Examining the critical aspects of gas turbine blade failures caused by erosion using computational models: A comprehensive review
Gas turbines play a key role in industries such as aeronautics, maritime, and power generation, but high operating temperatures in these settings would expose critical components, particularly turbine blades, to significant wear. Among the multiple failure modes, erosion induced by high-velocity particle impacts is identified as one of the primary causes of turbine blade degradation. This review provides a comprehensive analysis of erosion-induced failure mechanisms in gas turbine blades, emphasizing recent advancements in understanding erosion processes, material degradation, and mitigation strategies. Key areas covered include the impacts of solid particle erosion, the effectiveness of erosion-resistant coatings, and the role of superalloys designed for high-temperature resilience. Furthermore, this review explores how computational models, such as machine learning, computational fluid dynamics, and finite element analysis, contribute to predicting erosion patterns and designing improved turbine components. By integrating experimental findings and computational methods, this review aims to inform future research and guide the development of advanced materials and protective strategies to enhance turbine blade durability in demanding environments.
- Rodriguez E, Flores M, Pérez A, et al. Erosive wear by silica sand on AISI H13 and 4140 steels. Wear. 2009;267(11):2109-2115. doi: 10.1016/j.wear.2009.08.009
- Mourad AHI, Almomani A, Sheikh IA, Elsheikh AH. Failure analysis of gas and wind turbine blades: A review. Eng Fail Anal. 2003;146:107107. doi: 10.1016/j.engfailanal.2023.107107
- Alqallaf J, Ali N, Teixeira JA, Addali A. Solid particle erosion behaviour and protective coatings for gas turbine compressor blades-A review. Process. 2020;8(8):984. doi: 10.3390/pr8080984
- Singh S, Kharub M, Singh J, Singh J, Jangid V. Brief survey on mechanical failure and preventive mechanism of turbine blades. Mater Today Proc. 2012;38:2515-2524. doi: 10.1016/j.matpr.2020.07.546
- Fathyunes L, Mohtadi-Bonab MA. A review on the corrosion and fatigue failure of gas turbines. Metals. 2023;13(4):701. doi: 10.3390/met13040701
- Pauzi AA, Ghazali MJW, Zamri WFH, Rajabi A. Wear characteristics of superalloy and hardface coatings in gas turbine applications-A review. Metals. 2020;10(9):1171. doi: 10.3390/met10091171
- Mathioudakis K, Alexiou A, Aretakis N, Romesis C. Signatures of compressor and turbine faults in gas turbine performance diagnostics: A review. Energies. 2024;17(14):3409. doi: 10.3390/en17143409
- Wang J, Zheng X. Review of geometric uncertainty quantification in gas turbines. J Eng Gas Turbines Power. 2020;142(7):070801. doi: 10.1115/1.4047179
- Khushbash S, Hameed A, Mumtaz A, Khan HA, Shahzad A. Investigation of temperature assisted corrosion failure of an aircraft turbine blade. Eng Fail Anal. 2024;2024:108909. doi: 10.1016/j.engfailanal.2024.108909
- Wood RJ, Lu P. Leading edge topography of blades-a critical review. Surf Topogr Metrol Prop. 2021;9(2):023001. doi: 10.1088/2051-672X/abf81f/meta
- Fang G, Gao X, Song Y. A review on ceramic matrix composites and environmental barrier coatings for aero-engine: Material development and failure analysis. Coatings. 2023;13(2):357. doi: 10.3390/coatings13020357
- Alshahrani R, Yenugula M, Algethami H, et al. Establishing the fuzzy integrated hybrid MCDM framework to identify the key barriers to implementing artificial intelligence-enabled sustainable cloud system in an IT industry. Exp Syst Appl. 2023;238:121732. doi: 10.1016/j.eswa.2023.121732
- Song X, Xing Z, Jia Y, et al. Review on the damage and fault diagnosis of wind turbine blades in the germination stage. Energies. 2022;15(20):7492. doi: 10.3390/en15207492
- Kablov EN, Muboyadzhyan SA. Erosion-resistant coatings for gas turbine engine compressor blades. Russ Metall. 2017;494-504. doi: 10.1134/S0036029517060118
- Ridha WKH, Kashyzadeh KR, Ghorbani S. Common failures in hydraulic Kaplan turbine blades and practical solutions. Mater. 2023;16(9):3303. doi: 10.3390/ma16093303
- Shi L, Guo S, Yu P, Zhang X, Xiong J. A review on leading-edge erosion morphology and performance degradation of aero-engine fan and compressor blades. Energies. 2023;16(7):3068. doi: 10.3390/en16073068
- Mishnaevsky L Jr. Root causes and mechanisms of failure of wind turbine blades: Overview. Materials (Basel). 2022;15(9):2959. doi: 10.3390/ma15092959
- Hassan MK, Sindi WM, Mohamed A, Backar AH. Failure analysis of gas turbine in first stage turbine blades in an urban power plant. J Eng Therm Sci. 2024;4. doi: 10.21595/jets.2024.23922
- Blinov VL, Zubkov IS, Bogdanets SV, Komarov OV, Deryabin GA. Studies of erosive wear of the blading in axial compressors of gas turbines. Therm Eng. 2023;70(6):430-442. doi: 10.1134/S0040601523060022
- Mishra RK, Kumar V. Investigation of turbine blade failure in a turboprop engine: A case study. J Fail Anal Prev. 2022;22(2):458-463. doi: 10.1007/s11668-022-01334-8
- Pugh K, Nash JW, Reaburn G, Stack MM. On analytical tools for assessing the raindrop erosion of wind turbine blades. Renew Sustain Energy Rev. 2021;137:110611. doi: 10.1016/j.rser.2020.110611
- Rani P, Agrawal AK. Failure analysis of a low-pressure stage steam turbine blade. Nondestruct Test Eval. 2023;38(4):668-682. doi: 10.1080/10589759.2022.2156503
- Bonu V, Barshilia HC. High-temperature solid particle erosion of aerospace components: Its mitigation using advanced nanostructured coating technologies. Coatings. 2022;12(12):1979. doi: 10.3390/coatings12121979
- Sabri K, Gaceb M, Si-Chaib MO. Analysis of a directionally solidified (DS) GTD-111 turbine blade failure. J Fail Anal Prev. 2020;20:1162-1174. doi: 10.1007/s11668-020-00920-y
- Wang W, Yan Y, Zhou Y, Cui J. Review of advanced effusive cooling for gas turbine blades. Energies. 2022;15(22):8568. doi: 10.3390/en15228568
- Yenugula M, Goswami SS, Kaliappan S, et al. Analyzing the critical parameters for implementing sustainable AI cloud system in an IT industry using AHP-ISM-MICMAC integrated hybrid MCDM model. Mathematics. 2023;11(15): 3367. doi: 10.3390/math11153367
- Boggarapu V, Gujjala R, Ojha S. A critical review on erosion wear characteristics of polymer matrix composites. Mater Res Exp. 2020;7(2):022002. doi: 10.1088/2053-1591/ab6e7b/meta
- Chowdhury TS, Mohsin FT, Tonni MM, Mita MNH, Ehsan MM. A critical review on gas turbine cooling performance and failure analysis of turbine blades. Int J Thermofluids. 2023;18:100329. doi: 10.1016/j.ijft.2023.100329
- Mirhosseini AM, Nazari SA, Pour AM, Haghighi SE, Zareh M. Failure analysis of first stage nozzle in a heavy-duty gas turbine. Eng Fail Anal. 2020;109:104303. doi: 10.1016/j.engfailanal.2019.104303
- Talebi SS, Tousi AM, Madadi A. The effects of turbine blade erosion on the gas path measurements and performance of micro gas turbines. AUT J Mech Eng. 2023;7(4):419-438.
- Chen K, Seo D, Canteenwalla P. The effect of high-temperature water vapour on degradation and failure of hot section components of gas turbine engines. Coatings. 2021;11(9):1061. doi: 10.3390/coatings11091061
- Prashar G, Vasudev H, Thakur L. A comprehensive review on the hot corrosion and erosion performance of thermal barrier coatings. Prot Metals Phys Chem Surf. 2023;59(3):461-492. doi: 10.1134/S2070205122060132
- Wang W, Xue Y, He C, Zhao Y. Review of the typical damage and damage-detection methods of large wind turbine blades. Energies. 2022;15(15):5672. doi: 10.3390/en15155672
- Sławiński D, Ziółkowski P, Badur J. Thermal failure of a second rotor stage in heavy duty gas turbine. Eng Fail Anal. 2020;115:104672. doi: 10.1016/j.engfailanal.2020.104672
- Yang P, Yue W, Li J, Bin G, Li C. Review of damage mechanism and protection of aero-engine blades based on impact properties. Eng Fail Anal. 2022;140:106570. doi: 10.1016/j.engfailanal.2022.106570
- Błachnio J, Spychała J, Zasada D. Analysis of structural changes in a gas turbine blade as a result of high temperature and stress. Eng Fail Anal. 2021;127:105554. doi: 10.1016/j.engfailanal.2021.105554
- Szczepankowski A, Przysowa R. Thermal degradation of turbine components in a military turbofan. Eng Fail Anal. 2022;134:106088. doi: 10.1016/j.engfailanal.2022.106088
- Hoksbergen N, Akkerman R, Baran I. The Springer model for lifetime prediction of wind turbine blade leading edge protection systems: A review and sensitivity study. Materials (Basel). 2022;15(3):1170. doi: 10.3390/ma15031170
- Bera P, Lakshmi RV, Pathak SM, Bonu V, Mishnaevsky L Jr., Barshilia HC. Recent progress in the development and evaluation of rain and solid particle erosion resistant coatings for leading edge protection of wind turbine blades. Polym Rev. 2024;64(2):639-689. doi: 10.1080/15583724.2023.2270050
- Peng H, Zhang H, Fan Y, Shangguan L, Yang Y. A review of research on wind turbine bearings’ failure analysis and fault diagnosis. Lubricants. 2022;11(1):14. doi: 10.3390/lubricants11010014
- Alqallaf J, Teixeira JA. Quantifying the economic benefits of using erosion protective coatings in a low-pressure compressor (aero-engine): A case study evaluation. Process. 2022;10(2):385. doi: 10.3390/pr10020385
- Goswami SS, Banerjee B, Das S, Mondal S, Halder R. Risk assessment and management strategies for turbine blade failures in power generation systems. In: Advances in Additive Manufacturing Technologies. United States: CRC Press; 2024.
- Rivaz A, Anijdan SM, Moazami-Goudarzi M. Failure analysis and damage causes of a steam turbine blade of 410 martensitic stainless steel after 165,000 h of working. Eng Fail Anal. 2020;113:104557. doi: 10.1016/j.engfailanal.2020.104557
- Molinari JF, Ortiz M. A study of solid-particle erosion of metallic targets. Int J Impact Eng. 2002;27(4):347-358. doi: 10.1016/S0734-743X(01)00055-0
- Rivaz A, Anijdan SM, Moazami-Goudarzi M, Ghohroudi AN, Jafarian HR. Damage causes and failure analysis of a steam turbine blade made of martensitic stainless steel after 72,000 h of working. Eng Fail Anal. 2022;131:105801. doi: 10.1016/j.engfailanal.2021.105801
- Wei Z, Zhang S, Jafari S, Nikolaidis T. Gas turbine aero-engines real time on-board modelling: A review, research challenges, and exploring the future. Prog Aerosp Sci. 2020;121:100693. doi: 10.1016/j.paerosci.2020.100693
- Mortazavi SA, Rahi A, Jafari SM. Effect of damping element damage under erosion on vibration behavior of an industrial gas turbine group-blades. AUT J Mech Eng. 2024;8(2):181-198. doi: 10.22060/ajme.2024.23009.6090
- Prashar G, Vasudev H. Application of artificial neural networks in the prediction of slurry erosion performance: A comprehensive review. Int J Interact Des Manuf. 2024:1-19. doi: 10.1007/s12008-024-02014-7
- Ahsan S, Lemma TA, Hashmi MB, Liang X. Investigation of operational settings, environmental conditions, and faults on the gas turbine performance. Meas Sci Technol. 2024;35(12):125902. doi: 10.1088/1361-6501/ad678c/meta
- Rezamand M, Kordestani M, Carriveau R, Ting DSK, Orchard ME, Saif M. Critical wind turbine components prognostics: A comprehensive review. IEEE Trans Inst Meas. 2020;69(12):9306-9328. doi: 10.1109/TIM.2020.3030165
- Li D, Jiang P, Sun F, Yuan X, Zhang J, Cao X. Water-droplet erosion behavior of high-velocity oxygen-fuel-sprayed coatings for steam turbine blades. Corros Rev. 2022;40(1):39-49. doi: 10.1515/corrrev-2021-0049
- Zainuddin NS, Zamri WFHW, Omar MZ, Bin Md Din MF. Comprehensive insight into the failure mechanisms, modes, and material selection of steam turbine blades. J Curr Sci Technol. 2024;14(3):47-47. doi: 10.59796/jcst.V14N3.2024.47
- Olabi AG, Wilberforce T, Elsaid K, et al. A review on failure modes of wind turbine components. Energies. 2021;14(17):5241. doi: 10.3390/en14175241
- Han L, Guo C, Osman FK, Li D, Wang H, Liu Y, Qin D. Effect and mechanism of erosion in Pelton turbine and case studies-A review. Phys Fluid. 2024;36(3):031301. doi: 10.1063/5.0191051
- Hamed AA, Tabakoff W, Rivir RB, Das K, Arora P. Turbine blade surface deterioration by erosion. J Turbomach. 2005;127(3):445-452. doi: 10.1115/1.1860376
- Taherkhani B, Anaraki AP, Kadkhodapour J, Farahani NK, Tu H. Erosion due to solid particle impact on the turbine blade: experiment and simulation. J Fail Anal Prev. 2019;19:1739-1744. doi: 10.1007/s11668-019-00775-y
- Shin D, Hamed A. Influence of micro-structure on erosion resistance of plasma sprayed 7YSZ thermal barrier coating under gas turbine operating conditions. Wear. 2018;396- 397:34-47. doi: 10.1016/j.wear.2017.11.005
- Branco JRT, Gansert R, Sampath R, Berndt CC, Herman H. Solid particle erosion of plasma sprayed ceramic coatings. Mater Res. 2004;7(1):147-153. doi: 10.1590/S1516-14392004000100020
- Zhu D, Miller RA, Kuczmarski MA. Development and life prediction of erosion resistant turbine low conductivity thermal barrier coatings. In: 65th Annual Forum and Technology Display; 2009. Available from: https://ntrs.nasa. gov/api/citations/20100011004/downloads/20100011004. pdf [Last accessed on 2024 Aug 25].
- Khan MS, Sasikumar C. A water droplet erosion-induced fatigue crack propagation and failure in X20Cr13 martensitic stainless-steel turbines working at low pressure. Eng Fail Anal. 2022;139:106491. doi: 10.1016/j.engfailanal.2022.106491
- Poursaeidi E, Sigaroodi MJ, Aieneravaie M. Failure investigation of fatigue crack initiation and propagation in compressor blade. Eng Fail Anal. 2024;162:108370. doi: 10.1016/j.engfailanal.2024.108370
- Sun S, Wang T, Chu F. In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures. Renew Sustain Energy Rev. 2022;160:112326. doi: 10.1016/j.rser.2022.112326
- Sethy NK, Yenugula M, Goswami SS, Bhola A, Behera DK. Selection of ideal IoT based overhead conductor for optimizing the performance of a small hydropower project. J Nano Electron Phys. 2023;15(4):04006. doi: 10.21272/jnep.15(4).04006
- Kumar P, Singal SK, Gohil PP. A technical review on combined effect of cavitation and silt erosion on Francis turbine. Renew Sustain Energ Rev. 2024;190:114096. doi: 10.1016/j.rser.2023.114096
- Zhou D, Wei T, Huang D, Li Y, Zhang H. A gas path fault diagnostic model of gas turbines based on changes of blade profiles. Eng Fail Anal. 2020;109:104377. doi: 10.1016/j.engfailanal.2020.104377
- Lv B, Jin X, Cao J, Xu B, Wang Y, Fang D. Advances in numerical modeling of environmental barrier coating systems for gas turbines. J Eur Ceram Soc. 2020;40(9):3363-3379. doi: 10.1016/j.jeurceramsoc.2020.03.036
- Bin G, Li C, Li J, Chen A. Erosion-damage-induced vibration response of aero-gas generator rotor system. Mech Syst Signal Process. 2023;195:110298. doi: 10.1016/j.ymssp.2023.110298
- Quintanar-Gago DA, Nelson PF, Díaz-Sánchez Á, Boldrick MS. Assessment of steam turbine blade failure and damage mechanisms using a Bayesian network. Reliab Eng Syst Saf. 2021;207:107329. doi: 10.1016/j.ress.2020.107329
- Kishore K, Das S, Mandal H, et al. Failure investigation of a blast furnace top gas recovery turbine: Chronology and mechanism. J Fail Anal Prev. 2020;20:1376-1387. doi: 10.1007/s11668-020-00951-5
- García-Martínez M, Del Hoyo Gordillo JC, González MPV, Muro AP, Caballero BG. Failure study of an aircraft engine high pressure turbine (HPT) first stage blade. Eng Fail Anal. 2023;149:107251. doi: 10.1016/j.engfailanal.2023.107251
- Stokes JL, Presby MJ. A dynamic testing approach for particulate erosion-corrosion for gas turbine coatings. J Eng Gas Turbines Power. 2024;146(11):111006. doi: 10.1115/1.4065886
- Anand VGK, Parammasivam KM. Thermal barrier coated surface modifications for gas turbine film cooling: A review. J Therm Anal Calorim. 2021;146(2):545-580. doi: 10.1007/s10973-020-10032-2
- Faqihi B, Ghaith F. A comprehensive review and evaluation of heat recovery methods from gas turbine exhaust systems. Int J Thermofluid. 2023;18:100347. doi: 10.1016/j.ijft.2023.100347
- Alqallaf J, Teixeira JA. Numerical study of effects of solid particle erosion on compressor and engine performance. Result Eng. 2022;15:100462. doi: 10.1016/j.rineng.2022.100462
- Singh J, Chohan JS, Hlail SH, Saxena KK. Future perspective on the flow disturbances in Francis turbine caused by sediment particles and implementation of protection technique. Mater Today Proc. 2023. doi: 10.1016/j.matpr.2023.09.118
- Rajabinezhad M, Bahrami A, Mousavinia M, Seyedi SJ, Taheri P. Corrosion-fatigue failure of gas-turbine blades in an oil and gas production plant. Materials (Basel). 2020;13(4):900. doi: 10.3390/ma13040900
- Shin D, Hamed A. Experimental investigation and parametric DOE appraisal of thermal barrier coating high temperature erosion. In: 54th AIAA Aerospace Sciences Meeting; 2016. doi: 10.2514/6.2016-1886
- Kedir N, Gong C, Sanchez L, et al. Erosion in gas-turbine grade ceramic matrix composites (CMCs). Am Soc Mech Eng, 2018;14. doi: 10.1115/GT2018-75827