AccScience Publishing / IJB / Volume 10 / Issue 6 / DOI: 10.36922/ijb.4074
Cite this article
35
Download
616
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Application of 3D-printed individualized porous tantalum buttress in shelf acetabuloplasty for developmental dysplasia of the hip

Yang Peng1,2,3 Xin Chen1,2,3 Juncai Xu1,2,3 Ran Xiong1,2,3 Chengjun Huang1,2,3 Liu Yang1,2,3* Guangxing Chen1,2,3*
Show Less
1 Center for Joint Surgery, The First Hospital Affiliated to Army Medical University, Chongqing, China
2 Chongqing Municipal Science and Technology Bureau Key Laboratory of Precision Medicine in Joint Surgery, Chongqing, China
3 Chongqing Municipal Education Commission Key Laboratory of Joint Biology, Chongqing, China
IJB 2024, 10(6), 4074 https://doi.org/10.36922/ijb.4074
Submitted: 28 June 2024 | Accepted: 19 August 2024 | Published: 20 August 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Shelf acetabuloplasty is a viable treatment for developmental dysplasia of the hip (DDH), yet autologous bone grafts have faced challenges such as morphological mismatch, imprecise placement, and long-term graft resorption. The rapid advancement of 3D printing technology in orthopedics has enabled the acquisition of digital image correlation method (DICM) data from patient pelvic to bilateral femoral proximal regions through computed tomography (CT) scans. These data are then utilized by software to create 3D models and design individualized metal implants. Using tantalum-based type I (TA1) spherical powder as the raw material, a porous tantalum buttress with a pore size of 600 microns and a porosity of 75% was fabricated employing the selective electron beam melting (SEBM) technology. Our Center has applied this 3D-printed individualized porous tantalum buttress in shelf acetabuloplasty for 21 DDH patients (25 hips), including 6 males and 15 females, with a mean age of 21.38 ± 7.39 years. The follow-up period ranged from 12 to 47 months, averaging 22.64 ± 10.86 months. At the final follow-up, patient-reported outcomes (PROs) were used to assess the patient’s subjective feelings. Significant improvements were observed in the Non-Arthritic Hip Score (NAHS), modified Harris Hip Score (mHHS), Hip Outcome Score-Sports Subscale (HOS-SSS), International Hip Outcome Tool-12 (iHOT-12), and Visual Analog Scale (VAS) compared with preoperative levels (p < 0.01). Radiographic assessments indicated that the postoperative lateral centeredge (LCE) angle, Tonnis angle, acetabular angle (Sharp’s angle), and femoral head coverage all trended towards normal, with statistically significant differences (p < 0.01). There was no implant displacement or bone resorption in any case, and no progression in Tonnis grading for hip osteoarthritis (OA) was noted postoperatively, with an 84% patient satisfaction rate. The early follow-up results of 3D-printed individualized porous tantalum buttress in shelf acetabuloplasty are satisfactory, indicating a reliable application prospect for the treatment of DDH patients.

Graphical abstract
Keywords
3D printing
Metal materials
Augmentation buttress
Hip
Shelf acetabuloplasty
Funding
This study was supported by the General Program of the National Natural Science Foundation of China (No. 82372365).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Vaquero-Picado A, González-Morán G, Garay EG, Moraleda L. Developmental dysplasia of the hip: update of management. EFORT Open Rev. 2019;4(9):548-556. doi: 10.1302/2058-5241.4.180019
  2. Tønning LU, O’Brien M, Semciw A, Stewart C, Kemp JL, Mechlenburg I. Periacetabular osteotomy to treat hip dysplasia: a systematic review of harms and benefits. Arch Orthop Trauma Surg. 2023;143(6):3637-3648. doi: 10.1007/s00402-022-04627-7
  3. Holm AG, Reikerås O, Terjesen T. Long-term results of a modified Spitzy shelf operation for residual hip dysplasia and subluxation. A fifty year follow-up study of fifty six children and young adults. Int Orthop. 2017;41(2):415-421. doi: 10.1007/s00264-016-3286-0
  4. Christen P, Ito K, Galis F, van Rietbergen B. Determination of hip-joint loading patterns of living and extinct mammals using an inverse Wolff ’s law approach. Biomech Model Mechanobiol. 2015;14(2):427-432. doi: 10.1007/s10237-014-0602-8
  5. Yang S, Zusman N, Lieberman E, Goldstein RY. Developmental dysplasia of the hip. Pediatrics. 2019;143(1):e20181147. doi: 10.1542/peds.2018-1147
  6. Schmitz MR, Murtha AS, Clohisy JC; ANCHOR Study Group. Developmental dysplasia of the hip in adolescents and young adults. J Am Acad Orthop Surg. 2020;28(3):91-101. doi: 10.5435/JAAOS-D-18-00533
  7. Ganz R, Klaue K, Vinh TS, Mast JW. A new periacetabular osteotomy for the treatment of hip dysplasias. Technique and preliminary results. Clin Orthop Relat Res. 1988;(232):26-36.
  8. Tan JHI, Tan SHS, Rajoo MS, Lim AKS, Hui JH. Hip survivorship following the Bernese periacetabular osteotomy for the treatment of acetabular dysplasia: a systematic review and meta-analysis. Orthop Traumatol Surg Res. 2022;108(4):103283. doi: 10.1016/j.otsr.2022.103283
  9. Suzuki M, Kinoshita K, Sakamoto T, Seo H, Yoshimura I, Yamamoto T. Short-term outcomes of curved periacetabular osteotomy and factors influencing patient dissatisfaction. J Hip Preserv Surg. 2023;10(1):17-23. doi: 10.1093/jhps/hnac054
  10. Abraham CL, Knight SJ, Peters CL, Weiss JA, Anderson AE. Patient-specific chondrolabral contact mechanics in patients with acetabular dysplasia following treatment with peri-acetabular osteotomy. Osteoarthritis Cartilage. 2017;25(5):676-684. doi: 10.1016/j.joca.2016.11.016
  11. Matsui M, Masuhara K, Nakata K, Nishii T, Sugano N, Ochi T. Early deterioration after modified rotational acetabular osteotomy for the dysplastic hip. J Bone Joint Surg Br. 1997;79(2):220-224. doi: 10.1302/0301-620x.79b2.7202
  12. Fawzy E, Mandellos G, De Steiger R, McLardy-Smith P, Benson MK, Murray D. Is there a place for shelf acetabuloplasty in the management of adult acetabular dysplasia? A survivorship study. J Bone Joint Surg Br. 2005;87(9):1197-1202. doi: 10.1302/0301-620X.87B9.15884
  13. Nishimatsu H, Iida H, Kawanabe K, Tamura J, Nakamura T. The modified Spitzy shelf operation for patients with dysplasia of the hip. A 24-year follow-up study. J Bone Joint Surg Br. 2002;84(5):647-652. doi: 10.1302/0301-620x.84b5.12732
  14. Summers BN, Turner A, Wynn-Jones CH. The shelf operation in the management of late presentation of congenital hip dysplasia. J Bone Joint Surg Br. 1988;70(1):63-68. doi: 10.1302/0301-620X.70B1.3276702
  15. Ramdhan Ibrahim MA, Kamegaya M, Morita M, Saisu T, Kakizaki J, Oikawa Y. Radiological results of Shelf acetabuloplasty in adolescent hip dysplasia with aspherical femoral head: how to get an ideal placement of the Shelf graft. J Pediatr Orthop B. 2020;29(3):261-267. doi: 10.1097/BPB.0000000000000681
  16. Okolie O, Stachurek I, Kandasubramanian B, Njuguna J. 3D printing for hip implant applications: a review. Polymers (Basel). 2020;12(11):2682. doi: 10.3390/polym12112682
  17. Jing Z, Zhang T, Xiu P, et al. Functionalization of 3D-printed titanium alloy orthopedic implants: a literature review. Biomed Mater. 2020;15(5):052003. doi: 10.1088/1748-605X/ab9078
  18. Kumar A, Nune KC, Misra RDK. Design and biological functionality of a novel hybrid Ti-6Al-4V/hydrogel system for reconstruction of bone defects. J Tissue Eng Regen Med. 2018;12(4):1133-1144. doi: 10.1002/term.2614
  19. Barui S, Chatterjee S, Mandal S, Kumar A, Basu B. Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: Experimental and computational analysis. Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 1):812-823. doi: 10.1016/j.msec.2016.09.040
  20. Borland WS, Bhattacharya R, Holland JP, Brewster NT. Use of porous trabecular metal augments with impaction bone grafting in management of acetabular bone loss. Acta Orthop. 2012;83(4):347-352. doi: 10.3109/17453674.2012.718518
  21. Han Y, Chen D, Sun J, Zhang Y, Xu K. UV-enhanced bioactivity and cell response of micro-arc oxidized titania coatings. Acta Biomater. 2008;4(5):1518-1529. doi: 10.1016/j.actbio.2008.03.005
  22. Huang T, Wang H, Zhang Z, Feng K, Xiang L. Incorporation of inorganic elements onto titanium-based implant surfaces by one-step plasma electrolytic oxidation: an efficient method to enhance osteogenesis. Biomater Sci. 2022;10(23):6656-6674. doi: 10.1039/d2bm00818a
  23. Levine B, Della Valle CJ, Jacobs JJ. Applications of porous tantalum in total hip arthroplasty. J Am Acad Orthop Surg. 2006;14(12):646-655. doi: 10.5435/00124635-200611000-00008
  24. Carraro F, Bagno A. Tantalum as trabecular metal for endosseous implantable applications. Biomimetics (Basel). 2023;8(1):49. doi: 10.3390/biomimetics8010049
  25. Brüggemann A, Mallmin H, Bengtsson M, Hailer NP. Safety of use of tantalum in total hip arthroplasty. J Bone Joint Surg Am. 2020;102(5):368-374. doi: 10.2106/JBJS.19.00366
  26. Ao Y, Guo L, Chen H, et al. Application of three-dimensional-printed porous tantalum cones in total knee arthroplasty revision to reconstruct bone defects. Front Bioeng Biotechnol. 2022;10:925339. doi: 10.3389/fbioe.2022.925339
  27. Rambani R, Nayak M, Aziz MS, Almeida K. Tantalum versus titanium acetabular cups in primary total hip arthroplasty: current concept and a review of the current literature. Arch Bone Jt Surg. 2022;10(5):385-394. doi: 10.22038/ABJS.2021.55255.2750
  28. Wieding J, Wolf A, Bader R. Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone. J Mech Behav Biomed Mater. 2014;37:56-68. doi: 10.1016/j.jmbbm.2014.05.002
  29. Wei X, Zhao D, Wang B, et al. Tantalum coating of porous carbon scaffold supplemented with autologous bone marrow stromal stem cells for bone regeneration in vitro and in vivo. Exp Biol Med (Maywood). 2016;241(6):592-602. doi: 10.1177/1535370216629578
  30. Balla VK, Bodhak S, Bose S, Bandyopadhyay A. Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties. Acta Biomater. 2010;6(8):3349-3359. doi: 10.1016/j.actbio.2010.01.046
  31. Fan H, Deng S, Tang W, et al. Highly porous 3D printed tantalum scaffolds have better biomechanical and microstructural properties than titanium scaffolds. Biomed Res Int. 2021;2021:2899043. doi: 10.1155/2021/2899043
  32. Macheras GA, Lepetsos P, Leonidou AO, Anastasopoulos PP, Galanakos SP, Poultsides LA. Survivorship of a porous tantalum monoblock acetabular component in primary hip arthroplasty with a mean follow-up of 18 years. J Arthroplasty. 2017;32(12):3680-3684. doi: 10.1016/j.arth.2017.06.049

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing