AccScience Publishing / IJB / Volume 10 / Issue 5 / DOI: 10.36922/ijb.4147
RESEARCH ARTICLE

Mechanism study of structural functional dual biomimetic composite bone scaffold for repair of mandibular defects in rabbits

Jiaqi Hu1 Hong Zhu1 Chongqing He1 Xiaochuan Liu1 Kenny Man2,3 Shanqin Liang1* Jingying Zhang1*
Show Less
1 Center for Oral Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
2 Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht, The Netherlands
3 Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
IJB 2024, 10(5), 4147 https://doi.org/10.36922/ijb.4147
Submitted: 4 July 2024 | Accepted: 15 August 2024 | Published: 16 August 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The present study aims to explore the potential mechanisms of bone tissue-engineered triply periodic minimal surfaces (TPMS) scaffolds containing injectable platelet-rich fibrin and stromal cell-derived factor-1 (in short, SIT scaffolds) in promoting angiogenesis in mandibular defects. Surface structures with a 70% porosity were created using the Matlab R2020a program. SIT scaffolds were fabricated using digital laser processing. Histological structures on SIT scaffolds inoculated with rabbit bone marrow mesenchymal stem cells (BMSCs) were observed using alkaline phosphatase (ALP) immunohistochemical staining, Alcian blue staining, and Masson-Goldner staining. Double-end sequencing in PE150 mode was performed using the Illumina NovaSeq™ 6000. Analyses such as Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interactions, and gene set enrichment analysis (GSEA) were conducted to delineate the gene functions. RT-qPCR was performed to confirm the expression of genes of interest. Finally, cells on different samples were examined by confocal laser scanning microscopy to observe c-Jun expression. Confocal imaging and quantitative analysis showed that BMSCs supported by the SIT scaffold had a greater tendency to differentiate into osteoblasts than those supported by the TPMS scaffold or the control group. The SIT group exhibited the most intense ALP staining. The expression of angiogenesis-related factors VEGFA was significantly upregulated in T and SIT groups. Expression of osteogenic gene RUNX2 and c-Fos/c-Jun pathway genes FOS/JUN was significantly upregulated in the SIT group. GSEA revealed that the WNT signaling pathway and MAPK signaling pathway were more active in the SIT group. Immunofluorescence showed that the c-Jun is highly expressed in newly formed capillaries in the SIT group. In conclusion, both TPMS and SIT scaffolds promote angiogenesis in mandibular defects.  

Keywords
TPMS scaffold
Mechanism
Mandibular defect
3D printer
Additive manufacturing
RNA sequencing
Funding
The study was supported by the Dongguan Science and Technology of Social Development Program (20231800940152), Talent Development Foundation of the First Dongguan Affiliated Hospital of Guangdong Medical University (GCC2023013), Guangdong Medical University Undergraduate Innovation Experiment Project (FYDS001, FYDS002, FYDS003), Guangdong University Student Innovation Project (S202310571068, S202310571069), and 2024 Special Funds for Science and Technology Innovation Strategy of Guangdong Province (Cultivation of Science and Technology Innovation for University Students) (pdjh2024b185).
Conflict of interest
The authors declare no conflicts of interests.
References
  1. Brown JS, Barry C, Ho M, Shaw R. A new classification for mandibular defects after oncological resection. Lancet Oncol. 2016;17(1):e23-30. doi: 10.1016/S1470-2045(15)00310-1
  2. Miljanovic D, Seyedmahmoudian M, Stojcevski A, Horan B. Design and fabrication of implants for mandibular and craniofacial defects using different medical-additive manufacturing technologies: a review. Ann Biomed Eng. 2020;48(9):2285-2300. doi: 10.1007/s10439-020-02567-0
  3. Sivaraman K, Chopra A, Venkatesh SB. Clinical importance of median mandibular flexure in oral rehabilitation: a review. J Oral Rehabil. 2016;43(3):215-225. doi: 10.1111/joor.12361
  4. Pickrell BB, Serebrakian AT, Maricevich RS. Mandible fractures. Semin Plast Surg. 2017;31(2):100-107. doi: 10.1055/s-0037-1601374
  5. García-Lamas L, Lozano D, Jiménez-Díaz V, et al. Enriched mesoporous bioactive glass scaffolds as bone substitutes in critical diaphyseal bone defects in rabbits. Acta Biomater. 2024;180:104-114. doi: 10.1016/j.actbio.2024.04.005
  6. Stahl A, Yang YP. Regenerative approaches for the treatment of large bone defects. Tissue Eng Part B Rev. 2021;27(6):539-547. doi: 10.1089/ten.TEB.2020.0281
  7. Zheng X, Fu Z, Du K, Wang C, Yi Y. Minimal surface designs for porous materials: from microstructures to mechanical properties. J Mater Sci. 2018;53(14):10194-10208. doi: 10.1007/s10853-018-2285-5
  8. Shen M, Li Y, Lu F, et al. Bioceramic scaffolds with triply periodic minimal surface architectures guide early-stage bone regeneration. Bioact Mater. 2023;25:374-386. doi: 10.1016/j.bioactmat.2023.02.012
  9. Wang C, Lai J, Li K, et al. Cryogenic 3D printing of dual-delivery scaffolds for improved bone regeneration with enhanced vascularization. Bioact Mater. 2021;6(1):137-145. doi: 10.1016/j.bioactmat.2020.07.007
  10. Zhu H, Wang J, Wang S, et al. Additively manufactured bioceramic scaffolds based on triply periodic minimal surfaces for bone regeneration. J Tissue Eng. 2024;15:20417314241244997. doi: 10.1177/20417314241244997
  11. Ahn J-H, Kim J, Han G, et al. 3D-printed biodegradable composite scaffolds with significantly enhanced mechanical properties via the combination of binder jetting and capillary rise infiltration process. Addit Manufactur. 2021;41: 101988. doi: 10.1016/j.addma.2021.101988
  12. LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med. 2003;14(3):201-209. doi: 10.1023/A:1022872421333
  13. Ishack S, Mediero A, Wilder T, Ricci JL, Cronstein BN. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/ hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2. J Biomed Mater Res B Appl Biomater. 2017;105(2):366-375. doi: 10.1002/jbm.b.33561
  14. Witek L, Shi Y, Smay J. Controlling calcium and phosphate ion release of 3D printed bioactive ceramic scaffolds: an in vitro study. J Adv Ceramics. 2017;6(2):157-164. doi: 10.1007/s40145-017-0228-2
  15. Liu B, Lun DX. Current application of β-tricalcium phosphate composites in orthopaedics. Orthop Surg. 2012;4(3):139-144. doi: 10.1111/j.1757-7861.2012.00189.x
  16. Fariña NM, Guzón FM, Peña ML, Cantalapiedra AG. In vivo behaviour of two different biphasic ceramic implanted in mandibular bone of dogs. J Mater Sci Mater Med. 2008;19(4):1565-1573. doi: 10.1007/s10856-008-3400-y
  17. Wang Y, Chen S, Liang H, Liu Y, Bai J, Wang M. Digital light processing (DLP) of nano biphasic calcium phosphate bioceramic for making bone tissue engineering scaffolds. Ceram Int. 2022;48(19, Part A):27681-27692. doi: 10.1016/j.ceramint.2022.06.067
  18. Chen Z, Li Z, Li J, et al. 3D printing of ceramics: a review. J Euro Ceram Soc. 2019;39(4):661-687. doi: 10.1016/j.jeurceramsoc.2018.11.013
  19. Melchels FPW, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials 2010;31(24):6121-6130. doi: 10.1016/j.biomaterials.2010.04.050
  20. Zhang J, Hu Q, Wang S, Tao J, Gou M. Digital light processing based three-dimensional printing for medical applications. Int J Bioprint. 2020;6(1):242. doi: 10.18063/ijb.v6i1.242
  21. Monfared MH, Nemati A, Loghman F, et al. A deep insight into the preparation of ceramic bone scaffolds utilizing robocasting technique. Ceram Int. 2022;48(5):5939-5954. doi: 10.1016/j.ceramint.2021.11.268
  22. Dong Z, Zhao X. Application of TPMS structure in bone regeneration. Eng Regeneration. 2021;2:154-162. doi: 10.1016/j.engreg.2021.09.004
  23. Shi J, Zhu L, Li L, Li Z, Yang J, Wang X. A TPMS-based method for modeling porous scaffolds for bionic bone tissue engineering. Sci Rep. 2018;8(1):7395. doi: 10.1038/s41598-018-25750-9
  24. Toosi S, Javid-Naderi MJ, Tamayol A, Ebrahimzadeh MH, Yaghoubian S, Mousavi Shaegh SA. Additively manufactured porous scaffolds by design for treatment of bone defects. Front Bioeng Biotechnol. 2023;11:1252636. doi: 10.3389/fbioe.2023.1252636
  25. Zhu H, Lin Z, Luan Q, et al. Angiogenesis-promoting composite TPMS bone tissue engineering scaffold for mandibular defect regeneration. Int J Bioprint. 2023;10(1):0153. doi: 10.36922/ijb.0153
  26. Thanasrisuebwong P, Kiattavorncharoen S, Deeb GR, Bencharit S. Implant site preparation application of injectable platelet-rich fibrin for vertical and horizontal bone regeneration: a clinical report. J Oral Implantol. 2022;48(1):43-50. doi: 10.1563/aaid-joi-D-20-00031
  27. Chenchev IL, Ivanova VV, Neychev DZ, Cholakova RB. Application of platelet-rich fibrin and injectable platelet-rich fibrin in combination of bone substitute material for alveolar ridge augmentation – a case report. Folia Medica. 2017;59(3):362-366. doi: 10.1515/folmed-2017-0044
  28. Lorenz J, Al-Maawi S, Sader R, Ghanaati S. Individualized titanium mesh combined with platelet-rich fibrin and deproteinized bovine bone: a new approach for challenging augmentation. J Oral Implantol. 2018;44(5): 345-351. doi: 10.1563/aaid-joi-D-18-00049
  29. Dong Y, Zhou X, Zhang N. CCN1 inhibition affects the function of endothelial progenitor cells under high-glucose condition. Adv Clin Exp Med. 2024;33(6):619-631. doi: 10.17219/acem/170998
  30. Pan C, Hu T, Liu P, et al. BM-MSCs display altered gene expression profiles in B-cell acute lymphoblastic leukemia niches and exert pro-proliferative effects via overexpression of IFI6. J Transl Med. 2023;21(1):593. doi: 10.1186/s12967-023-04464-1
  31. Gonçalves TL, de Araújo LP, Pereira Ferrer V. Tamoxifen as a modulator of CXCL12-CXCR4-CXCR7 chemokine axis: A breast cancer and glioblastoma view. Cytokine. 2023;170:156344. doi: 10.1016/j.cyto.2023.156344
  32. Olmo N, Martín AI, Salinas AJ, Turnay J, Vallet-Regí M, Lizarbe MA. Bioactive sol–gel glasses with and without a hydroxycarbonate apatite layer as substrates for osteoblast cell adhesion and proliferation. Biomaterials 2003;24(20):3383-3393. doi: 10.1016/S0142-9612(03)00200-X
  33. Li Y, Dai X, Bai Y, et al. Electroactive BaTiO3 nanoparticle-functionalized fibrous scaffolds enhance osteogenic differentiation of mesenchymal stem cells. Int J Nanomedicine. 2017;12:4007-4018. doi: 10.2147/IJN.S135605
  34. Shi W, Sun M, Hu X, et al. Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3d printing to repair cartilage injury in vitro and in vivo. Adv Mater (Deerfield Beach, Fla). 2017;29(29):10.1002/adma.201701089. doi: 10.1002/adma.201701089
  35. Li Y, Li J, Jiang S, et al. The design of strut/TPMS-based pore geometries in bioceramic scaffolds guiding osteogenesis and angiogenesis in bone regeneration. Mater Today Bio. 2023;20:100667. doi: 10.1016/j.mtbio.2023.100667
  36. Li M, Jiang J, Liu W, et al. Bioadaptable bioactive glass-β- tricalcium phosphate scaffolds with TPMS-gyroid structure by stereolithography for bone regeneration. J Mater Sci Technol. 2023;155:54-65. doi: 10.1016/j.jmst.2023.01.025
  37. Wang J, Li W, He X, Li S, Pan H, Yin L. Injectable platelet-rich fibrin positively regulates osteogenic differentiation of stem cells from implant hole via the ERK1/2 pathway. Platelets. 2023;34(1):2159020. doi: 10.1080/09537104.2022.2159020
  38. Majidinia M, Sadeghpour A, Yousefi B. The roles of signaling pathways in bone repair and regeneration. J Cell Physiol. 2018;233(4):2937-2948. doi: 10.1002/jcp.26042
  39. Daigang L, Jining Q, Jinlai L, et al. LPS-stimulated inflammation inhibits BMP-9-induced osteoblastic differentiation through crosstalk between BMP/MAPK and Smad signaling. Exp Cell Res. 2016;341(1):54-60. doi: 10.1016/j.yexcr.2016.01.009
  40. Liu C, Weng Y, Yuan T, et al. CXCL12/CXCR4 signal axis plays an important role in mediating bone morphogenetic protein 9-induced osteogenic differentiation of mesenchymal stem cells. Int J Med Sci.2013;10(9):1181-1192. doi: 10.7150/ijms.6657
  41. Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol Lett. 2020;217:91-115. doi: 10.1016/j.imlet.2019.11.007
  42. Xiao G, Jiang D, Thomas P, et al. MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J Biological Chem. 2000;275(6): 4453-4459. doi: 10.1074/jbc.275.6.4453
  43. Ge C, Xiao G, Jiang D, et al. Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor. J Biological Chem. 2009;284(47):32533-32543. doi: 10.1074/jbc.M109.040980
  44. Fu L, Peng S, Wu W, Ouyang Y, Tan D, Fu X. LncRNA HOTAIRM1 promotes osteogenesis by controlling JNK/ AP-1 signalling-mediated RUNX2 expression. J Cell Mol Med. 2019;23(11):7517-7524. doi: 10.1111/jcmm.14620
  45. Zenz R, Wagner EF. Jun signalling in the epidermis: from developmental defects to psoriasis and skin tumors. Int J Biochem Cell Biol. 2006;38(7):1043-1049. doi: 10.1016/j.biocel.2005.11.011
  46. Zenz R, Eferl R, Scheinecker C, et al. Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease. Arthritis Res Ther. 2008;10(1):201. doi: 10.1186/ar2338
  47. Vleugel MM, Greijer AE, Bos R, van der Wall E, van Diest PJ. c-Jun activation is associated with proliferation and angiogenesis in invasive breast cancer. Hum Pathol. 2006;37(6):668-674. doi: 10.1016/j.humpath.2006.01.022
  48. Folkman J. Angiogenesis and c-Jun. J Natl Cancer Inst. 2004;96(9):644. doi: 10.1093/jnci/djh148
  49. Liekens S, Schols D, Hatse S. CXCL12-CXCR4 axis in angiogenesis, metastasis and stem cell mobilization. Curr Pharm Des. 2010;16(35):3903-3920. doi: 10.2174/138161210794455003
  50. Mirshahi F, Pourtau J, Li H, et al. SDF-1 activity on microvascular endothelial cells: consequences on angiogenesis in in vitro and in vivo models. Thromb Res. 2000;99(6):587-594. doi: 10.1016/s0049-3848(00)00292-9
  51. He C, Zhang H, Wang B, He J, Ge G. SDF-1/CXCR4 axis promotes the growth and sphere formation of hypoxic breast cancer SP cells by c-Jun/ABCG2 pathway. Biochem Biophys Res Commun. 2018;505(2):593-599. doi: 10.1016/j.bbrc.2018.09.130
  52. Lue H, Dewor M, Leng L, Bucala R, Bernhagen J. Activation of the JNK signalling pathway by macrophage migration inhibitory factor (MIF) and dependence on CXCR4 and CD74. Cell Signal. 2011;23(1): 135-144. doi: 10.1016/j.cellsig.2010.08.013
  53. Strassheim D, Karoor V, Nijmeh H, et al. c-Jun, Foxo3a, and c-Myc transcription factors are key regulators of ATP-mediated angiogenic responses in pulmonary artery vasa vasorum endothelial cells. Cells. 2020;9(2):416. doi: 10.3390/cells9020416
  54. Ma J, Zhang L, Han W, et al. Activation of JNK/c-Jun is required for the proliferation, survival, and angiogenesis induced by EET in pulmonary artery endothelial cells. J Lipid Res. 2012;53(6):1093-1105. doi: 10.1194/jlr.M024398
  55. Huang J, Han Q, Cai M, et al. Effect of angiogenesis in bone tissue engineering. Ann Biomed Eng. 2022;50(8):898-913. doi: 10.1007/s10439-022-02970-9
  56. Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9:4. doi: 10.1186/s13036-015-0001-4
  57. Eftekhari H, Jahandideh A, Asghari A, Akbarzadeh A, Hesaraki S. Assessment of polycaprolacton (PCL) nanocomposite scaffold compared with hydroxyapatite (HA) on healing of segmental femur bone defect in rabbits. Artif Cells Nanomed Biotechnol. 2017;45(5):961-968. doi: 10.1080/21691401.2016.1198360
  58. Wang S, Lu J, You Q, Huang H, Chen Y, Liu K. The mTOR/ AP-1/VEGF signaling pathway regulates vascular endothelial cell growth. Oncotarget. 2016;7(33):53269-53276. doi: 10.18632/oncotarget.10756
  59. Lee C-C, Chen S-C, Tsai S-C, et al. Hyperbaric oxygen induces VEGF expression through ERK, JNK and c-Jun/ AP-1 activation in human umbilical vein endothelial cells. J Biomed Sci. 2006;13(1):143-156. doi: 10.1007/s11373-005-9037-7
  60. Shin M, Pandya M, Espinosa K, et al. Istradefylline mitigates age-related hearing loss in C57BL/6J mice. Int J Mol Sci. 2021;22(15):8000. doi: 10.3390/ijms22158000
  61. Mercado-Pagán ÁE, Stahl AM, Shanjani Y, Yang Y. Vascularization in bone tissue engineering constructs. Ann Biomed Eng. 2015;43(3):718-729. doi: 10.1007/s10439-015-1253-3

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing