AccScience Publishing / GTM / Online First / DOI: 10.36922/gtm.4433
Cite this article
6
Download
100
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
BRIEF REPORT

Influence of neodymium-doped yttrium aluminum garnet laser exposure time on cytokine secretion in lipopolysaccharide-challenged rat peripheral blood mononuclear cells

Sarah M. Vargas1 Michael A. Washington2 Megan E. Bunting3 Rachel J. Duval4 Claudia P. Millan3 Kimberly Ann Inouye3 Adam R. Lincicum3 Brian W. Stancoven3 Thomas M. Johnson3
Show Less
1 Department of Periodontics, Army Postgraduate Dental School, Postgraduate Dental College, Uniformed Services University, Fort Liberty, NC, USA
2 Department of Clinical Investigation, Dwight David Eisenhower Army Medical Center, Fort Eisenhower, GA, USA
3 Department of Periodontics, Army Postgraduate Dental School, Postgraduate Dental College, Uniformed Services University, Fort Eisenhower, GA, USA
4 Department of Periodontics, United States Army Dental Activity, Fort Liberty, NC, USA
Global Translational Medicine, 4433 https://doi.org/10.36922/gtm.4433
Submitted: 3 August 2024 | Accepted: 23 October 2024 | Published: 15 November 2024
(This article belongs to the Special Issue Soft and Hard Tissues Reconstruction in Dentistry)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Multiple investigators have suggested that infrared laser energy facilitates hard and soft tissue wound healing through various mechanisms, including the suppression of inflammation. This study investigated the influence of neodymium-doped yttrium aluminum garnet (Nd:YAG) laser exposure time on pro-inflammatory cytokine/chemokine concentrations in lipopolysaccharide (LPS)-stimulated rat peripheral blood mononuclear cells (PBMCs). Cultured rat PBMCs were stimulated with various LPS concentrations (0, 10, 100, or 1000 ng/mL) and treated with Nd:YAG laser irradiation for 0 (control), 30, 45, or 60 s. For these experiments, the average power, pulse duration, and repetition rate remained constant at 5 W, 100 μs, and 20 Hz, respectively. Luminex magnetic microsphere immunoassays were used to compare the secretion of 27 inflammatory mediators from LPS-stimulated PBMCs in laser-irradiated versus control groups. Two-way analysis of variance was used to compare the main effects of laser exposure time and LPS concentration on cytokine/chemokine concentrations and evaluate the potential interaction between these factors. Four pro-inflammatory cytokines – tumor necrosis factor-α, macrophage inflammatory protein (MIP)-1α, MIP-2, and interferon gamma-induced protein-10 – exhibited a trend of reduced secretion in laser-irradiated cultures. The effect appeared more pronounced at longer exposure times (45 and 60 s). However, none of the 27 inflammatory mediators exhibited statistically significant reductions in concentrations in laser-irradiated cultures versus control cultures. These observations do not support a robust anti-inflammatory effect of Nd:YAG laser irradiation. Further studies should explore the potential impact of Nd:YAG laser irradiation on cytotoxicity and cellular growth kinetics and extend across a range of irradiation parameters and cell types.

Keywords
Lasers
Leukocytes
Mononuclear
Inflammation
Cytokines
Low-level light therapy
Lipopolysaccharide
Funding
The Defense Health Agency (United States) funded this research entirely. The authors received no extramural funding.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Gusain P, Paliwal R, Joga R, Gupta N, Singh V. Ancient light therapies: A boon to medical science. Sci Cult. 2016;82:231-236.

 

  1. Anders JJ, Lanzafame RJ, Arany PR. Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg. 2015;33:183-184. doi: 10.1089/pho.2015.9848

 

  1. Townes CH. The first laser. In: A Century of Nature: Twenty- One Discoveries that Changed Science and the World. London: University of Chicago Press; 2010. p. 107.

 

  1. Mester E, Szende B, Gartner P. The effect of laser beams on the growth of hair in mice. Radiobiol Radiother (Berl). 1968;9:621-626.

 

  1. Carroll JD, Milward MR, Cooper PR, Hadis M, Palin WM. Developments in low level light therapy (LLLT) for dentistry. Dent Mater. 2014;30:465-475. doi: 10.1016/j.dental.2014.02.006

 

  1. Enwemeka CS. Laser biostimulation of healing wounds: Specific effects and mechanisms of action. J Orthop Sports Phys Ther. 1988;9:333-338. doi: 10.2519/jospt.1988.9.10.333

 

  1. Suter VG, Sjölund S, Bornstein MM. Effect of laser on pain relief and wound healing of recurrent aphthous stomatitis: A systematic review. Lasers Med Sci. 2017;32:953-963. doi: 10.1007/s10103-017-2184-z

 

  1. Qamruddin I, Alam MK, Mahroof V, Fida M, Khamis MF, Husein A. Effects of low-level laser irradiation on the rate of orthodontic tooth movement and associated pain with self-ligating brackets. Am J Orthod Dentofacial Orthop. 2017;152:622-630. doi: 10.1016/j.ajodo.2017.03.023

 

  1. Jang H, Lee H. Meta-analysis of pain relief effects by laser irradiation on joint areas. Photomed Laser Surg. 2012;30:405-417. doi: 10.1089/pho.2012.3240

 

  1. Chow RT, Johnson MI, Lopes-Martins RA, Bjordal JM. Efficacy of low-level laser therapy in the management of neck pain: A systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet. 2009;374:1897-1908. doi: 10.1016/S0140-6736(09)61522-1

 

  1. Bjordal JM, Lopes-Martins RA, Joensen J, et al. A systematic review with procedural assessments and meta-analysis of low level laser therapy in lateral elbow tendinopathy (tennis elbow). BMC Musculoskelet Disord. 2008,;9:75. doi: 10.1186/1471-2474-9-75

 

  1. Mester E, Nagylucskay S, Doklen A, Tisza S. Laser stimulation of wound healing. Acta Chir Acad Sci Hung. 1976;17:49-55.

 

  1. Suzuki R, Takakuda K. Wound healing efficacy of a 660-nm diode laser in a rat incisional wound model. Lasers Med Sci. 2016;31:1683-1689. doi: 10.1007/s10103-016-2038-0

 

  1. Solmaz H, Ulgen Y, Gulsoy M. Photobiomodulation of wound healing via visible and infrared laser irradiation. Lasers Med Sci. 2017;32:903-910. doi: 10.1007/s10103-017-2191-0

 

  1. Yu W, Naim JO, Lanzafame RJ. Effects of photostimulation on wound healing in diabetic mice. Lasers Surg Med. 1997;20:56-63. doi: 10.1002/(sici)1096-9101(1997)20:1<56::aid-lsm9>3.0.co;2-y

 

  1. Bryant GL, Davidson JM, Ossoff RH, Garrett CG, Reinisch L. Histologic study of oral mucosa wound healing: A comparison of a 6.0‐to 6.8‐micrometer pulsed laser and a carbon dioxide laser. Laryngoscope. 1998;108:13-17. doi: 10.1097/00005537-199801000-00003

 

  1. Fujimoto K, Kiyosaki T, Mitsui N, et al. Low‐intensity laser irradiation stimulates mineralization via increased BMPs in MC3T3‐E1 cells. Lasers Surg Med. 2010;42:519-526. doi: 10.1002/lsm.20880

 

  1. Ueda Y, Shimizu N. Effects of pulse frequency of low-level laser therapy (LLLT) on bone nodule formation in rat calvarial cells. J Clin Laser Med Surg. 2003;21:271-277. doi: 10.1089/104454703322564479

 

  1. Karoussis IK, Kyriakidou K, Psarros C, Lang NP, Vrotsos IA. Nd:YAG laser radiation (1.064 nm) accelerates differentiation of osteoblasts to osteocytes on smooth and rough titanium surfaces in vitro. Clin Oral Implants Res. 2017;28:785-790. doi: 10.1111/clr.12882

 

  1. Arisu HD, Türköz E, Bala O. Effects of Nd:YAG laser irradiation on osteoblast cell cultures. Lasers Med Sci. 2006;21:175-180. doi: 10.1007/s10103-006-0398-6

 

  1. Aleksic V, Aoki A, Iwasaki K, et al. Low-level Er: YAG laser irradiation enhances osteoblast proliferation through activation of MAPK/ERK. Lasers Med Sci. 2010;25:559-569. doi: 10.1007/s10103-010-0761-5

 

  1. Rochkind S. Stimulation effect of laser energy on the regeneration of traumatically injured peripheral nerves. Morphogen Regen. 1978;83:25-27.

 

  1. Gigo-Benato D, Geuna S, de Castro Rodrigues A, et al. Low-power laser biostimulation enhances nerve repair after end-to-side neurorrhaphy: A double-blind randomized study in the rat median nerve model. Lasers Med Sci. 2004;19:57-65. doi: 10.1007/s10103-004-0300-3

 

  1. Matsushita HI, Kakami KA, Ito A, et al. Effect on the action potential of the low power Nd: YAG laser as irradiated directly to the nerve. Aichi Gakuin Dent Sci. 1989;2:19-28.

 

  1. Orchardson R, Peacock JM, John Whitters C. Effect of pulsed Nd:YAG laser radiation on action potential conduction in isolated mammalian spinal nerves. Lasers Surg Med. 1997;21:142-148. doi: 10.1002/(sici)1096-9101(1997)21:2<142::aid-lsm5>3.0.co;2-q

 

  1. Midamba ED, Haanaes HR. Low reactive-level 830 NM GaAlAs diode laser therapy (LLLT) successfully accelerates regeneration of peripheral nerves in human. Laser Ther. 1993;5:125-129. doi: 10.5978/islsm.93-OR-14

 

  1. Giannelli M, Bani D, Tani A, et al. In vitro evaluation of the effects of low-intensity Nd:YAG laser irradiation on the inflammatory reaction elicited by bacterial lipopolysaccharide adherent to titanium dental implants. J Periodontol. 2009;80:977-984. doi: 10.1902/jop.2009.080648

 

  1. Hamblin MR. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys. 2017;4:337-361. doi: 10.3934/biophy.2017.3.337

 

  1. Yamaura M, Yao M, Yaroslavsky I, et al. Low level light effects on inflammatory cytokine production by rheumatoid arthritis synoviocytes. Lasers Surg Med. 2009;41:282-290. doi: 10.1002/lsm.20766

 

  1. Hwang MH, Shin JH, Kim KS, et al. Low level light therapy modulates inflammatory mediators secreted by human annulus fibrosus cells during intervertebrall disc degeneration in vitro. Photochem Photobiol. 2015;91:403-410. doi: 10.1111/php.12415

 

  1. Lim W, Choi H, Kim J, et al. Anti-inflammatory effect of 635 nm irradiations on in vitro direct/indirect irradiation model. J Oral Pathol Med. 2015;44:94-102. doi: 10.1111/jop.12204

 

  1. Choi H, Lim W, Kim I, et al. Inflammatory cytokines are suppressed by light-emitting diode irradiation of P. gingivalis LPS-treated human gingival fibroblasts: Inflammatory cytokine changes by LED irradiation. Lasers Med Sci. 2012;27:459-467. doi: 10.1007/s10103-011-0971-5

 

  1. Sakurai Y, Yamaguchi M, Abiko Y. Inhibitory effect of low-level laser irradiation on LPS-stimulated prostaglandin E2 production and cyclooxygenase-2 in human gingival fibroblasts. Eur J Oral Sci. 2000;108:29-34. doi: 10.1034/j.1600-0722.2000.00783.x

 

  1. Nomura K, Yamaguchi M, Abiko Y. Inhibition of interleukin- 1beta production and gene expression in human gingival fibroblasts by low-energy laser irradiation. Lasers Med Sci. 2001;16:218-223. doi: 10.1007/pl00011358

 

  1. Funk JO, Kruse A, Kirchner H. Cytokine production after helium-neon laser irradiation in cultures of human peripheral blood mononuclear cells. J Photochem Photobiol B. 1992;16:347-355. doi: 10.1016/1011-1344(92)80022-n

 

  1. Pourzarandian A, Watanabe H, Ruwanpura SMP, Aoki A, Noguchi K, Ishikawa I. Er: YAG laser irradiation increases prostaglandin E production via the induction of cyclooxygenase-2 mRNA in human gingival fibroblasts. J Periodontal Res. 2005;40:182-186. doi: 10.1111/j.1600-0765.2005.00789.x

 

  1. Eltas A, Orbak R. Effect of 1,064-nm Nd: YAG laser therapy on GCF IL-1beta and MMP-8 levels in patients with chronic periodontitis. Lasers Med Sci. 2012;27:543-550. doi: 10.1007/s10103-011-0939-5

 

  1. Gomez C, Dominguez A, Garcia-Kass AI, Garcia-Nunez JA. Adjunctive Nd: YAG laser application in chronic periodontitis: Clinical, immunological, and microbiological aspects. Lasers Med Sci. 2011;26:453-463. doi: 10.1007/s10103-010-0795-8

 

  1. Coluzzi DJ, Convissar RA, Roshkind DM. Laser fundamentals. In: Principles and Practice of Laser Dentistry. 2nd ed. Amsterdam: Elsevier; 2015. p. 12-26.

 

  1. Huang YY, Chen ACH, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose Response. 2009;7:358-383. doi: 10.2203/dose-response.09-027.Hamblin

 

  1. Choi AY, Reddy CM, McGary RT, et al. Adjunctive Nd:YAG laser irradiation for ridge preservation and immediate implant procedures: A consecutive case series. Clin Adv Periodontics. 2019;9:125-134. doi: 10.1002/cap.10059

 

  1. Johnson TM, Jusino MA. Management of an immediate implant horizontal defect using freeze‐dried bone allograft and a neodymium: Yttrium‐aluminum‐garnet laser. Clin Adv Periodontics. 2017;7:175-181. doi: 10.1902/cap.2017.160093

 

  1. Robijns J, Lodewijckx J, Mebis J. Photobiomodulation therapy for acute radiodermatitis. Curr Opin Oncol. 2019;31:291-298. doi: 10.1097/CCO.0000000000000511

 

  1. Aoki A, Mizutani K, Schwarz F, et al. Periodontal and peri‐implant wound healing following laser therapy. Periodontol 2000. 2015;68:217-269. doi: 10.1111/prd.12080

 

  1. Kassebaum NJ, Smith AGC, Bernabé E, et al. Global, regional, and national prevalence, incidence, and disability-adjusted life years for oral conditions for 195 countries, 1990-2015: A systematic analysis for the global burden of diseases, injuries, and risk factors. J Dent Res. 2017;96:380-387. doi: 10.1177/0022034517693566

 

  1. Kumar PS. Microbial dysbiosis: The root cause of periodontal disease. J Periodontol. 2021;92:1079-1087. doi: 10.1002/JPER.21-0245

 

  1. Scannapieco FA, Dongari-Bagtzoglou A. Dysbiosis revisited: Understanding the role of the oral microbiome in the pathogenesis of gingivitis and periodontitis: A critical assessment. J Periodontol. 2021;92:1071-1078. doi: 10.1002/JPER.21-0120

 

  1. Dixon DR, Bainbridge BW, Darveau RP. Modulation of the innate immune response within the periodontium. Periodontol 2000. 2004;35:53-74. doi: 10.1111/j.0906-6713.2004.003556.x

 

  1. Xu W, Zhou W, Wang H, Liang S. Roles of Porphyromonas gingivalis and its virulence factors in periodontitis. Adv Protein Chem Struct Biol. 2020;120:45-84. doi: 10.1016/bs.apcsb.2019.12.001

 

  1. Yu YH, Nevins ML. Tooth retention and clinical and radiographic long-term results among patients treated with the full-mouth laser-assisted new attachment procedure (LANAP): A case series. Int J Periodontics Restorative Dent. 2023;43:181-191a. doi: 10.11607/prd.6418
Share
Back to top
Global Translational Medicine, Electronic ISSN: 2811-0021 Print ISSN: 3060-8600, Published by AccScience Publishing