AccScience Publishing / IJB / Volume 10 / Issue 5 / DOI: 10.36922/ijb.3418
Cite this article
85
Download
1387
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Emerging frontiers in 3D bioprinting: Harnessing decellularized matrix bioink for advancements in musculoskeletal tissue engineering

Peilin Li1 Xixin Li1 Guosheng Tang2 Zongke Zhou3 Zeyu Luo3*
Show Less
1 State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
2 Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
3 Department of Orthopedics, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
IJB 2024, 10(5), 3418 https://doi.org/10.36922/ijb.3418
Submitted: 13 April 2024 | Accepted: 24 June 2024 | Published: 21 August 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The musculoskeletal system plays a pivotal role in maintaining posture, safeguarding organs, facilitating flexible movement, and supporting cellular metabolic functions, thereby enabling active participation in various aspects of life. Conventional treatment modalities, such as autologous and allogeneic transplantation, face significant challenges, including donor scarcity, complications, rejection, and infection. The emergence of three-dimensional (3D) bioprinting technology, coupled with bioink sourced from the decellularized extracellular matrix (dECM), offers a promising approach for repairing and regenerating musculoskeletal tissue. This article meticulously examines common methods of musculoskeletal tissue bioprinting, the properties and functions of dECM, techniques for preparing dECM bioinks, recent advancements, and applications of dECM bioinks in 3D printing of musculoskeletal tissues (e.g., heart, skeletal muscle, tendon, interfaces between tissues, bone, and cartilage). The review concludes by delineating current research limitations, aiming to catalyze future investigations in this domain.

Keywords
3D bioprinting
Decellularized extracellular matrix
Bioink
Musculoskeletal
Tissue engineering
Funding
This work was supported by the National Natural Science Foundation of China (82302786 and 62306193), the China Postdoctoral Science Foundation (BX20230245 and 2023M742478), the Sichuan Science and Technology Program (2023YFH0068), the Sichuan Province Innovative Talent Funding Proiect for Postdoctoral Fellows(BX202203), the Sichuan University Postdoctoral Interdisciplinary Innovation Fund (JCXK2226), and the Postdoctor Research Fund of West China Hospital, Sichuan University (2023HXBH012).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Potyondy T, Uquillas JA, Tebon P, Byambaa B. Recent advances in 3D bioprinting of musculoskeletal tissues. Biofabrication. 2021; 13(2):2-3. doi: 10.1088/1758-5090/abc8de
  2. Briggs AM, Woolf AD, Dreinhöfer K, et al. Reducing the global burden of musculoskeletal conditions. Bull World Health Organ. 2018;96(5):366-368. doi: 10.2471/BLT.17.204891
  3. Shibuya N, Jupiter DC. Bone graft substitute: allograft and xenograft. Clin Podiatr Med Surg. 2015;32:21-34. doi: 10.1016/j.cpm.2014.09.011
  4. Wang MO, Vorwald CE, Dreher ML, et al. Evaluating 3D-printed biomaterials as scaffolds for vascularized bone tissue engineering. Adv Mater. 2015;27(1):138-144. doi: 10.1002/adma.201403943
  5. Hoffman T, Khademhosseini A, Langer R. Chasing the paradigm: clinical translation of 25 years of tissue engineering. Tissue Eng Part A. 2019;25:679-687. doi: 10.1089/ten.TEA.2019.0032
  6. Golebiowska AA, Intravaia JT, Sathe VM, Kumbar SG, Nukavarapu SP. Decellularized extracellular matrix biomaterials for regenerative therapies: Advances, challenges and clinical prospects. Bioact Mater. 2023;32:98-123. doi: 10.1016/j.bioactmat.2023.09.017
  7. Zorlutuna P, Vrana NE, Khademhosseini A. The expanding world of tissue engineering: the building blocks and new applications of tissue engineered constructs. IEEE Rev Biomed Eng. 2013;6:47-62. doi: 10.1109/RBME.2012.2233468
  8. Zhe M, Wu X, Yu P, et al. Recent advances in decellularized extracellular matrix-based bioinks for 3D bioprinting in tissue engineering. Materials (Basel). 2023;16(8):3197. doi: 10.3390/ma16083197
  9. Tao O, Kort-Mascort J, Lin Y, et al. The applications of 3D printing for craniofacial tissue engineering. Micromachines (Basel). 2019;10(7):480. doi: 10.3390/mi10070480
  10. Mao AS, Mooney DJ. Regenerative medicine: current therapies and future directions. Proc Natl Acad Sci U S A. 2015;112(47):14452-14459. doi: 10.1073/pnas.1508520112
  11. Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/ organ regenerative engineering. Biomaterials. 2020;226: 119536. doi: 10.1016/j.biomaterials.2019.119536
  12. Luo Z, Tang G, Ravanbakhsh H, et al. Vertical extrusion cryo(bio)printing for anisotropic tissue manufacturing. Adv Mater. 2022;34(12):e2108931. doi: 10.1002/adma.202108931
  13. Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT. The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv. 2017;35(2):217-239. doi: 10.1016/j.biotechadv.2016.12.006
  14. Zhang J, Wehrle E, Adamek P, et al. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering. Acta Biomater. 2020;114:307-322. doi: 10.1016/j.actbio.2020.07.016
  15. Dzobo K, Thomford NE, Senthebane DA, et al. Advances in regenerative medicine and tissue engineering: innovation and transformation of medicine. Stem Cells Int. 2018;2018:2495848. doi: 10.1155/2018/2495848
  16. Radhakrishnan J, Subramanian A, Krishnan UM, Sethuraman S. Injectable and 3D bioprinted polysaccharide hydrogels: from cartilage to osteochondral tissue engineering. Biomacromolecules. 2017;18(1):1-26. doi: 10.1021/acs.biomac.6b01619
  17. Ahlfeld T, Mateo NC, Cometta S, Guduric VTN. A novel plasma-based bioink stimulates cell proliferation and differentiation in bioprinted, mineralized constructs. ACS Appl Mater Interfaces. 2020;12:12557-12572. doi: 10.1021/acsami.0c00710
  18. Cheng L, Yao B, Hu T, et al. Properties of an alginate-gelatin-based bioink and its potential impact on cell migration, proliferation, and differentiation. Int J Biol Macromol. 2019;135:1107-1113. doi: 10.1016/j.ijbiomac.2019.06.017
  19. Ding S, Feng L, Wu J, et al. Bioprinting of stem cells: interplay of bioprinting process, bioinks, and stem cell properties. ACS Biomater Sci Eng. 2018;4(9):3108-3124. doi: 10.1021/acsbiomaterials.8b00399
  20. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773-785. doi: 10.1038/nbt.2958
  21. Zheng Z, Wu J, Liu M, et al. 3D bioprinting of self-standing silk-based bioink. Adv Healthc Mater. 2018;7(6): e1701026. doi: 10.1002/adhm.201701026
  22. Rutz AL, Hyland KE, Jakus AE, Burghardt WR, Shah RN. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv Mater. 2015;27:1607-1614. doi: 10.1002/adma.201405076
  23. Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6:915-946. doi: 10.1039/c7bm00765e
  24. Pati F, Jang J, Ha DH, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935. doi: 10.1038/ncomms4935
  25. Zhang X, Liu Y, Luo C, et al. Crosslinker-free silk/ decellularized extracellular matrix porous bioink for 3D bioprinting-based cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl. 2021;118:111388. doi: 10.1016/j.msec.2020.111388
  26. Pati F, Cho DW. Bioprinting of 3D tissue models using decellularized extracellular matrix bioink. Methods Mol Biol. 2017;1612:381-390. doi: 10.1007/978-1-4939-7021-6_27
  27. Shin YJ, Shafranek RT, Tsui JH, Walcott J, Nelson A, Kim DH. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix. Acta Biomater. 2021;119:75-88. doi: 10.1016/j.actbio.2020.11.006
  28. Oropeza BP, Adams JR, Furth ME, Chessa J, Boland T. Bioprinting of decellularized porcine cardiac tissue for large-scale aortic models. Front Bioeng Biotechnol. 2022;10: 855186. doi: 10.3389/fbioe.2022.855186
  29. Park W, Gao G, Cho DW. Tissue-specific decellularized extracellular matrix bioinks for musculoskeletal tissue regeneration and modeling using 3D bioprinting technology. Int J Mol Sci. 2021;22(15):7837. doi: 10.3390/ijms22157837
  30. Lee J, Lee H, Jin EJ, Ryu D, Kim GH. 3D bioprinting using a new photo-crosslinking method for muscle tissue restoration. NPJ Regen Med. 2023;8:18. doi: 10.1038/s41536-023-00292-5
  31. Zhu W, Cao L, Song C, Pang Z, Jiang H, Guo C. Cell-derived decellularized extracellular matrix scaffolds for articular cartilage repair. Int J Artif Organs. 2021;44(4):269-281. doi: 10.1177/0391398820953866
  32. Sang S, Mao X, Cao Y, et al. 3D bioprinting using synovium-derived MSC-Laden photo-cross-linked ECM bioink for cartilage regeneration. ACS Appl Mater Interfaces. 2023;15(7):8895-8913. doi: 10.1021/acsami.2c19058
  33. Hwang DG, Jo Y, Kim M, et al. A 3D bioprinted hybrid encapsulation system for delivery of human pluripotent stem cell-derived pancreatic islet-like aggregates. Biofabrication. 2021;14(1):1-3. doi: 10.1088/1758-5090/ac23ac
  34. Kim H, Park MN, Kim J, Jang J, Kim HK, Cho DW. Characterization of cornea-specific bioink: high transparency, improved in vivo safety. J Tissue Eng. 2019; 10:2041731418823382. doi: 10.1177/2041731418823382
  35. Kim BS, Kwon YW, Kong JS, et al. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: a step towards advanced skin tissue engineering. Biomaterials. 2018;168:38-53. doi: 10.1016/j.biomaterials.2018.03.040
  36. Yeleswarapu S, Dash A, Chameettachal S, Pati F. 3D bioprinting of tissue constructs employing dual crosslinking of decellularized extracellular matrix hydrogel. Biomater Adv. 2023;152:213494. doi: 10.1016/j.bioadv.2023.213494
  37. Xu P, Kankala RK, Wang S, Chen A. Decellularized extracellular matrix-based composite scaffolds for tissue engineering and regenerative medicine. Regen Biomater. 2014;11:rbad107. doi: 10.1093/rb/rbad107
  38. Das S, Kim SW, Choi YJ, et al. Decellularized extracellular matrix bioinks and the external stimuli to enhance cardiac tissue development in vitro. Acta Biomater. 2019;95:188-200. doi: 10.1016/j.actbio.2019.04.026
  39. Choi YJ, Kim TG, Jeong J, et al. 3D cell printing of functional skeletal muscle constructs using skeletal muscle-derived bioink. Adv Healthc Mater. 2016;5(20):2636-2645. doi: 10.1002/adhm.201600483
  40. Yang SS, Choi WH, Song B, Jin H. Fabrication of an osteochondral graft with using a solid freeform fabrication system. Tissue Eng Regener Med. 2015;12:239-248. doi: 10.1007/s13770-015-0001-y
  41. Tsui JH, Leonard A, Camp ND, et al. Tunable electroconductive decellularized extracellular matrix hydrogels for engineering human cardiac microphysiological systems. Biomaterials. 2021;272:120764. doi: 10.1016/j.biomaterials.2021.120764
  42. Heinrich MA, Liu W, Jimenez A, et al. 3D bioprinting: from Benches to translational applications. Small. 2019;15(23):e1805510. doi: 10.1002/smll.201805510
  43. Tuan RS, Boland G, Tuli R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther. 2003;5(1):32-45. doi: 10.1186/ar614
  44. Singh M, Haverinen HM, Dhagat P, Jabbour GE. Inkjet printing-process and its applications. Adv Mater. 2010;22:673-685. doi: 10.1002/adma.200901141
  45. Stringer J, Derby B. Formation and stability of lines produced by inkjet printing. Langmuir. 2010;26:10365-10372. doi: 10.1021/la101296e
  46. Roth EA, Xu T, Das M, Gregory C, Hickman JJ, Boland T. Inkjet printing for high-throughput cell patterning. Biomaterials. 2004;25(17):3707-3715. doi: 10.1016/j.biomaterials.2003.10.052
  47. Cui X, Gao G, Qiu Y. Accelerated myotube formation using bioprinting technology for biosensor applications. Biotechnol Lett. 2013;35:315-321. doi: 10.1007/s10529-012-1087-0
  48. Gao Q, He Y, Fu JZ, Liu A, Ma L. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials. 2015;61:203-215. doi: 10.1016/j.biomaterials.2015.05.031
  49. Ihalainen P, Määttänen A, Sandler N. Printing technologies for biomolecule and cell-based applications. Int J Pharm. 2015;494:585-592. doi: 10.1016/j.ijpharm.2015.02.033
  50. Kim BS, Das S, Jang J, Cho DW. Decellularized extracellular matrix-based bioinks for engineering tissue- and organ-specific microenvironments. Chem Rev. 2020;120:10608-10661. doi: 10.1021/acs.chemrev.9b00808
  51. Wang Y, Yuan X, Yao B, Zhu S, Zhu P, Huang S. Tailoring bioinks of extrusion-based bioprinting for cutaneous wound healing. Bioact Mater. 2022;17:178-194. doi: 10.1016/j.bioactmat.2022.01.024.
  52. Mironov V. Printing technology to produce living tissue. Expert Opin Biol Ther. 2003;3:701-704. doi: 10.1517/14712598.3.5.701
  53. Chrisey DB. Materials processing: the power of direct writing. Science. 2000;289:879-881. doi: 10.1126/science.289.5481.879
  54. Bohandy J, Kim BF, Adrian FJ. Metal deposition from a supported metal film using an excimer laser. J Appl Phys. 1986;60:1538-1539. doi: 10.1063/1.337287
  55. Catros S, Fricain JC, Guillotin B, et al. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication. 2011;3(2):025001. doi: 10.1088/1758-5082/3/2/025001
  56. Colina M, Serra P, Fernández-Pradas JM, Sevilla L, Morenza JL. DNA deposition through laser induced forward transfer. Biosens Bioelectron. 2005;20:1638-1642. doi: 10.1016/j.bios.2004.08.047
  57. Dinca V, Kasotakis E, Catherine J, et al.. Directed three-dimensional patterning of self-assembled peptide fibrils. Nano Lett. 2008;8(2):538-543. doi: 10.1021/nl072798r
  58. Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016;34: 422-434. doi: 10.1016/j.biotechadv.2015.12.011
  59. Paruli EI, Montagna V, García-Soto M, Haupt K, Gonzato C. A general photoiniferter approach to the surface functionalization of acrylic and methacrylic structures written by two-photon stereolithography. Nanoscale. 2023;15:2860-2870. doi: 10.1039/d2nr06627k
  60. Li W, Wang M, Ma H, et al. Stereolithography apparatus and digital light processing-based 3D bioprinting for tissue fabrication. iScience. 2023;26:106039. doi: 10.1016/j.mser.2017.07.001
  61. Gauvin R, Chen YC, Lee JW, et al. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials. 2012;33(15):3824-3834. doi: 10.1016/j.biomaterials.2012.01.048
  62. Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials 2010;31:6121-6130. doi: 10.1016/j.biomaterials.2010.04.050
  63. Peng W, Unutmaz D, Ozbolat IT. Bioprinting towards physiologically relevant tissue models for pharmaceutics. Trends Biotechnol. 2016;34:722-732. doi: 10.1016/j.tibtech.2016.05.013
  64. Kara A, Distler T, Polley C. et al. 3D printed gelatin/ decellularized bone composite scaffolds for bone tissue engineering: fabrication, characterization and cytocompatibility study. Mater Today Bio. 2022;15:100309. doi: 10.1016/j.mtbio.2022.100309
  65. Isaeva EV, Beketov EE, Demyashkin GA, et al. Cartilage formation in vivo using high concentration collagen-based bioink with MSC and decellularized ECM granules. Int J Mol Sci. 2022;23(5):2703. doi: 10.3390/ijms23052703
  66. Sorkio A, Koch L, Koivusalo L, et al. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials. 2018;171:57-71. doi: 10.1016/j.biomaterials.2018.04.034
  67. Koch L, Deiwick A, Chichkov B. Capillary-like formations of endothelial cells in defined patterns generated by laser bioprinting. Micromachines (Basel). 2021;12(12):1538. doi: 10.3390/mi12121538
  68. Yu C, Ma X, Zhu W, et al. Scanningless and continuous 3D bioprinting of human tissues with decellularized extracellular matrix. Biomaterials. 2019;194:1-13. doi: 10.1016/j.biomaterials.2018.12.009
  69. Chen P, Zheng L, Wang Y, et al. Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/ mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics. 2019;9(9):2439-2459. doi: 10.7150/thno.31017
  70. Choudhury D, Tun HW, Wang T, Naing MW. Organ-derived decellularized extracellular matrix: a game changer for bioink manufacturing? Trends Biotechnol. 2018;36(8): 787-805. doi: 10.1016/j.tibtech.2018.03.003
  71. Aamodt JM, Grainger DW. Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials. 2016;86:68-82. doi: 10.1016/j.biomaterials.2016.02.003
  72. Huang K, Li Q, Li Y, et al. Cartilage tissue regeneration: the roles of cells, stimulating factors and scaffolds. Curr Stem Cell Res Ther. 2018;13(7):547-567. doi: 10.2174/1574888X12666170608080722
  73. Katebifar S, Jaiswal D, Arul MR, et al. Natural polymer-based micronanostructured scaffolds for bone tissue engineering. Methods Mol Biol. 2022;2394:669-691. doi: 10.1007/978-1-0716-1811-0_35
  74. Miszuk J, Liang Z, Hu J, et al. An elastic mineralized 3D electrospun PCL nanofibrous scaffold for drug release and bone tissue engineering. ACS Appl Bio Mater. 2021;4(4):3639-3648. doi: 10.1021/acsabm.1c00134
  75. Miszuk JM, Hu J, Sun H. Biomimetic nanofibrous 3D materials for craniofacial bone tissue engineering. ACS Appl Bio Mater. 2020;3:6538-6545. doi: 10.1021/acsabm.0c00946
  76. Wu YA, Chiu YC, Lin YH, Ho CC, Shie MY, Chen YW. 3D-printed bioactive calcium silicate/poly-ε-caprolactone bioscaffolds modified with biomimetic extracellular matrices for bone regeneration. Int J Mol Sci. 2019;20(4):942. doi: 10.3390/ijms20040942
  77. Wei W, Li J, Chen S, et al. In vitro osteogenic induction of bone marrow mesenchymal stem cells with a decellularized matrix derived from human adipose stem cells and in vivo implantation for bone regeneration. J Mater Chem B. 2017;5:2468-2482. doi: 10.1039/c6tb03150a
  78. Yi S, Ding F, Gong L, Gu X. Extracellular matrix scaffolds for tissue engineering and regenerative medicine. Curr Stem Cell Res Ther. 2017;12:233-246. doi: 10.2174/1574888x11666160905092513
  79. Mahdy MAA. Skeletal muscle fibrosis: an overview. Cell Tissue Res. 2019;375:575-588. doi: 10.1007/s00441-018-2955-2
  80. Satyam A, Tsokos MG, Tresback JS, Zeugolis DI, Tsokos GC. Cell derived extracellular matrix-rich biomimetic substrate supports podocyte proliferation, differentiation and maintenance of native phenotype. Adv Funct Mater. 2020;30(44):1908752. doi: 10.1002/adfm.201908752
  81. Chan TM, Lin HP, Lin SZ. In situ altering of the extracellular matrix to direct the programming of endogenous stem cells. Stem Cells. 2014;32:1989-1990. doi: 10.1002/stem.1693
  82. Navaee F, Renaud P, Kleger A, Braschler T. Highly efficient cardiac differentiation and maintenance by thrombin-coagulated fibrin hydrogels enriched with decellularized porcine heart extracellular matrix. Int J Mol Sci. 2023;24(3):2842. doi: 10.3390/ijms24032842
  83. Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 2011;3(12): a005058. doi: 10.1101/cshperspect.a005058
  84. Brizzi MF, Tarone G, Defilippi P. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr Opin Cell Biol. 2012;24:645-651. doi: 10.1016/j.ceb.2012.07.001
  85. Velleman SG. Recent developments in breast muscle myopathies associated with growth in poultry. Annu Rev Anim Biosci. 2019;7:289-308. doi: 10.1146/annurev-animal-020518-115311
  86. Yu H, Mouw JK, Weaver VM. Forcing form and function: biomechanical regulation of tumor evolution. Trends Cell Biol 2011;21:47-56. doi: 10.1016/j.tcb.2010.08.015
  87. Shih YR, Tseng KF, Lai HY, Lin CH, Lee OK. Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. J Bone Miner Res. 2011;26:730-738. doi: 10.1002/jbmr.278
  88. Gobaa S, Hoehnel S, Roccio M, Negro A, Kobel S, Lutolf MP. Artificial niche microarrays for probing single stem cell fate in high throughput. Nat Methods. 2011;8(11):949-955. doi: 10.1038/nmeth.1732
  89. Sart S, Jeske R, Chen X, Ma T, Li Y. Engineering stem cell-derived extracellular matrices: decellularization, characterization, and biological function. Tissue Eng Part B Rev. 2020;26:402-422. doi: 10.1089/ten.TEB.2019.0349
  90. Wanjare M, Agarwal N, Gerecht, S. Biomechanical strain induces elastin and collagen production in human pluripotent stem cell-derived vascular smooth muscle cells. Am J Physiol Cell Physiol. 2015;309:C271-C281. doi: 10.1152/ajpcell.00366.2014
  91. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233-3243. doi: 10.1016/j.biomaterials.2011.01.057
  92. Nagata S, Hanayama R, Kawane K. Autoimmunity and the clearance of dead cells. Cell. 2010;140(5):619-630. doi: 10.1016/j.cell.2010.02.014
  93. Zheng MH, Chen J, Kirilak Y, Willers C, Xu J, Wood D. Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J Biomed Mater Res B Appl Biomater. 2005;73(1):61-67. doi: 10.1002/jbm.b.30170
  94. Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng. 2011;13:27-53. doi: 10.1146/annurev-bioeng-071910-124743
  95. Buckenmeyer MJ, Meder TJ, Prest TA, Brown BN. Decellularization techniques and their applications for the repair and regeneration of the nervous system. Methods. 2020;171:41-61. doi: 10.1016/j.ymeth.2019.07.023
  96. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27:3675-3683. doi: 10.1016/j.biomaterials.2006.02.014
  97. Mendibil U, Ruiz-Hernandez R, Retegi-Carrion S, Garcia- Urquia N, Olalde-Graells B, Abarrategi A. Tissue-specific decellularization methods: rationale and strategies to achieve regenerative compounds. Int J Mol Sci. 2020;21(15):5447. doi: 10.3390/ijms21155447
  98. Hung SH, Su CH, Lee FP, Tseng H. Larynx decellularization: combining freeze-drying and sonication as an effective method. J Voice. 2013;27:289-294. doi: 10.1016/j.jvoice.2013.01.018
  99. Kim BS, Das S, Jang J, Cho D.-W. Decellularized extracellular matrix-based bioinks for engineering tissue-and organ-specific microenvironments. Chem Rev. 2020;120:10608-10661.
  100. Nonaka PN, Campillo N, Uriarte JJ, et al. Effects of freezing/ thawing on the mechanical properties of decellularized lungs. J Biomed Mater Res A. 2014;102(2):413-419. doi: 10.1002/jbm.a.34708
  101. Funamoto S, Nam K, Kimura T, et al. The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials. 2010;31(13):3590-3595. doi: 10.1016/j.biomaterials.2010.01.073
  102. Hashimoto Y, Funamoto S, Sasaki S, et al. Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering. Biomaterials. 2010;31(14):3941-3948. doi: 10.1016/j.biomaterials.2010.01.122
  103. Naso F, Gandaglia A. Can heart valve decellularization be standardized? A review of the parameters used for the quality control of decellularization processes. Front Bioeng Biotechnol. 2022;10:830899. doi: 10.3389/fbioe.2022.830899
  104. Zubarevich A, Osswald A, Amanov L, et al. Development and evaluation of a novel combined perfusion decellularization heart-lung model for tissue engineering of bioartificial heart-lung scaffolds. Artif Organs. 2023;47(3):481-489. doi: 10.1111/aor.14419
  105. Kim YS, Majid M, Melchiorri AJ, Mikos AG. Applications of decellularized extracellular matrix in bone and cartilage tissue engineering. Bioeng Transl Med. 2019;4: 83-95. doi: 10.1002/btm2.10110
  106. Zhang CY, Fu CP, Li XY, et al. Three-dimensional bioprinting of decellularized extracellular matrix-based bioinks for tissue engineering. Molecules. 2022;27(11): 3442. doi: 10.3390/molecules27113442
  107. Procházková A, Poláchová M, Dítě J, Netuková M, Studený P. Chemical, physical, and biological corneal decellularization methods: a review of literature. J Ophthalmol. 2024;2024:1191462. doi: 10.1155/2024/1191462
  108. Wang B, Qinglai T, Yang Q, et al. Functional acellular matrix for tissue repair. Mater Today Bio. 2022;18:100530. doi: 10.1016/j.mtbio.2022.100530
  109. Reing JE, Brown BN, Daly KA, et al. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials. 2010;31(33):8626-8633. doi: 10.1016/j.biomaterials.2010.07.083
  110. Belviso I, Sacco AM, Cozzolino D, et al. Cardiac-derived extracellular matrix: A decellularization protocol for heart regeneration. PLoS One. 2022;17(10):e0276224. doi: 10.1371/journal.pone.0276224
  111. Willemse J, Verstegen MMA, Vermeulen A, et al. Fast, robust and effective decellularization of whole human livers using mild detergents and pressure controlled perfusion. Mater Sci Eng C Mater Biol Appl. 2020;108:110200. doi: 10.1016/j.msec.2019.110200
  112. Bongolan T, Whiteley J, Castillo-Prado J, et al. Decellularization of porcine kidney with submicellar concentrations of SDS results in the retention of ECM proteins required for the adhesion and maintenance of human adult renal epithelial cells. Biomater Sci. 2022;10(11):2972-2990
  113. Alshaikh AB, Padma AM, Dehlin M, et al. Decellularization and recellularization of the ovary for bioengineering applications; studies in the mouse. Reprod Biol Endocrinol. 2020;18:75. doi: 10.1186/s12958-020-00630-y
  114. Naik A, Griffin M, Szarko M, Butler PE. Optimizing the decellularization process of an upper limb skeletal muscle; implications for muscle tissue engineering. Artif Organs. 2020;44:178-183. doi: 10.1111/aor.13575
  115. Kasravi M, Ahmadi A, Babajani A, et al. Immunogenicity of decellularized extracellular matrix scaffolds: a bottleneck in tissue engineering and regenerative medicine. Biomater Res. 2023;27:10. doi: 10.1186/s40824-023-00348-z
  116. Abaci A, Guvendiren M. Designing decellularized extracellular matrix-based bioinks for 3D bioprinting. Adv Healthc Mater. 2020;9:e2000734. doi: 10.1002/adhm.202000734
  117. Giraldo-Gomez DM, Leon-Mancilla B, Del Prado- Audelo ML, et al. Trypsin as enhancement in cyclical tracheal decellularization: morphological and biophysical characterization. Mater Sci Eng C Mater Biol Appl. 2016;59:930-937. doi: 10.1016/j.msec.2015.10.094
  118. Yang Y, Lin H, Shen H, Wang B, Lei G, Tuan RS. Mesenchymal stem cell-derived extracellular matrix enhances chondrogenic phenotype of and cartilage formation by encapsulated chondrocytes in vitro and in vivo. Acta Biomater. 2018;69:71-82. doi: 10.1016/j.actbio.2017.12.043
  119. Liguori GR, Liguori TTA, de Moraes SR, et al. Molecular and biomechanical clues from cardiac tissue decellularized extracellular matrix drive stromal cell plasticity. Front Bioeng Biotechnol. 2020;8:520. doi: 10.3389/fbioe.2020.00520
  120. Jang J, Park HJ, Kim SW, et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials. 2017;112: 264-274. doi: 10.1016/j.biomaterials.2016.10.026
  121. Wang X, Pierre V, Liu C, Senapati S, Park PS, Senyo SE. Exogenous extracellular matrix proteins decrease cardiac fibroblast activation in stiffening microenvironment through CAPG. J Mol Cell Cardiol. 2021;159:105-119. doi: 10.1016/j.yjmcc.2021.06.001
  122. Mesquita FCP, Morrissey J, Lee P-F, et al. Cues from human atrial extracellular matrix enrich the atrial differentiation of human induced pluripotent stem cell-derived cardiomyocytes. Biomater Sci. 2021;9:3737-3749. doi: 10.1039/d0bm01686a
  123. Choi YJ, Park SJ, Yi H-G, et al. Muscle-derived extracellular matrix on sinusoidal wavy surfaces synergistically promotes myogenic differentiation and maturation. J Mater Chem B. 2018;6:5530-5539. doi: 10.1039/c8tb01475b
  124. Choi YJ, Jun YJ, Kim DY, et al. A 3D cell printed muscle construct with tissue-derived bioink for the treatment of volumetric muscle loss. Biomaterials. 2019;206: 160-169. doi: 10.1016/j.biomaterials.2019.03.036
  125. Kim W, Lee H, Lee J, et al. Efficient myotube formation in 3D bioprinted tissue construct by biochemical and topographical cues. Biomaterials. 2020;230:119632. doi: 10.1016/j.biomaterials.2019.119632
  126. Zhao F, Cheng J, Sun M, et al. Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bio-ink in extrusion-based 3D cell printing. Biofabrication. 2020;12:045011. doi: 10.1088/1758-5090/aba411
  127. Zhao F, Cheng J, Zhang J, et al. Comparison of three different acidic solutions in tendon decellularized extracellular matrix bio-ink fabrication for 3D cell printing. Acta Biomater. 2021;131:262-275. doi: 10.1016/j.actbio.2021.06.026
  128. Zhang X, Song W, Han K, et al. Three-dimensional bioprinting of a structure-, composition-, and mechanics-graded biomimetic scaffold coated with specific decellularized extracellular matrix to improve the tendon-to-bone healing. ACS Appl Mater Interfaces. 2023;15:28964-28980. doi: 10.1021/acsami.3c03793
  129. Lee J, Hong J, Kim W, Kim GH. Bone-derived dECM/ alginate bioink for fabricating a 3D cell-laden mesh structure for bone tissue engineering. Carbohydr Polym. 2020;250:116914. doi: 10.1016/j.carbpol.2020.116914
  130. Parthiban SP, Athirasala A, Tahayeri A, et al. BoneMA-synthesis and characterization of a methacrylated bone-derived hydrogel for bioprinting ofin-vitrovascularized tissue constructs. Biofabrication. 2021;13(3):10.1088/1758- 5090/abb11f.doi: 10.1088/1758-5090/abb11f
  131. Zhang X, Liu Y, Zuo Q, et al. 3D bioprinting of biomimetic bilayered scaffold consisting of decellularized extracellular matrix and silk fibroin for osteochondral repair. Int J Bioprint. 2021;7(4):401. doi: 10.18063/ijb.v7i4.401
  132. Hwangbo H, Lee J, Kim G. Mechanically and biologically enhanced 3D-printed HA/PLLA/dECM biocomposites for bone tissue engineering. Int J Biol Macromol. 2022; 218:9-21. doi: 10.1016/j.ijbiomac.2022.07.040
  133. Zhu S, Chen P, Chen Y, Li M, Chen C, Lu H. 3D-printed extracellular matrix/polyethylene glycol diacrylate hydrogel incorporating the anti-inflammatory phytomolecule honokiol for regeneration of osteochondral defects. Am J Sports Med. 2020;48(11):2808-2818. doi: 10.1177/0363546520941842
  134. Chae S, Lee SS, Choi YJ, et al. 3D cell-printing of biocompatible and functional meniscus constructs using meniscus-derived bioink. Biomaterials. 2021;267:120466. doi: 10.1016/j.biomaterials.2020.120466
  135. Setayeshmehr M, Hafeez S, van Blitterswijk C, Moroni L, Mota C, Baker MB. Bioprinting via a dual-gel bioink based on poly(vinyl alcohol) and solubilized extracellular matrix towards cartilage engineering. Int J Mol Sci. 2021;22(8):3901. doi: 10.3390/ijms22083901
  136. Visscher DO, Lee H, van Zuijlen PPM, et al. A photo-crosslinkable cartilage-derived extracellular matrix bioink for auricular cartilage tissue engineering. Acta Biomater. 2021;121:193-203. doi: 10.1016/j.actbio.2020.11.029
  137. Lu J, Huang J, Jin J, et al. The design and characterization of a strong bio-ink for meniscus regeneration. Int J Bioprint. 2022;8(4):600. doi: 10.18063/ijb.v8i4.600
  138. Nouri Barkestani M, Naserian S, Uzan G, Shamdani S. Post-decellularization techniques ameliorate cartilage decellularization process for tissue engineering applications. J Tissue Eng. 2021;12:2041731420983562. doi: 10.1177/2041731420983562
  139. McInnes AD, Moser MAJ, Chen X. Preparation and use of decellularized extracellular matrix for tissue engineering. J Funct Biomater. 2022;13(4):240. doi: 10.3390/jfb13040240
  140. Al-Hakim Khalak F, García-Villén F, Ruiz-Alonso S, Pedraz JL, Saenz-Del-Burgo L. Decellularized extracellular matrix-based bioinks for tendon regeneration in three-dimensional bioprinting. Int J Mol Sci. 2022;23(21):12930. doi: 10.3390/ijms232112930
  141. Li S, Liu Z, Gao X, et al. Preparation and properties of a 3D printed nHA/PLA bone tissue engineering scaffold loaded with a β-CD-CHX combined dECM hydrogel. RSC Adv. 2024;14:9848-9859. doi: 10.1039/d4ra00261j
  142. Hussain Z, Ding P, Zhang L, Zhang Y. Multifaceted tannin crosslinked bioinspired dECM decorated nanofibers modulating cell-scaffold biointerface for tympanic membrane perforation bioengineering. Biomed Mater 2022;17(3):1. doi: 10.1088/1748-605X/ac6125
  143. Wu J, Han Y, Fu Q, et al. Application of tissue-derived bioink for articular cartilage lesion repair. Chem Eng J. 2022;450:8-9. doi: 10.1016/j.cej.2022.138292
  144. Yoo SJ, Hussein N, Peel B, et al. 3D modeling and printing in congenital heart surgery: entering the stage of maturation. Front Pediatr. 2021;9:621672. doi: 10.3389/fped.2021.621672
  145. Zhe M, Wu X, Yu P, et al. Recent advances in decellularized extracellular matrix-based bioinks for 3D bioprinting in tissue engineering. Materials (Basel). 2023;16(8):3197. doi: 10.3390/ma16083197
  146. Xiang Y, Miller K, Guan J, Kiratitanaporn W, Tang M, Chen S. 3D bioprinting of complex tissues in vitro: state-of-the-art and future perspectives. Arch Toxicol. 2022;96(3):691-710. doi: 10.1007/s00204-021-03212-y
  147. Jang J, Kim TG, Kim BS, Kim SW, Kwon SM, Cho DW. Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photo-crosslinking. Acta Biomater. 2016;33:88-95. doi: 10.1016/j.actbio.2016.01.013
  148. Sung K, Patel NR, Ashammakhi N, Nguyen KL. 3-Dimensional bioprinting of cardiovascular tissues: emerging technology. JACC Basic Transl Sci. 2021;6: 467-482. doi: 10.1016/j.jacbts.2020.12.006
  149. Sanz-Fraile H, Herranz-Diez C, Ulldemolins A, et al. Characterization of bioinks prepared via gelifying extracellular matrix from decellularized porcine myocardia. Gels. 2023;9(9):745. doi: 10.3390/gels9090745
  150. Ostrovidov S, Hosseini V, Ahadian S, et al. Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications. Tissue Eng Part B Rev. 2014;20(5): 403-436. doi: 10.1089/ten.TEB.2013.0534
  151. Behre A, Tashman JW, Dikyol C, et al. 3D bioprinted patient-specific extracellular matrix scaffolds for soft tissue defects. Adv Healthc Mater. 2022;11(24):e2200866. doi: 10.1002/adhm.202200866
  152. Wang D, Zhang X, Huang S, et al. Engineering multi-tissue units for regenerative medicine: bone-tendon-muscle units of the rotator cuff. Biomaterials. 2021;272:120789. doi: 10.1016/j.biomaterials.2021.120789
  153. Yoshimoto Y, Oishi Y. Mechanisms of skeletal muscle-tendon development and regeneration/healing as potential therapeutic targets. Pharmacol Ther. 2023;243:108357. doi: 10.1016/j.pharmthera.2023.108357
  154. Xu Y, Murrell GA. The basic science of tendinopathy. Clin Orthop Relat Res. 2008;466:1528-1538. doi: 10.1007/s11999-008-0286-4
  155. Andres BM, Murrell GA. Treatment of tendinopathy: what works, what does not, and what is on the horizon. Clin Orthop Relat Res. 2008;466:1539-1554. doi: 10.1007/s11999-008-0260-1
  156. Lui PP. Stem cell technology for tendon regeneration: current status, challenges, and future research directions. Stem Cells Cloning. 2015;8:163-174. doi: 10.2147/sccaa.S60832
  157. Migliorini F, Tingart M, Maffulli N. Progress with stem cell therapies for tendon tissue regeneration. Expert Opin Biol Ther. 2020;20:1373-1379. doi: 10.1080/14712598.2020.1786532
  158. No YJ, Castilho M, Ramaswamy Y, Zreiqat, H. Role of biomaterials and controlled architecture on tendon/ligament repair and regeneration. Adv Mater. 2020;32:e1904511. doi: 10.1002/adma.201904511
  159. Liu Y., Ramanath HS, Wang DA. Tendon tissue engineering using scaffold enhancing strategies. Trends Biotechnol. 2008;26:201-209. doi: 10.1016/j.tibtech.2008.01.003
  160. Anjum S, Li T, Saeed M, Ao Q. Exploring polysaccharide and protein-enriched decellularized matrix scaffolds for tendon and ligament repair: a review. Int J Biol Macromol. 2024;254:127891. doi: 10.1016/j.ijbiomac.2023.127891
  161. Toprakhisar B, Nadernezhad A, Bakirci E, Khani N, Skvortsov GA, Koc B. Development of bioink from decellularized tendon extracellular matrix for 3d bioprinting. Macromol Biosci. 2018;18(10):e1800024. doi: 10.1002/mabi.201800024
  162. Chae S, Choi YJ, Cho DW. Mechanically and biologically promoted cell-laden constructs generated using tissue-specific bioinks for tendon/ligament tissue engineering applications. Biofabrication. 2022;14(2):025013. doi: 10.1088/1758-5090/ac4fb6
  163. Kim D, Kim GH. Bioprinted hASC-laden cell constructs with mechanically stable and cell alignment cue for tenogenic differentiation. Biofabrication. 2023;15(4):1. doi: 10.1088/1758-5090/ace740
  164. Balestri W, Morris RH, Hunt JA, Reinwald Y. Current advances on the regeneration of musculoskeletal interfaces. Tissue Eng Part B Rev. 2021;27:548-571. doi: 10.1089/ten.TEB.2020.0112
  165. Bonnevie ED, Mauck RL. Physiology and engineering of the graded interfaces of musculoskeletal junctions. Annu Rev Biomed Eng. 2018;20:403-429. doi: 10.1146/annurev-bioeng-062117-121113
  166. Chae S, Sun Y, Choi YJ, Ha DH, Jeon I, Cho DW. 3D cell-printing of tendon-bone interface using tissue-derived extracellular matrix bioinks for chronic rotator cuff repair. Biofabrication. 2021;13(3):1-2,27. doi: 10.1088/1758-5090/abd159
  167. Chae S, Yong U, Park W, et al. 3D cell-printing of gradient multi-tissue interfaces for rotator cuff regeneration. Bioact Mater. 2022;19:611-625. doi: 10.1016/j.bioactmat.2022.05.004
  168. Liu H, Yang L, Zhang E, et al. Biomimetic tendon extracellular matrix composite gradient scaffold enhances ligament-to-bone junction reconstruction. Acta Biomater. 2017;56:129-140. doi: 10.1016/j.actbio.2017.05.027
  169. Shengnan Q, Bennett S, Wen W, Aiguo L, Jiake X. The role of tendon derived stem/progenitor cells and extracellular matrix components in the bone tendon junction repair. Bone. 2021;153:116172. doi: 10.1016/j.bone.2021.116172
  170. Tong S, Sun Y, Kuang B, et al. A comprehensive review of muscle-tendon junction: structure, function, injury and repair. Biomedicines. 2024;12(2):423. doi: 10.3390/biomedicines12020423
  171. Kim WJ, Kim GH. A bioprinted complex tissue model for myotendinous junction with biochemical and biophysical cues. Bioeng Transl Med. 2022;7(3):e10321. doi: 10.1002/btm2.10321
  172. Badar W, Ali H, Brooker ON, et al. Collagen pre-strain discontinuity at the bone-Cartilage interface. PLoS One. 2022;17(9):e0273832. doi: 10.1371/journal.pone.0273832
  173. Xu J, Ji J, Jiao J, et al. 3D printing for bone-cartilage interface regeneration. Front Bioeng Biotechnol. 2022;10:828921. doi: 10.3389/fbioe.2022.828921
  174. Terpstra ML, Li J, Mensinga A, et al. Bioink with cartilage-derived extracellular matrix microfibers enables spatial control of vascular capillary formation in bioprinted constructs. Biofabrication. 2022;14(3). doi: 10.1088/1758-5090/ac6282
  175. Zhang Y, Wu D, Zhao X, et al. Stem cell-friendly scaffold biomaterials: applications for bone tissue engineering and regenerative medicine. Front Bioeng Biotechnol. 2020;8:598607. doi: 10.3389/fbioe.2020.598607
  176. Kim D, Lee H, Lee GH, Hoang TH, Kim HR, Kim GH. Fabrication of bone-derived decellularized extracellular matrix/ceramic-based biocomposites and their osteo/ odontogenic differentiation ability for dentin regeneration. Bioeng Transl Med. 2022;7(3):e10317. doi: 10.1002/btm2.10317
  177. Hung BP, Naved BA, Nyberg EL, et al. Three-dimensional printing of bone extracellular matrix for craniofacial regeneration. ACS Biomater Sci Eng. 2016;2(10):1806-1816. doi: 10.1021/acsbiomaterials.6b00101
  178. Kang Y, Xu J, Meng L, et al. 3D bioprinting of dECM/Gel/ QCS/nHAp hybrid scaffolds laden with mesenchymal stem cell-derived exosomes to improve angiogenesis and osteogenesis. Biofabrication. 2023;15(2). doi: 10.1088/1758-5090/acb6b8.
  179. Lammi MJ, Piltti J, Prittinen J, Qu C. Challenges in fabrication of tissue-engineered cartilage with correct cellular colonization and extracellular matrix assembly. Int J Mol Sci. 2018;19(9):2700. doi: 10.3390/ijms19092700
  180. Ahmed TA, Hincke MT. Strategies for articular cartilage lesion repair and functional restoration. Tissue Eng Part B Rev. 2010;16:305-329. doi: 10.1089/ten.TEB.2009.0590
  181. Hogan KJ, Öztatlı H, Perez MR, et al. Development of photoreactive demineralized bone matrix 3D printing colloidal inks for bone tissue engineering. Regen Biomater. 2023;10:rbad090. doi: 10.1093/rb/rbad090
  182. Yuan Z, Lyu Z, Liu X, Zhang J, Wang Y. Mg-BGNs/DCECM composite scaffold for cartilage regeneration: a preliminary in vitro study. Pharmaceutics. 2021;13(10):1550. doi: 10.3390/pharmaceutics13101550
  183. Behan K, Dufour A, Garcia O, Kelly D. Methacrylated cartilage ECM-based hydrogels as injectables and bioinks for cartilage tissue engineering. Biomolecules. 2022; 12(2):216. doi: 10.3390/biom12020216
  184. Yang Z, Zhao T, Gao C, et al. 3D-bioprinted difunctional scaffold for in situ cartilage regeneration based on aptamer-directed cell recruitment and growth factor-enhanced cell chondrogenesis. ACS Appl Mater Interfaces. 2021;13(20):23369-23383
  185. Meng X, Zhou Z, Chen X, et al. A sturgeon cartilage extracellular matrix-derived bioactive bioink for tissue engineering applications. Int J Bioprint. 2023;9(5):768. doi: 10.18063/ijb.768
  186. Yang Z, Cao F, Li H, et al. Microenvironmentally optimized 3D-printed TGFβ-functionalized scaffolds facilitate endogenous cartilage regeneration in sheep. Acta Biomater. 2022;150:181-198. doi: 10.1016/j.actbio.2022.07.029
  187. Zhang H, Wang Y, Zheng Z, et al. Strategies for improving the 3D printability of decellularized extracellular matrix bioink. Theranostics. 2023;13(8):2562-2587. doi: 10.7150/thno.81785
  188. Seok JM, Ahn M, Kim D, Lee JS. Decellularized matrix bioink with gelatin methacrylate for simultaneous improvements in printability and biofunctionality. Int J Biol Macromol. 2024;262:130194. doi: 10.1016/j.ijbiomac.2024.130194
  189. Won JY, Lee MH, Kim MJ, et al. A potential dermal substitute using decellularized dermis extracellular matrix derived bio-ink. Artif Cells Nanomed Biotechnol. 2019;47(1): 644-649. doi: 10.1080/21691401.2019.1575842
  190. Tan YH, Helms HR, Nakayama KH. Decellularization strategies for regenerating cardiac and skeletal muscle tissues. Front Bioeng Biotechnol. 2022;10:831300. doi: 10.3389/fbioe.2022.831300
  191. Saldin LT, Cramer MC, Velankar SS, White LJ, Badylak SF. Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater. 2017;49:1-15. doi: 10.1016/j.actbio.2016.11.068
  192. Yuan Z, Liu S, Hao C, et al. AMECM/DCB scaffold prompts successful total meniscus reconstruction in a rabbit total meniscectomy model. Biomaterials. 2016;111:13-26. doi: 10.1016/j.biomaterials.2016.09.017
  193. Silva AC, Rodrigues SC, Caldeira J, et al. Three-dimensional scaffolds of fetal decellularized hearts exhibit enhanced potential to support cardiac cells in comparison to the adult. Biomaterials. 2016;104:52-64. doi: 10.1016/j.biomaterials.2016.06.062
  194. Robertson MJ, Dries-Devlin JL, Kren SM, Burchfield JS, Taylor DA. Optimizing recellularization of whole decellularized heart extracellular matrix. PLoS One. 2014;9(2):e90406. doi: 10.1371/journal.pone.0090406
  195. Kobayashi M, Kadota J, Hashimoto Y, et al. Elastic modulus of ECM hydrogels derived from decellularized tissue affects capillary network formation in endothelial cells. Int J Mol Sci. 2020;21(17):6304. doi: 10.3390/ijms21176304
  196. Radeke C, Pons R, Mihajlovic M, et al. Transparent and cell-guiding cellulose nanofiber 3d printing bioinks. ACS Appl Mater Interfaces. 2023;15(2): 2564-2577. doi: 10.1021/acsami.2c16126
  197. Arezoo N, Mohammad H, Malihezaman M. Tissue engineering of mouse uterus using menstrual blood stem cells (MenSCs) and decellularized uterine scaffold. Stem Cell Res Ther. 2021;12(1):475. doi: 10.1186/s13287-021-02543-y.
  198. Brown M, Li J, Moraes C, Tabrizian M, Li-Jessen NYK. Decellularized extracellular matrix: new promising and challenging biomaterials for regenerative medicine. Biomaterials. 2022;289:121786. doi: 10.1016/j.biomaterials.2022.12178
  199. Han H, Kim M, Yong U, et al. Tissue-specific gelatin bioink as a rheology modifier for high printability and adjustable tissue properties. Biomater Sci. 2024;12: 2599-2613. doi: 10.1039/d3bm02111d
  200. Lian L, Xie M, Luo Z, et al. Rapid volumetric bioprinting of decellularized extracellular matrix bioinks. Adv Mater. 2024;e2304846. doi: 10.1002/adma.202304846
  201. Lee H, Ju YM, Kim I, et al. A novel decellularized skeletal muscle-derived ECM scaffolding system for in situ muscle regeneration. Methods. 2020;171:77-85. doi: 10.1016/j.ymeth.2019.06.027
  202. Witt R, Weigand A, Boos AM, et al. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. BMC Cell Biol. 2017;18(1):15. doi: 10.1186/s12860-017-0131-2
  203. Sani M, Hosseinie R, Latifi M, et al. Engineered artificial articular cartilage made of decellularized extracellular matrix by mechanical and IGF-1 stimulation. Biomater Adv. 2022;139:213019. doi: 10.1016/j.bioadv.2022.213019
  204. Su X, Wang T, Guo S. Applications of 3D printed bone tissue engineering scaffolds in the stem cell field. Regen Ther. 2021;16:63-72. doi: 10.1016/j.reth.2021.01.007
  205. Iwasaki N, Roldo M, Karali A, Blunn G. In vitro development of a muscle-tendon junction construct using decellularised extracellular matrix: effect of cyclic tensile loading. Biomater Adv. 2024;161:213873. doi: 10.1016/j.bioadv.2024.213873
  206. Li J, Zhang J, Ye H, et al. Pulmonary decellularized extracellular matrix (dECM) modified polyethylene terephthalate three-dimensional cell carriers regulate the proliferation and paracrine activity of mesenchymal stem cells. Front Bioeng Biotechnol. 2024;11:1324424. doi: 10.3389/fbioe.2023.1324424
  207. Potere F, Belgio B, Croci GA, et al. 3D bioprinting of multi-layered segments of a vessel-like structure with ECM and novel derived bioink. Front Bioeng Biotechnol. 2022;10:918690. doi: 10.3389/fbioe.2022.918690
  208. Ong CS, Nam L, Ong K, et al. 3D and 4D bioprinting of the myocardium: current approaches, challenges, and future prospects. Biomed Res Int. 2018;2018:6497242. doi: 10.1155/2018/6497242

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing