AccScience Publishing / IJB / Volume 10 / Issue 1 / DOI: 10.36922/ijb.1067
RESEARCH ARTICLE

Additive-manufactured synthetic bone model with biomimicking tunable mechanical properties for evaluation of medical implants

Ju Chan Yuk1 Kyoung Hyup Nam2* Suk Hee Park1*
Show Less
1 School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea
2 Department of Neurosurgery, Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 46241, Republic of Korea
IJB 2024, 10(1), 1067 https://doi.org/10.36922/ijb.1067
Submitted: 12 June 2023 | Accepted: 3 August 2023 | Published: 10 January 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Additive manufacturing has enabled the customization of biomedical systems, including transplantable medical devices, to achieve mechanical biocompatibility. For bone implants, patient-specific bone models must be used to evaluate the mechanical properties of implant compression and subsidence. This study proposes a methodology for designing and fabricating bone models to evaluate patient-specific bone implants. The method involves three-dimensional printing of infill-varied structure, with alternating high-low-high infill density regions, which undergo sequential deformation from the surficial region during compression with an implant. Based on this deformation behavior, the relationship between infill density parameters and mechanical properties was confirmed with the tunability of mechanical properties involving stiffness and failure load. The infill-varied design was applied to the inner structures of artificial vertebra models based on computed tomography scans for cadaver specimens. By tailoring the infill density conditions, the stiffness and failure load were approximated to those of the natural vertebrae. Furthermore, this infill-varied artificial vertebra could be used to evaluate additive-manufactured patient-specific implants. The patient-specific implant had greater resistance to subsidence than the commercial implant, suggesting the feasibility of a biomimicking bone model. The bone-mimetic infill-varied structure could be used to evaluate patient-specific manufactured implants and could be applied to other bone engineering structures with optimized biomechanical properties.

Keywords
Additive manufacturing
3D printing
Tunable mechanical properties
Bone model
Implant evaluation
Funding
This work was supported by grants of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI21C1350), and the Korea Basic Science Institute (National Research Facilities Equipment Center) grant funded by the Ministry of Education (Grant no. 2021R1A6C101A449).
References
  1. Daminabo SC, Goel S, Grammatikos SA, Nezhad HY, Thakur VK. Fused deposition modeling-based additive manufacturing (3D printing): Techniques for polymer material systems. Mater Today Chem. 2020;16:100248. doi: 10.1016/j.mtchem.2020.100248
  2. Peng X, Kuang X, Roach DJ, et al. Integrating digital light processing with direct ink writing for hybrid 3D printing of functional structures and devices. Addit Manuf. 2021;40:101911. doi: 10.1016/j.addma.2021.101911
  3. Mitra I, Bose S, Dernell WS, et al. 3D printing in alloy design to improve biocompatibility in metallic implants. Mater Today. 2021;45:20-34. doi: 10.1016%2Fj.mattod.2020.11.021
  4. Kim H, Lin Y, Tseng TLB. A review on quality control in additive manufacturing. Rapid Prototyp J. 2018;24(3). doi: 10.1108/RPJ-03-2017-0048
  5. Andreu A, Kim S, Dittus J, et al. Hybrid material extrusion 3D printing to strengthen interlayer adhesion through hot rolling. Addit Manuf. 2022;55:102773. doi: 10.1016/j.addma.2022.102773
  6. Kan WH, Jiang D, Humbert M. Effect of in-situ layer-by-layer rolling on the microstructure, mechanical properties, and corrosion resistance of a directed energy deposited 316L stainless steel. Addit Manuf. 2022;55:102863. doi: 10.1016/j.addma.2022.102863
  7. Lee JE, Park SJ, Son Y, Park K, Park S-H. Mechanical reinforcement of additive-manufactured constructs using in situ auxiliary heating process. Addit Manuf. 2021;43: 101995. doi: 10.1016/j.addma.2021.101995
  8. Park SJ, Park SJ, Son Y, Hyuk Ahn I. Reducing anisotropy of a part fabricated by material extrusion via warm isostatic pressure (WIP) process. Addit Manuf. 2022;55:102841. doi: 10.1016/j.addma.2022.102841
  9. Park SJ, Lee JE, Park J, Lee N-K, Son Y, Park S-H. High-temperature 3D printing of polyetheretherketone products: Perspective on industrial manufacturing applications of super engineering plastics. Mater Design. 2021;211:110163. doi: 10.1016/j.matdes.2021.110163
  10. Zhu J, Zhou H, Wang C, et al. A review of topology optimization for additive manufacturing: Status and challenges. Chinese J Aeronaut. 2021;34(1):91-110. doi 10.1016/j.cja.2020.09.020
  11. Wang P, Song J, Nai MLS, Wei J. Experimental analysis of additively manufactured component and design guidelines for lightweight structures: A case study using electron beam melting. Addit Manuf. 2020;33:101088. doi: 10.1016/j.addma.2020.101088
  12. Springer H, Baron C, Mostaghimi F, Poveleit J, Mädler L, Uhlenwinkel V. Additive manufacturing of high modulus steels: New possibilities for lightweight design. Addit Manuf. 2020;32:101033. doi: 10.1016/j.addma.2019.101033
  13. Chen W, Watts S, Jackson JA, Smith WL, Tortorelli DA. Spadaccini CM. Stiff isotropic lattices beyond the Maxwell criterion. Sci Adv. 2019;5(9):eaaw1937. doi: 10.1126/sciadv.aaw1937
  14. Gobbi SJ, Gobbi VJ, Rocha Y. Requirements for selection/ development of a biomaterial. Biomed J Sci Tech Res. 2019;14(3):1-6. doi: 10.26717/BJSTR.2019.14.002554
  15. Banse X, Sims TJ, Bailey AJ. Mechanical properties of adult vertebral cancellous bone: Correlation with collagen intermolecular cross‐links. J Bone Miner Res. 2002;17(3):1621-1628. doi: 10.1359/jbmr.2002.17.9.1621
  16. Roy ME, Rho JY, Tsui TY, Evans ND, Pharr GM. Mechanical and morphological variation of the human lumbar vertebral cortical and trabecular bone. J Biomed Mater Res. 1999;44(2):191-197. doi: 10.1002/(sici)1097-4636(199902)44:2%3C191::aid-jbm9%3E3.0.co;2-g
  17. Gu XN, Zheng YF. A review on magnesium alloys as biodegradable materials. Front Mater Sci China. 2010;4:111. doi: 10.1007/s11706-010-0024-1
  18. Ma H, Suonan A, Zho J, et al. PEEK (Polyether-ether-ketone) and its composite materials in orthopedic implantation. Arab J Chem. 2021;14(3):102977. doi: 10.1016/j.arabjc.2020.102977
  19. Parthasarathy J, Starly B, Raman S, Christensen A. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J Mech Behav Biomed Mater. 2010;3(3):249-259. doi: 10.1016/j.jmbbm.2009.10.006
  20. Ghouse S, Reznikov N, Boughton OR. The design and in vivo testing of a locally stiffness-matched porous scaffold. Appl Mater Today. 2019;15:377-388. doi: 10.1016/j.apmt.2019.02.017
  21. Barba D, Alabort E, Reed RC. Synthetic bone: Design by additive manufacturing. Acta Biomater. 2019;97: 637-656. doi: 10.1016/j.actbio.2019.07.049
  22. Su R, Chen J, Zhang X, et al. 3D‐printed micro/nano‐scaled mechanical metamaterials: Fundamentals, technologies, progress, applications, and challenges. Small. 2023;19(29):2206391. doi: 10.1002/smll.202206391
  23. Distefano F, Pasta S, Epasto G. Titanium lattice structures produced via additive manufacturing for a bone scaffold: A review. J Funct Biomater. 2023;14(3):125. doi: 10.3390/jfb14030125
  24. Zhou Q, Su X, Wu J, et al. Additive manufacturing of bioceramic implants for restoration bone engineering: Technologies, advances, and future perspectives. ACS Biomater Sci Eng. 2023;9(3):1164-1189. doi: 10.1021/acsbiomaterials.2c01164
  25. Jiao C, Xie D, He Z, et al. Additive manufacturing of bio-inspired ceramic bone scaffolds: Structural design, mechanical properties and biocompatibility. Mater Design. 2022;217:110610. doi: 10.1016/j.matdes.2022.110610
  26. Yang Y, Wang G, Liang H, et al. Additive manufacturing of bone scaffolds. Int J Bioprint. 2019;5(1):148. doi: 10.18063%2FIJB.v5i1.148
  27. Kramschuster A, Turng LS. Fabrication of tissue engineering scaffolds. Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications. 2012; 427-446. doi: 10.1016/B978-1-4557-2834-3.00017-3
  28. Arifvianto B, Zhou J. Fabrication of metallic biomedical scaffolds with the space holder method: A review. Materials. 2014;7(5):3588-3622. doi: 10.3390/ma7053588
  29. Lowe TG, Hashim S, Wilson LA. A biomechanical study of regional endplate strength and cage morphology as it relates to structural interbody support. Spine. 2004;29(21): 2389-2394. doi: 10.1097/01.brs.0000143623.18098.e5
  30. James H. Use of cadavers to train surgeons: What are the ethical issues? J Med Ethics. 2020;46:470-471. doi: 10.1136/medethics-2019-105873
  31. ASTM F1839-08. Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments. ASTM International, West Conshohocken, PA. 2012. doi: 10.1520/F1839-08R21
  32. American Society for Testing and Materials. Standard Test Methods for Measuring Load Induced Subsidence of Intervertebral Body Fusion Device Under Static Axial Compression. ASTM International, West Conshohocken, PA. 2011. doi: 10.1520/F2267-22
  33. Closkey RF, Parsons JR, Lee CK, M F Blacksin, Zimmerman MC. Mechanics of interbody spinal fusion. Analysis of critical bone graft area. Spine. 1993;18(8):1011-1015. doi: 10.1097/00007632-199306150-00010
  34. Lim TH, Kwon H, Jeon CH, et al. Effect of endplate conditions and bone mineral density on the compressive strength of the graft–endplate interface in anterior cervical spine fusion. Spine. 2001;26(8):951-956. doi: 10.1097/00007632-200104150-00021
  35. Grant JP, Oxland TR, Dvorak MF. Mapping the structural properties of the lumbosacral vertebral endplates. Spine. 2001;26(8):889-896. doi: 10.1097/00007632-200104150-00012
  36. Hakato J, Pezowicz C, Wronski J, Bedziński R, Kasprowicz M. The process of subsidence after cervical stabilizations by cage alone, cage with plate and plate-cage. A biomechanical comparative study. Neurol Neurochir Pol. 2007;41(5):411.
  37. Marulanda GA, Nayak A, Murtagh R, Brandon G Santoni, Billys JB, Castellvi AE. A cadaveric radiographic analysis on the effect of extreme lateral interbody fusion cage placement with supplementary internal fixation on indirect spine decompression. Clin Spine Surg. 2014;27(5):263-270. doi: 10.1097/bsd.0b013e31828f9da1
  38. Schumacher Y. Comparison of two loading surface preparation methods on rat vertebral bodies for compression testing. Queen’s University (Canada). 2013. http://hdl.handle.net/1974/8359
  39. Collino RR, Kiapour A, Begley MR. Subsidence of additively-manufactured cages in foam substrates: effect of contact topology. J Biomech Eng. 2020;142(9):091003. doi: 10.1115/1.4046584
  40. Flores-Johnson EA, Li QM. Indentation into polymeric foams. Int J Solid Structur. 2010;47(16):1987-1995. doi: 10.1016/j.ijsolstr.2010.03.025
  41. Swan CC, Kosaka I. Voigt–Reuss topology optimization for structures with nonlinear material behaviors. Int J Numer Methods Eng. 1997;40(20):3785-3814. Doi: 10.1002/(SICI)1097-0207(19971030)40:20%3C3785::AID-NME240%3E3.0.CO;2-v
  42. Hosseini HS, Clouthier AL, Zysset PK. Experimental validation of finite element analysis of human vertebral collapse under large compressive strains. J Biomech Eng. 2014;136(4):041006. doi: 10.1115/1.4026409
  43. Bouzakis KD, Mitsi S, Michailidis N, et al. Loading simulation of lumbar spine vertebrae during a compression test using the finite elements method and trabecular bone strength properties, determined by means of nanoindentations. J Musculoskelet Neuronal Interact. 2004;4(2):152-158.
  44. Kurutz M, Donáth J, Gálos M, Varga Péter, Fornet B. Age-and sex-related regional compressive strength characteristics of human lumbar vertebrae in osteoporosis. J Multidiscip Healthc. 2008;1:105-121. doi: 10.2147/jmdh.s4103
  45. de Beer N, Scheffer C. Reducing subsidence risk by using rapid manufactured patient-specific intervertebral disc implants. Spine J. 2012;12(11):1060-1066. doi: 10.1016/j.spinee.2012.10.003
  46. Choudhury S, Raja D, Roy S, Datta S. Stress analysis of different types of cages in cervical vertebrae: A finite element study. IOP Conf Ser: Mater Sci Eng. 2020;912:022025. doi: 10.1088/1757-899X/912/2/022025
  47. 47. Cadman J, Sutterlin III C, Dabirrahmani D, Appleyard R. 2016; The importance of loading the periphery of the vertebral endplate. J Spine Surg. 2(3):178. doi: 10.21037/jss.2016.09.08
Conflict of interest
The authors declare no conflicts of interest.
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing