing