AccScience Publishing / IJB / Volume 10 / Issue 1 / DOI: 10.36922/ijb.0967
Cite this article
276
Download
1848
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Nanoclay-reinforced alginate/salecan composite inks for 3D printing applications

Raluca Ianchis1 Maria Minodora Marin2,3* Rebeca Leu Alexa2* Ioana Catalina Gifu1 Elvira Alexandrescu1 Gratiela Gradisteanu Pircalabioru4,5,6 George Mihail Vlasceanu2 George Mihail Teodorescu1 Andrada Serafim2 Silviu Preda7 Cristina Lavinia Nistor1 Cristian Petcu1
Show Less
1 National Research & Development Institute for Chemistry and Petrochemistry, ICECHIM, Spl. Independentei No. 202, 6th District, 060021 Bucharest, Romania
2 Advanced Polymer Materials Group, Politehnica University of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
3 Collagen Department, Leather and Footwear Research Institute, 93 Ion Minulescu Street, 031215 Bucharest, Romania
4 eBio-hub Research Center, University Politehnica of Bucharest - CAMPUS, 6 Iuliu Maniu Boulevard, 061344 Bucharest, Romania
5 Research Institute of University of Bucharest (ICUB), University of Bucharest, Bucharest, Romania
6 Academy of Romanian Scientists, Bucharest, Romania
7 Institute of Physical Chemistry “Ilie Murgulescu”n Academy, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
IJB 2024, 10(1), 0967 https://doi.org/10.36922/ijb.0967
Submitted: 20 May 2023 | Accepted: 27 June 2023 | Published: 27 July 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The main objective of the present work was to produce three-dimensional (3D)- printable nanocomposite hydrogels based on two kinds of marine-sourced polysaccharides doped with nanoclay with potential biomedical application. First part of the research study investigated the preparation of the polysaccharide bicomponent hydrogel formulations followed by the selection of the optimal ratio of polysaccharides concentrations which ensured proper morphostructural stability of the 3D-printed constructs. Second step aimed to generate 3D scaffolds with high printing fidelity by modulating the nanoclay amount doped within the previously selected biopolymer ink. In compliance with the additive manufacturing experiments, the alginate–salecan hydrogels enriched with the highest nanofiller concentrations demonstrated the highest suitability for 3D printing process. The morphological and structural studies confirmed the ability of the nanocomposite formulations to efficiently produce porous 3D-printed constructs with improved fidelity. The morphostructural findings underlined the implication of choosing the appropriate ratio between components, as they have a considerable impact on the functionality of printing formulations and subsequent 3D-printed structures. Hence, from the obtained results, these novel hydrogel nanocomposites inks are considered valuable biomaterials with suitable features for applications in the additive manufacturing of 3D structures with precise shape for customized regenerative therapy.

Keywords
Alginate
Salecan
Hydrogel
Nanocomposites
3D printing
Funding
This research work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS/CCCDI-UEFISCDI, project number PN-III-P2-2.1-PED-2019-4216, within PNCDI III. This work was supported by the Ministry of Research, Innovation and Digitization through Program 1— Development of the national research and development system and Subprogram 1.2—Institutional performance – Projects to finance excellence in RDI, Contract no. 4PFE/2021. This work was supported by the Romanian Ministry of Research, Innovation and Digitalization (MCID) through INCDCP ICECHIM Bucharest 2023– 2026 Core Program PN. 23.06—ChemNewDeal, Project No. 23.06.01.01. The article processing charge was funded by University Politehnica of Bucharest, PubArt program.
References
  1. Mohammed ASA, Naveed M, Jost N. Polysaccharides; classification, chemical properties, and future perspective applications in fields of pharmacology and biological medicine (a review of current applications and upcoming potentialities). J Polym Environ. 2021;29(8):2359-2371. doi: 10.1007/s10924-021-02052-2
  2. Zhang X, Kim G, Kang M, et al. Marine biomaterial-based bioinks for generating 3D printed tissue constructs. Marine Drugs. 2018;16(12):484. doi: 10.3390/md16120484
  3. Sharma A, Kaur I, Dheer D, et al. A propitious role of marine sourced polysaccharides: Drug delivery and biomedical applications. Carbohydr Polym. 2023;308:120448. doi: 10.1016/j.carbpol.2022.120448
  4. Aderibigbe B, Buyana B. Alginate in wound dressings. Pharmaceutics. 2018;10(2):42. doi: 10.3390/pharmaceutics10020042
  5. Ahmad Raus R, Wan Nawawi WMF, Nasaruddin RR. Alginate and alginate composites for biomedical applications. Asian J Pharm Sci. 2021;16(3):280-306. doi: 10.1016/j.ajps.2020.10.001
  6. Datta S, Barua R, Das J. Importance of alginate bioink for 3D bioprinting in tissue engineering and regenerative medicine, in Alginates - Recent Uses of This Natural Polymer, IntechOpen, UK. 2020. doi: 10.5772/intechopen.90426
  7. Axpe E, Oyen M. Applications of alginate-based bioinks in 3D bioprinting. IJMS. 2016;17(12):1976. doi: 10.3390/ijms17121976
  8. Mallakpour S, Azadi E, Hussain CM. State-of-the-art of 3D printing technology of alginate-based hydrogels—An emerging technique for industrial applications. Adv Colloid Interface Sci. 2021;293:102436. doi: 10.1016/j.cis.2021.102436
  9. Hazur J, Detsch R, Karakaya E, et al. Improving alginate printability for biofabrication: Establishment of a universal and homogeneous pre-crosslinking technique. Biofabrication. 2020;12(4):045004. doi: 10.1088/1758-5090/ab98e5
  10. Falcone G, Mazzei P, Piccolo A, et al. Advanced printable hydrogels from pre-crosslinked alginate as a new tool in semi solid extrusion 3D printing process. Carbohydr Polym. 2022;276:118746. doi: 10.1016/j.carbpol.2021.118746
  11. Piras CC, Smith DK. Multicomponent polysaccharide alginate-based bioinks. J Mater Chem B. 2020;8(36):8171-8188. doi: 10.1039/D0TB01005G
  12. Distler T, Solisito AA, Schneidereit D, Friedrich O, Detsch R, Boccaccini AR. 3D printed oxidized alginate-gelatin bioink provides guidance for C2C12 muscle precursor cell orientation and differentiation via shear stress during bioprinting. Biofabrication. 2020;12(4):045005. doi: 10.1088/1758-5090/ab98e4
  13. Amr M, Dykes I, Counts M, et al. 3D printed, mechanically tunable, composite sodium alginate, gelatin and Gum Arabic (SA-GEL-GA) scaffolds. Bioprinting. 2021;22:e00133. doi: 10.1016/j.bprint.2021.e00133
  14. Alruwaili M, Lopez JA, McCarthy K, Reynaud EG, Rodriguez BJ. Liquid-phase 3D bioprinting of gelatin alginate hydrogels: Influence of printing parameters on hydrogel line width and layer height. Bio-des Manuf. 2019;2(3):172-180. doi: 10.1007/s42242-019-00043-w
  15. Huang J, Fu H, Wang Z, et al. BMSCs-laden gelatin/ sodium alginate/carboxymethyl chitosan hydrogel for 3D bioprinting. RSC Adv. 2016;6(110):108423-108430. doi: 10.1039/C6RA24231F
  16. Sadeghianmaryan A, Naghieh S, Yazdanpanah Z, et al. Fabrication of chitosan/alginate/hydroxyapatite hybrid scaffolds using 3D printing and impregnating techniques for potential cartilage regeneration. Int J Biol Macromol. 2022;204:62-75. doi: 10.1016/j.ijbiomac.2022.01.201
  17. Li H, Tan YJ, Leong KF, Li L. 3D bioprinting of highly thixotropic alginate/methylcellulose hydrogel with strong interface bonding. ACS Appl Mater Interfaces. 2017;9(23):20086-20097. doi: 10.1021/acsami.7b04216
  18. Kanafi NM, Rahman NA, Rosdi NH. Citric acid cross-linking of highly porous carboxymethyl cellulose/poly(ethylene oxide) composite hydrogel films for controlled release applications. Mater Today: Proc. 2019;7(Part 2):721-731. doi: 10.1016/j.matpr.2018.12.067
  19. Aljohani W, Ullah MW, Li W, Shi L, Zhang X, Yang G. Three-dimensional printing of alginate-gelatin-agar scaffolds using free-form motor assisted microsyringe extrusion system. J Polym Res. 2018;25(3):62. doi: 10.1007/s10965-018-1455-0
  20. Wang J, Liu Y, Zhang X, et al. 3D printed agar/ calcium alginate hydrogels with high shape fidelity and tailorable mechanical properties. Polymer. 2021;214:123238. doi: 10.1016/j.polymer.2020.123238
  21. Bednarzig V, Schrüfer S, Schneider TC, Schubert DW, Detsch R, Boccaccini AR. Improved 3D printing and cell biology characterization of inorganic-filler containing alginate-based composites for bone regeneration: Particle shape and effective surface area are the dominant factors for printing performance. Int J Mol Sci. 2022;23(9):4750. doi: 10.3390/ijms23094750
  22. Bider F, Karakaya E, Mohn D, Boccaccini AR. Advantages of nanoscale bioactive glass as inorganic filler in alginate hydrogels for drug delivery and biofabrication. EJMS. 2022;2(1):33-53. doi: 10.1080/26889277.2022.2039078
  23. Shahbazi M, Jäger H, Ahmadi SJ, Lacroix M. Electron beam crosslinking of alginate/nanoclay ink to improve functional properties of 3D printed hydrogel for removing heavy metal ions. Carbohydr Polym. 2020;240:116211. doi: 10.1016/j.carbpol.2020.116211
  24. Ahlfeld T, Cidonio G, Kilian D, et al. Development of a clay based bioink for 3D cell printing for skeletal application. Biofabrication. 2017;9(3):034103. doi: 10.1088/1758-5090/aa7e96
  25. Alexa RL, Iovu H, Trica B, et al. Assessment of naturally sourced mineral clays for the 3D printing of biopolymer-based nanocomposite inks. Nanomaterials. 2021;11(3):703. doi: 10.3390/nano11030703
  26. Cidonio G, Glinka M, Kim YH, et al. Nanoclay-based 3D printed scaffolds promote vascular ingrowth ex vivo and generate bone mineral tissue in vitro and in vivo. Biofabrication. 2020;12(3):035010. doi: 10.1088/1758-5090/ab8753
  27. Qi X, Wei W, Shen J, Dong W. Salecan polysaccharide-based hydrogels and their applications: A review. J Mater Chem B. 2019;7(16):2577-2587. doi: 10.1039/C8TB03312A
  28. Fu R, Li J, Zhang T, et al. Salecan stabilizes the microstructure and improves the rheological performance of yogurt. Food Hydrocoll. 2018;81:474-480. doi: 10.1016/j.foodhyd.2018.03.034
  29. Fan Z, Cheng P, Gao Y, et al. Understanding the rheological properties of a novel composite salecan/gellan hydrogels, Food Hydrocolloids. 2022;123(2):107162 doi: 10.1016/j.foodhyd.2021.107162
  30. Zhang Q, Ren T, Gan J, et al. Synthesis and rheological characterization of a novel salecan hydrogel. Pharmaceutics; 2022;14(7):1492. doi: 10.3390/pharmaceutics14071492
  31. Fan Z, Cheng P, Yin G, Wang Z, Han J. In situ forming oxidized salecan/gelatin injectable hydrogels for vancomycin delivery and 3D cell culture. J Biomater Sci. 2020;31(6):762-780. doi: 10.1080/09205063.2020.1717739
  32. Gan J, Sun L, Guan C, et al. Preparation and properties of salecan-soy protein isolate composite hydrogel induced by thermal treatment and transglutaminase. Int J Mol Sci. 2022;23(16):9383. doi: 10.3390/ijms23169383
  33. Qi X, Su T, Tong X, et al. Facile formation of salecan/agarose hydrogels with tunable structural properties for cell culture. Carbohydr Polym. 2019;224:115208. doi: 10.1016/j.carbpol.2019.115208
  34. Hu X, Wang Y, Zhang L, Xu M, Dong W, Zhang J. Redox/pH dual stimuli-responsive degradable Salecan-g-SS-poly(IA-co-HEMA) hydrogel for release of doxorubicin. Carbohydr Polym. 2017;155:242-251. doi: 10.1016/j.carbpol.2016.08.077
  35. Qi X, Wei W, Li J, et al. Design of salecan-containing semi- IPN hydrogel for amoxicillin delivery. Mater Sci Eng C. 2017;75:487-494. doi: 10.1016/j.msec.2017.02.089
  36. Wei W, Hu X, Qi X, et al. A novel thermo-responsive hydrogel based on salecan and poly(N-isopropylacrylamide): Synthesis and characterization. Colloids Surf B: Biointerfaces. 2015;125:1-11. doi: 10.1016/j.colsurfb.2014.10.057
  37. Munteanu T, Ninciuleanu CM, Gifu IC, et al. The effect of clay type on the physicochemical properties of new hydrogel clay nanocomposites, IntechOpen, UK. 2018. doi: 10.5772/intechopen.74478
  38. Florian PE, Icriverzi M, Ninciuleanu CM, et al. Salecan-clay based polymer nanocomposites for chemotherapeutic drug delivery systems; characterization and in vitro biocompatibility studies. Materials. 2020;13(23):5389. doi: 10.3390/ma13235389
  39. Ianchis R, Alexa RL, Gifu IC, et al. Novel green crosslinked salecan hydrogels and preliminary investigation of their use in 3D printing. Pharmaceutics. 2023;15(2):373. doi: 10.3390/pharmaceutics15020373
  40. Ianchis R, Ninciuleanu C, Gifu IC, et al. Hydrogel-clay nanocomposites as carriers for controlled release. CMC. 2018;25(6):919-954. doi: 10.2174/0929867325666180831151055
  41. Jafarbeglou M, Abdouss M, Shoushtari AM, Jafarbeglou M. Clay nanocomposites as engineered drug delivery systems. RSC Adv. 2016;6(55):50002-50016. doi: 10.1039/C6RA03942A
  42. Marin MM, Ianchis R, Leu Alexa R, et al. Development of new collagen/clay composite biomaterials. Int J Mol Sci. 2022;23(1):401. doi: 10.3390/ijms23010401
  43. Gaharwar AK, Cross LM, Peak CW, et al. 2D nanoclay for biomedical applications: regenerative medicine, therapeutic delivery, and additive manufacturing. Adv Mater. 2019;31(23):1900332. doi: 10.1002/adma.201900332
  44. Ninciuleanu CM, Ianchiş R, Alexandrescu E, et al. The effects of monomer, crosslinking agent, and filler concentrations on the viscoelastic and swelling properties of poly(methacrylic acid) hydrogels: A comparison. Materials (Basel). 2021;14(9):2305. doi: 10.3390/ma14092305
  45. Fialová L, Capek I, Ianchis R, Corobea MC, Donescu D, Berek D. Kinetics of styrene and butyl acrylate polymerization in anionic microemulsions in presence of layered silicates. Polym J. 2008;40(2):163-170. doi: 10.1295/polymj.PJ2007160
  46. Fan D, Li Y, Wang X, et al. Progressive 3D printing technology and its application in medical materials. Front Pharmacol. 2020;11:122. doi: 10.3389/fphar.2020.00122
  47. Ghilan A, Chiriac AP, Nita LE, Rusu AG, Neamtu I, Chiriac VM. Trends in 3D printing processes for biomedical field: Opportunities and challenges. J Polym Environ. 2020;28(5):1345-1367. doi: 10.1007/s10924-020-01722-x
  48. Jiang T, Munguia-Lopez JG, Flores-Torres S, Kort-Mascort J, Kinsella JM. Extrusion bioprinting of soft materials: An emerging technique for biological model fabrication. Appl Phys Rev. 2019;6(1):011310. doi: 10.1063/1.5059393
  49. Jiang Z, Diggle B, Tan ML, Viktorova J, Bennett CW, Connal LA. Extrusion 3D printing of polymeric materials with advanced properties. Adv Sci. 2020;7(17):2001379. doi: 10.1002/advs.202001379
  50. Joas S, Tovar G, Celik O, Bonten C, Southan A. Extrusion-based 3D printing of poly(ethylene glycol) diacrylate hydrogels containing positively and negatively charged groups. Gels. 2018;4(3):69. doi: 10.3390/gels4030069
  51. Suntornnond R, Ng WL, Huang X, Yeow CHE, Yeong WY. Improving printability of hydrogel-based bio-inks for thermal inkjet bioprinting applications via saponification and heat treatment processes. J Mater Chem B. 2022;10(31):5989-6000. doi: 10.1039/D2TB00442A
  52. Ng WL, Lee JM, Zhou M, et al. Vat polymerization-based bioprinting—process, materials, applications and regulatory challenges. Biofabrication. 2020;12(2):022001. doi: 10.1088/1758-5090/ab6034
  53. Coppola B, Cappetti N, Di Maio L, Scarfato P, Incarnato L. 3D printing of PLA/clay nanocomposites: Influence of printing temperature on printed samples properties. Materials. 2018;11(10):1947. doi: 10.3390/ma11101947
  54. Kianfar F, Dempster N, Gaskell E, Hutcheon MR and GA. Lyophilised biopolymer-clay hydrogels for drug delivery. MJNDR. 2017;1(1):1-9. doi: 10.18689/mjndr-1000101
  55. Chaudhuri SD, Dey A, Upganlawar S, Chakrabarty D. Influence of clay concentration on the absorption and rheological attributes of modified cellulose /acrylic acid based hydrogel and the application of such hydrogel. Mater Chem Phys. 2022;282:125942. doi: 10.1016/j.matchemphys.2022.125942
  56. Kumar A, Won SY, Sood A, et al. Triple-networked hybrid hydrogels reinforced with montmorillonite clay and graphene nanoplatelets for soft and hard tissue regeneration. IJMS. 2022;23(22):14158. doi: 10.3390/ijms232214158
  57. Leu Alexa R, Ianchis R, Savu D, et al. 3D printing of alginate-natural clay hydrogel-based nanocomposites. Gels. 2021;7(4):211. doi: 10.3390/gels7040211
  58. Stloukal P, Pekařová S, Kalendova A, et al. Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process. Waste Manag. 2015;42:31-40. doi: 10.1016/j.wasman.2015.04.006
  59. Pluta M, Paul MA, Alexandre M, Dubois P. Plasticized polylactide/clay nanocomposites. II. The effect of aging on structure and properties in relation to the filler content and the nature of its organo-modification. J Polym Sci B Polym Phys. 2006;44(2):312-325. doi: 10.1002/polb.20697
  60. Serafin A, Culebras M, Collins MN. Synthesis and evaluation of alginate, gelatin, and hyaluronic acid hybrid hydrogels for tissue engineering applications. Int J Biol Macromol. 2023;233:123438. doi: 10.1016/j.ijbiomac.2023.123438
  61. Serafin A, Murphy C, Rubio MC, Collins MN. Printable alginate/gelatin hydrogel reinforced with carbon nanofibers as electrically conductive scaffolds for tissue engineering. Mater Sci Eng C. 2021;122:111927. doi: 10.1016/j.msec.2021.111927
  62. Dávila JL, d’Ávila MA. Rheological evaluation of Laponite/ alginate inks for 3D extrusion-based printing. Int J Adv Manuf Technol. 2019;101(1-4):675-686. doi: 10.1007/s00170-018-2876-y
  63. Hickey RJ, Pelling AE. Cellulose biomaterials for tissue engineering. Front Bioeng Biotechnol. 2019;7:45. doi: 10.3389/fbioe.2019.00045
  64. Saveleva MS, Eftekhari K, Abalymov A, et al. Hierarchy of hybrid materials—The place of inorganics-in-organics in it, their composition and applications. Front Chem. 2019;7:179. doi: 10.3389/fchem.2019.00179
  65. Sachot N, Engel E, Castano O. Hybrid organic-inorganic scaffolding biomaterials for regenerative therapies. COC. 2014;18(18):2299-2314. doi: 10.2174/1385272819666140806200355
  66. Handorf AM, Zhou Y, Halanski MA, Li WJ. Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis. 2015;11(1):1-15. doi: 10.1080/15476278.2015.1019687
  67. Marin MM, Gifu IC, Pircalabioru GG, et al. Microbial polysaccharide-based formulation with silica nanoparticles; A new hydrogel nanocomposite for 3D printing. Gels. 2023;9(5):425. doi: 10.3390/gels9050425
  68. Hu X, Yan L, Wang Y, Xu M. Microwave-assisted synthesis of nutgall tannic acid–based salecan polysaccharide hydrogel for tunable release of β-lactoglobulin. Int J Biol Macromol. 2020;161:1431-1439. doi: 10.1016/j.ijbiomac.2020.07.250
  69. Hu X, Wang Y, Zhang L, Xu M, Zhang J, Dong W. Design of a pH-sensitive magnetic composite hydrogel based on salecan graft copolymer and Fe3O4@SiO2 nanoparticles as drug carrier. Int J Biol Macromol. 2018;107:1811-1820. doi: 10.1016/j.ijbiomac.2017.10.043
  70. Mollah MZI, Faruque MRI, Bradley DA, Khandaker MU, Assaf SA. FTIR and rheology study of alginate samples: Effect of radiation. Radiat Phys Chem. 2023;202:110500. doi: 10.1016/j.radphyschem.2022.110500
  71. Zheng H, Yang J, Han S. The synthesis and characteristics of sodium alginate/graphene oxide composite films crosslinked with multivalent cations. J Appl Polym Sci. 2016;133(27):43616. doi: 10.1002/app.43616
  72. Xinyu H, Linlin Y, Man X, Lihua T. Photo-degradable salecan/xanthan gum ionic gel induced by iron (III) coordination for organic dye decontamination. Int J Biol Macromol. 2023;238:124132. doi: 10.1016/j.ijbiomac.2023.124132
  73. Qi X, Su T, Zhang M, et al. Macroporous hydrogel scaffolds with tunable physicochemical properties for tissue engineering constructed using renewable polysaccharides. ACS Appl Mater Interfaces. 2020;12(11):13256-13264. doi: 10.1021/acsami.9b20794
  74. Fan Z, Cheng P, Wang D, Zhao Y, Wang Z, Han J. Design and investigation of salecan/chitosan hydrogel formulations with improved antibacterial performance and 3D cell culture function. J Biomater Sci. 2020;31(17):2268-2284. doi: 10.1080/09205063.2020.1800907
  75. Foudazi R, Zowada R, Manas-Zloczower I, Feke DL. Porous hydrogels: Present challenges and future opportunities. Langmuir. 2023;39(6):2092-2111. doi: 10.1021/acs.langmuir.2c02253
  76. 76. Lee KY, Mooney DJ. Alginate: Properties and biomedical applications. Prog Polym Sci. 2012;37(1):106-126. doi: 10.1016/j.progpolymsci.2011.06.003
Conflict of interest
The authors declare no conflict of interest.
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing