AccScience Publishing / IJB / Volume 10 / Issue 3 / DOI: 10.36922/ijb.1829
Cite this article
157
Download
1748
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Polydopamine chelating strontium on graphene oxide enhances the mechanical and osteogenic induction properties of PLLA/PGA bone scaffold 

Feng Yang1† Yun Lin1† Saipu Shen1 Yulong Gu1 Cijun Shuai1,2,3* Pei Feng1*
Show Less
1 State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, China
2 Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang, Jiangxi, China
3 College of Mechanical Engineering, Xinjiang University, Urumqi, Xinjiang, China
IJB 2024, 10(3), 1829 https://doi.org/10.36922/ijb.1829
Submitted: 13 September 2023 | Accepted: 17 November 2023 | Published: 12 January 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Poly (lactic acid)/poly (glycolic acid) (LG) bone scaffold exhibits good biocompatibility for bone defect regeneration but lacks satisfactory mechanical and osteogenic induction properties. Here, graphene oxide (GO) was encapsulated by polydopamine (PDA) via self-polymerization of dopamine, and strontium (Sr) was loaded onto GO by the chelation of PDA. The modified GO was added to the LG scaffold prepared via selective laser sintering as a reinforcing phase to improve the mechanical properties and osteogenic induction properties. The results indicated that the tensile and compressive strengths of the scaffold with 1.5 wt% modified GO were 9.49 MPa and 19.22 MPa, respectively, representing 67.08% and 95.33% improvement compared to the LG scaffold. The enhancement mechanisms of the modified GO in the scaffold included crack branching, crack deflection, crack pinning, crack bridging, and pulling out. More importantly, the scaffold with modified GO exhibited superior bioactivity and osteogenic induction properties compared to the LG scaffold, because PDA could chelate calcium ions derived from the surrounding physiological environment, and the calcium ions attracted phosphate ions through electrostatic interactions to promote the apatite layer deposition. Additionally, the presence of Sr in the scaffold promoted the proliferation and differentiation of osteoblasts, thereby improving osteogenic induction properties.

Keywords
Graphene oxide
Polydopamine
Strontium
Mechanical properties
Osteogenic induction properties
Funding
This work was supported by the following funds: (1) The Natural Science Foundation of China (52275393, 51935014, 82072084); (2) Hunan Provincial Natural Science Foundation of China (2021JJ20061, 2020JJ3047, 2019JJ50588); (3) Jiangxi Provincial Natural Science Foundation of China (20224ACB204013); (4) The Project of State Key Laboratory of Precision Manufacturing for Extreme Service Performance; (5) Technology Innovation Platform Project of Shenzhen Institute of Information Technology 2020 (PT2020E002); (6) Guangdong Province Precision Manufacturing and Intelligent production education Integration Innovation Platform (2022CJPT019).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Sun H, Ling L, Ren Z, Memon SA, Xing F. Effect of graphene oxide/graphene hybrid on mechanical properties of cement mortar and mechanism investigation. Nanomaterials (Basel). 2020;10(1):113. doi: 10.3390/nano10010113
  2. Chathuranga H, Wasalathilake KC, Marriam I, et al. Preparation of bioinspired graphene oxide/PMMA nanocomposite with improved mechanical properties. Compos Sci Technol. 2021;216:109046. doi: 10.1016/j.compscitech.2021.109046
  3. Qu H, Huang L, Han Z, et al. A review of graphene-oxide/metal– organic framework composites materials: characteristics, preparation and applications. J Porous Mat. 2021; 28:1837-1865. doi: 10.1007/s10934-021-01125-w
  4. Yan L, Wang L, Wu J, et al. Multi-biofunctional graphene oxide-enhanced poly-L-lactic acid composite nanofiber scaffolds for ovarian function recovery of transplanted-tissue. NPJ Regen Med. 2022;7(1):52. doi: 10.1038/s41536-022-00236-5
  5. Ju J, Peng X, Huang K, et al. High-performance porous PLLA-based scaffolds for bone tissue engineering: preparation, characterization, and in vitro and in vivo evaluation. Polymer. 2019;180:121707. doi: 10.1016/j.polymer.2019.121707
  6. Murakami T, Otsuki S, Nakagawa K, et al. Establishment of novel meniscal scaffold structures using polyglycolic and poly-l-lactic acids. J Biomater Appl. 2017;32:150-161. doi: 10.1177/0885328217713631
  7. Cantón I, Mckean R, Charnley M, et al. Development of an Ibuprofen‐releasing biodegradable PLA/PGA electrospun scaffold for tissue regeneration. Biotechnol Bioeng. 2010;105:396-408. doi: 10.1002/bit.22530
  8. Hua W, Shi W, Mitchell K, et al. 3D printing of biodegradable polymer vascular stents: a review. Chin J Mech Eng Addit Manuf Front. 2022;1(2):100020. doi: 10.1016/j.cjmeam.2022.100020
  9. Shuai C, Shi X, Yang F, Tian H, Feng P. Oxygen vacancy boosting Fenton reaction in bone scaffold towards fighting bacterial infection. Int J Extreme Manuf. 2023;6: 015101. doi: 10.1088/2631-7990/ad01fd
  10. Storck JL, Ehrmann G, Uthoff J, Diestelhorst E, Blachowicz T, Ehrmann A. Investigating inexpensive polymeric 3D printed materials under extreme thermal conditions. Mater Futures. 2022;1:015001. doi: 10.1088/2752-5724/ac4beb
  11. Najafinezhad A, Bakhsheshi-Rad HR, Saberi A, et al. Graphene oxide encapsulated forsterite scaffolds to improve mechanical properties and antibacterial behavior. Biomed Mater. 2022;17:035011. doi: 10.1088/1748-605X/ac62e8
  12. Abzan N, Kharaziha M, Labbaf S. Development of three-dimensional piezoelectric polyvinylidene fluoride-graphene oxide scaffold by non-solvent induced phase separation method for nerve tissue engineering. Mater Design. 2019;167:107636. doi: 10.1016/j.matdes.2019.107636
  13. Wang W, Wei J, Lei D, et al. 3D printing of lithium osteogenic bioactive composite scaffold for enhanced bone regeneration. Compos Part B Eng. 2023;256:110641. doi: 10.1016/j.compositesb.2023.110641
  14. Zhang X, He J, Qiao L, et al. 3D printed PCLA scaffold with nano‐hydroxyapatite coating doped green tea EGCG promotes bone growth and inhibits multidrug‐resistant bacteria colonization. Cell Prolif. 2022;55(10):e13289. doi: 10.1111/cpr.13289
  15. Chen A, Wang W, Mao Z, et al. Multi‐material 3D and 4D bioprinting of heterogeneous constructs for tissue engineering. Adv Mater. 2023:2307686. doi: 10.1002/adma.202307686
  16. Askari E, Rasouli M, Darghiasi SF, Naghib SM, Zare Y, Rhee KY. Reduced graphene oxide-grafted bovine serum albumin/bredigite nanocomposites with high mechanical properties and excellent osteogenic bioactivity for bone tissue engineering. Bio-Des Manuf. 2021;4:243-257. doi: 10.1007/s42242-020-00113-4
  17. Soraya Z, Ghollasi M, Halabian R, Eftekhari E, Tabasi A, Salimi A. Donepezil hydrochloride as a novel inducer for osteogenic differentiation of mesenchymal stem cells on PLLA scaffolds in vitro. Biotechnol J. 2021;16:2100112. doi: 10.1002/biot.202100112
  18. Toosi S, Naderi-Meshkin H, Kalalinia F, et al. Bone defect healing is induced by collagen sponge/polyglycolic acid. J Mater Sci Mater Med. 2019;30:1-10. doi: 10.1007/s10856-019-6235-9
  19. Bai H, Zhao Y, Wang C, et al. Enhanced osseointegration of three-dimensional supramolecular bioactive interface through osteoporotic microenvironment regulation. Theranostics. 2020;10:4779. doi: 10.7150/thno.43736
  20. Wang J, Wang H, Wang Y, et al. Endothelialized microvessels fabricated by microfluidics facilitate osteogenic differentiation and promote bone repair. Acta Biomater. 2022;142:85-98. doi: 10.1016/j.actbio.2022.01.055
  21. Jarrar H, Altındal DÇ, Gümüşderelioğlu M. Scaffold-based osteogenic dual delivery system with melatonin and BMP-2 releasing PLGA microparticles. Int J Pharmaceut. 2021;600:120489. doi: 10.1016/j.ijpharm.2021.120489
  22. Wu X, Tang Z, Wu K, et al. Strontium-calcium phosphate hybrid cement with enhanced osteogenic and angiogenic properties for vascularised bone regeneration. J Mater Chem B. 2021;9(2021):5982-5997. doi: 10.1039/D1TB00439E
  23. Zhang W, Tian Y, He H, et al. Strontium attenuates rhBMP- 2-induced osteogenic differentiation via formation of Sr-rhBMP-2 complex and suppression of Smad-dependent signaling pathway. Acta Biomater. 2016;33:290-300. doi: 10.1016/j.actbio.2016.01.042
  24. Li S, Cui Y, Liu H, et al. Application of bioactive metal ions in the treatment of bone defects. J Mater Chem B. 2022;10(45):9369-9388. doi: 10.1039/D2TB01684B
  25. Luo Y, Liu H, Zhang Y, et al. Metal ions: the unfading stars of bone regeneration-from bone metabolism regulation to biomaterial applications. Biomater Sci. 2023;11(22): 7268-7295. doi: 10.1039/D3BM01146A
  26. Yuan Z, Wei P, Huang Y, et al. Injectable PLGA microspheres with tunable magnesium ion release for promoting bone regeneration. Acta Biomater. 2019;85:294-309. doi: 10.1016/j.actbio.2018.12.017
  27. Yu Y, Liu K, Wen Z, Liu W, Zhang L, Su J. Double-edged effects and mechanisms of Zn2+ microenvironments on osteogenic activity of BMSCs: osteogenic differentiation or apoptosis. RSC Adv. 2020;10(25):14915-14927. doi: 10.1039/D0RA01465F
  28. Xue Y, Zhang L, Liu F, et al. Alkaline “nanoswords” coordinate ferroptosis-like bacterial death for antibiosis and osseointegration. ACS Nano. 2023;17(3):2711-2724. doi: 10.1021/acsnano.2c10960
  29. Kołodziejska B, StępieńN, Kolmas J. The influence of strontium on bone tissue metabolism and its application in osteoporosis treatment. Int J Mol Sci. 2021;22:6564. doi: 10.3390/ijms22126564
  30. Zhang C, Xu G, Han L, Hu X, Zhao Y, Li Z. Bone induction and defect repair by true bone ceramics incorporated with rhBMP-2 and Sr. J Mater Sci Mater Med. 2021;32:107. doi: 10.1007/s10856-021-06587-7
  31. Lakhkar NJ, Lee IH, Kim HW, Salih V, Wall IB, Knowles JC. Bone formation controlled by biologically relevant inorganic ions: role and controlled delivery from phosphate-based glasses. Adv Drug Deliver Rev. 2013;65(4):405-420. doi: 10.1016/j.addr.2012.05.015
  32. Schatkoski VM, Larissa do Amaral Montanheiro T, Canuto de Menezes, et al. Current advances concerning the most cited metal ions doped bioceramics and silicate-based bioactive glasses for bone tissue engineering. Ceram Int. 2021;47(3):2999-3012. doi: 10.1016/j.ceramint.2020.09.213
  33. Zhao R, Chen S, Zhao W, et al. A bioceramic scaffold composed of strontium-doped three-dimensional hydroxyapatite whiskers for enhanced bone regeneration in osteoporotic defects. Theranostics. 2020;10(4):1572. doi: 10.7150/thno.40103
  34. Szewczyk J, Aguilar-Ferrer D, Coy E. Polydopamine films: electrochemical growth and sensing applications. Eur Polym J. 2022;174:111346. doi: 10.1016/j.eurpolymj.2022.111346
  35. Wang LS, Xu S, Gopal S, et al. Facile fabrication of antibacterial and antiviral perhydrolase-polydopamine composite coatings. Sci Rep. 2021;11:12410. doi: 10.1038/s41598-021-91925-6
  36. Xie Y, Yue L, Zheng Y, et al. The antibacterial stability of poly (dopamine) in-situ reduction and chelation nano-Ag based on bacterial cellulose network template. Appl Surf Sci. 2019;491:383-394. doi: 10.1016/j.apsusc.2019.06.096
  37. Yang Z, Fan WH, Ding YJ, Xiao Z-L. Preparation and thermal performance of nitrocellulose coated by polydopamine. J Appl Polym Sci. 2022;139:51809. doi: 10.1002/app.51809
  38. Zhou S, Yan J, Chen J, et al. Polydopamine/polyethyleneimine co-crosslinked graphene oxide for the enhanced tribological performance of epoxy resin coatings. J Mater Sci Technol. 2023;136:13-20. doi: 10.1016/j.jmst.2022.07.019
  39. Gao T, Zhang J, Zhang N, Wang Y, He J, Wu F. Dopamine assisted incorporation of Sr ions in porous titanium alloy and its in-vitro bioactivity and cellular responses. Mater Lett. 2021;287:129308. doi: 10.1016/j.matlet.2021.129308
  40. Zhou X, Cheng X, Xing D, et al. Ca ions chelation, collagen I incorporation and 3D bionic PLGA/PCL electrospun architecture to enhance osteogenic differentiation. Mater Design. 2021;198:109300. doi: 10.1016/j.matdes.2020.109300
  41. Qi F, Liao R, Wu P, et al. An electrical microenvironment constructed based on electromagnetic induction stimulates neural differentiation. Mater Chem Front. 2023;7: 1671-1683. doi: 10.1039/D2QM01193J
  42. Gao C, Yao X, Deng Y, Pan H, Shuai C. Laser-beam powder bed fusion followed by annealing with stress: a promising route for magnetostrictive improvement of polycrystalline Fe81Ga19 alloys. Addit Manuf. 2023;68:103516. doi: 10.1016/j.addma.2023.103516
  43. Ling C, Li Q, Zhang Z, et al. Influence of heat treatment on microstructure, mechanical and corrosion behavior of WE43 alloy fabricated by laser-beam powder bed fusion. Int J Extreme Manuf. 2024;6:015001.doi: 10.1088/2631-7990/acfad5
  44. Han W, Kong L, Xu M. Advances in selective laser sintering of polymers. Int J Extreme Manuf. 2022;4:042002. doi: 10.1088/2631-7990/ac9096
  45. Feng J, Fu J, Yao X, He Y. Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications. Int J Extreme Manuf. 2022;4:022001. doi: 10.1088/2631-7990/ac5be6
  46. Hou Y, Wang W, Bartolo P. Application of additively manufactured 3D scaffolds for bone cancer treatment: a review. Bio Des Manuf. 2022;5:556-579. doi: 10.1007/s42242-022-00182-7
  47. Cui ZW, Jing YR, Liu SS, Liu GY. Systematic investigation on the effect of crosslinking agent type and dosage on the performance of TPU/MVQ based thermoplastic vulcanizates. J Appl Polym Sci. 2021;138:50630. doi: 10.1002/app.50630
  48. Liu Y, Qian L, Xia C, Zou J, Lian Z, Yi X. Failure analysis and structural optimization of rubber core and support rib of full-size spherical blowout preventer. Eng Fail Anal. 2023;143:106865. doi: 10.1016/j.engfailanal.2022.106865
  49. Goel P, Mandal P, Bhuvanesh E, Shahi VK, Chattopadhyay S. Temperature resistant cross-linked brominated poly phenylene oxide-functionalized graphene oxide nanocomposite anion exchange membrane for desalination. Sep Purif Technol. 2021;255:117730. doi: 10.1016/j.seppur.2020.117730
  50. Qiblawey H. Development of novel composite membranes in water/wastewater treatment. Membranes (Basel). 2022;12:260. doi: 10.3390/membranes12030260
  51. Kou Y, Zhou W, Xu L, et al. Surface modification of GO by PDA for dielectric material with well-suppressed dielectric loss. High Perform Polym. 2019;31:1183-1194. doi: 10.1177/0954008319837744
  52. Alkhouzaam A, Qiblawey H, Khraisheh M. Polydopamine functionalized graphene oxide as membrane nanofiller: spectral and structural studies. Membranes (Basel). 2021;11:86. doi: 10.3390/membranes11020086
  53. Song H, Wang Z, Yang J, Jia X, Zhang Z. Facile synthesis of copper/polydopamine functionalized graphene oxide nanocomposites with enhanced tribological performance. Chem Eng J. 2017;324:51-62. doi: 10.1016/j.cej.2017.05.016
  54. Ren Y, Peng D, Wu H, et al. Enhanced carbon dioxide flux by catechol-Zn2+ synergistic manipulation of graphene oxide membranes. Chem Eng J. 2019;195:230-238. doi: 10.1016/j.ces.2018.11.055
  55. Zhao Z, Guo L, Feng L, et al. Polydopamine functionalized graphene oxide nanocomposites reinforced the corrosion protection and adhesion properties of waterborne polyurethane coatings. Eur Polym J. 2019;120:109249. doi: 10.1016/j.eurpolymj.2019.109249
  56. Ye W, Chen Y, Zhou Y, et al. Enhancing the catalytic activity of flowerike Pt nanocrystals using polydopamine functionalized graphene supports for methanol electrooxidation. Electrochim Acta. 2014;142:18-24. doi: 10.1016/j.electacta.2014.06.161
  57. Wang S, Zhu J, Rao Y, et al. Polydopamine modified graphene oxide-TiO2 nanofiller for reinforcing physical properties and anticorrosion performance of waterborne epoxy coatings. Appl Sci. 2019;9:3760. doi: 10.3390/app9183760
  58. Wang R, Song F, Li S, et al. Polydopamine-assisted Sr immobilization to improve the osteogenesis of a three-dimensional reduced graphene oxide/polypyrrole composite scaffold. Mater Lett. 2019;246:182-185. doi: 10.1016/j.matlet.2019.03.065
  59. Jia Z, Xu X, Zhu D, Zheng Y. Design, printing, and engineering of regenerative biomaterials for personalized bone healthcare. Prog Mater Sci. 2023;134:101072. doi: 10.1016/j.pmatsci.2023.101072
  60. Tan X, Tan Y, Chow C, Tor SB, Yeong WY. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Mat Sci Eng C Mater. 2017;76:1328-1343. doi: 10.1016/j.msec.2017.02.094
  61. Zhu H, Li M, Huang X, et al. 3D printed tricalcium phosphate-bioglass scaffold with gyroid structure enhance bone ingrowth in challenging bone defect treatment. Appl Mater Today. 2021;25:101166. doi: 10.1016/j.apmt.2021.101166
  62. Ibrahim A, Klopocinska A, Horvat K, Hamid ZA. Graphene-based nanocomposites: synthesis, mechanical properties, and characterizations. Polymers (Basel). 2021;13:2869. doi: 10.3390/polym13172869
  63. Wang M, Ma L, Shi L, et al. Chemical grafting of nano-SiO2 onto graphene oxide via thiol-ene click chemistry and its effect on the interfacial and mechanical properties of GO/ epoxy composites. Compos Sci Technol. 2019;182:107751. doi: 10.1016/j.compscitech.2019.107751
  64. Hu Y, Xie Y, Xin H, et al. Nano/microstructures and mechanical properties of Al2O3-TiC ceramic composites reinforced with Al2O3@RGO nanohybrids. Ceram Int. 2022;48:27536-27549. doi: 10.1016/j.ceramint.2022.06.047
  65. Li B, Ying P, Gao Y, et al. Heterogeneous diamond-cBN composites with superb toughness and hardness. Nano Lett. 2022;22:4979-4984.doi: 10.1021/acs.nanolett.2c01716
  66. Peng J, Huang C, Cao C, et al. Inverse nacre-like epoxy-graphene layered nanocomposites with integration of high toughness and self-monitoring. Matter. 2020;2:220-232. doi: 10.1016/j.matt.2019.08.013
  67. Gholinezhad F, Golhosseini R, Moini Jazani O. Synthesis, characterization, and properties of silicone grafted epoxy/acrylonitrile butadiene styrene/graphene oxide nanocomposite with high adhesion strength and thermal stability. Polym Composite. 2022;43:1665-1684. doi: 10.1002/pc.26487
  68. Mehwish N, Xu M, Zaeem M, Lee BH. Mussel-inspired surface functionalization of porous albumin cryogels supporting synergistic antibacterial/antioxidant activity and bone-like apatite formation. Gels. 2022;8:679. doi: 10.3390/gels8100679
  69. Deng Y, Yang WZ, Shi D, et al. Bioinspired and osteopromotive polydopamine nanoparticle-incorporated fibrous membranes for robust bone regeneration. NPG Asia Mater. 2019;11:39. doi: 10.1038/s41427-019-0139-5
  70. Ghorbani F, Zamanian A, Behnamghader A, Joupari MD. A facile method to synthesize mussel-inspired polydopamine nanospheres as an active template for in situ formation of biomimetic hydroxyapatite. Mat Sci Eng C Mater. 2019;94:729-739. doi: 10.1016/j.msec.2018.10.010
  71. Arepalli SK, Tripathi H, Hira SK, Manna PP, Pyare R, Singh SP. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses. Mat Sci Eng C Mater Biol Appl. 2016;69:108-116. doi: 10.1016/j.msec.2016.06.070
  72. Ge J, Wang F, Xu Z, et al. Influences of niobium pentoxide on roughness, hydrophilicity, surface energy and protein absorption, and cellular responses to PEEK based composites for orthopedic applications. J Mater Chem B. 2020;8:2618-2626. doi: 10.1039/C9TB02456E
  73. Mi X, Su Z, Fu Y, Li S, Mo A. 3D printing of Ti3C2-MXene-incorporated composite scaffolds for accelerated bone regeneration. Biomed Mater. 2022;17:035002. doi: 10.1088/1748-605X/ac5ffe
  74. Qi F, Wang Z, Yang L, et al. A collaborative CeO2@metal-organic framework nanosystem to endow scaffolds with photodynamic antibacterial effect. Mater Today Chem. 2023;27:101336. doi: 10.1016/j.mtchem.2022.101336
  75. Guo W, Wang X, Yang C, Huang R, Wang H, Zhao Y. Microfluidic 3D printing polyhydroxyalkanoates-based bionic skin for wound healing. Mater Futures. 2022;1:015401. doi: 10.1088/2752-5724/ac446b
  76. Ng JY, Obuobi S, Chua ML, et al. Biomimicry of microbial polysaccharide hydrogels for tissue engineering and regenerative medicine: a review. Carbohyd Polym. 2020;241:116345. doi: 10.1016/j.carbpol.2020.116345
  77. Abdollahiyan P, Baradaran B, de la Guardia M, Oroojalian F, Mokhtarzadeh A. Cutting-edge progress and challenges in stimuli responsive hydrogel microenvironment for success in tissue engineering today. J Control Release. 2020; 328:514-531. doi: 10.1016/j.jconrel.2020.09.030
  78. Dong P, Zhu D, Deng X, et al. Effect of hydroxyapatite nanoparticles and wedelolactone on osteoblastogenesis from bone marrow mesenchymal stem cells. J Biomed Mater Res A. 2019;107:145-153. doi: 10.1002/jbm.a.36541
  79. Su Y, Li Z, Zhu H, He J, Wei B, Li D. Electrohydrodynamic fabrication of triple-layered polycaprolactone dura mater substitute with antibacterial and enhanced osteogenic capability. Chin J Mech Eng Addit Manuf Front. 2022;1(2):100026. doi: 10.1016/j.cjmeam.2022.100026
  80. Han X, Sun M, Chen B, et al. Lotus seedpod-inspired internal vascularized 3D printed scaffold for bone tissue repair. Bioact Mater. 2021;6:1639-1652. doi: 10.1016/j.bioactmat.2020.11.019
  81. Yan Y, Chen H, Zhang H, et al. Vascularized 3D printed scaffolds for promoting bone regeneration. Biomaterials. 2019;190:97-110. doi: 10.1016/j.biomaterials.2018.10.033
  82. Li Z, Wang S, Xu G, Hu X, Han L, Zhao Y. Synergy effect of Sr and rhBMP-2: a potential solution to osteolysis caused by rhBMP-2. Med Hypotheses. 2020;144:109895. doi: 10.1016/j.mehy.2020.109895
  83. Yi Q, Liang P, Liang D, Shi J-F, Sha S, Chang Q. Multifunction Sr doped microporous coating on pure magnesium of antibacterial, osteogenic and angiogenic activities. Ceram Int. 2021;47:8133-8141. doi: 10.1016/j.ceramint.2020.11.168
  84. Chen A, Su J, Li Y, et al. 3D/4D printed bio-piezoelectric smart scaffolds for next-generation bone tissue engineering. Int J Extreme Manuf. 2023;5(3):032007. doi: 10.1088/2631-7990/acd88f
  85. Lee NH, Kang MS, Kim TH, et al. Dual actions of osteoclastic-inhibition and osteogenic-stimulation through strontium-releasing bioactive nanoscale cement imply biomaterial-enabled osteoporosis therapy. Biomaterials. 2021;276:121025. doi: 10.1016/j.biomaterials.2021.121025
  86. Sun T, Li Z, Zhong X, et al. Strontium inhibits osteoclastogenesis by enhancing LRP6 and β-catenin-mediated OPG targeted by miR-181d-5p. J Cell Commun Signal. 2019;13:85-97. doi: 10.1007/s12079-018-0478-y
  87. Wu Q, Hu L, Yan R, et al. Strontium-incorporated bioceramic scaffolds for enhanced osteoporosis bone regeneration. Bone Res. 2022;10(1):55. doi: 10.1038/s41413-022-00224-x
  88. Jiang S, Wang X, Ma Y, et al. Synergistic effect of micro-nano-hybrid surfaces and Sr doping on the osteogenic and angiogenic capacity of hydroxyapatite bioceramics scaffolds. Int J Nanomed. 2022;17:783-797. doi: 10.2147/IJN.S345357
  89. Quade M, Vater C, Schlootz S, et al. Strontium enhances BMP‐2 mediated bone regeneration in a femoral murine bone defect model. J Biomed Mater Res B. 2020;108(1):174-182. doi: 10.1002/jbm.b.34376
  90. Cheng D, Liang Q, Li Y, et al. Strontium incorporation improves the bone-forming ability of scaffolds derived from porcine bone. Colloids Surf B Biointerfaces. 2018; 162:279-287. doi: 10.1016/j.colsurfb.2017.11.070
  91. Meininger S, Mandal S, Kumar A, Groll J, Basu B, Gbureck U. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds. Acta Biomater. 2016; 31:401-411. doi: 10.1016/j.actbio.2015.11.050
  92. Denry I, Goudouri OM, Fredericks DC, Akkouch A, Acevedo MR, Holloway JA. Strontium-releasing fluorapatite glass-ceramic scaffolds: structural characterization and in vivo performance. Acta Biomater. 2018;75: 463-471. doi: 10.1016/j.actbio.2018.05.047
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing