AccScience Publishing / GTM / Online First / DOI: 10.36922/gtm.2494
REVIEW

Influence of estrogen on right ventricular mitochondrial function in pulmonary hypertension

Chelbi Coyle1 Margaret R. MacLean1 Lian Tian1*
Show Less
1 Strathclyde Institute of Pharmacy and Biomedical Sciences, Faculty of Science, University of Strathclyde, Glasgow, United Kingdom
Global Translational Medicine 2024, 3(3), 2494 https://doi.org/10.36922/gtm.2494
Submitted: 21 December 2023 | Accepted: 29 May 2024 | Published: 28 August 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

There is a female predominance in pulmonary arterial hypertension (PAH) with a ~4:1 female-to-male ratio. However, female PAH patients exhibit better right ventricular (RV) function and thus better survival than the males. The majority of the current PAH therapies target pulmonary vascular remodeling and/or vasoconstriction in the pulmonary vasculature. However, no therapies directly target the RV, partially because the underlying mechanisms of RV failure in PAH are not fully understood. Since the RV serves as the main determinant of mortality, clarifying the mechanism of RV failure and the associated sex differences in PAH may promote the development of novel therapeutic strategies. Numerous molecular abnormalities have been detected in RV in PAH, particularly due to the suppression of mitochondrial function, including the inhibition of glucose oxidation and a shift to uncoupled aerobic glycolysis (Warburg metabolism) and excessive mitochondrial fission. The mitochondrial suppression is associated with hypocontractility and increased apoptosis in RV cardiomyocytes, and the hyperproliferative, pro-fibrotic, and apoptosis-resistant phenotypes in RV fibroblasts in PAH. Mitochondria also serve as the site for sex steroid synthesis, and in turn, the sex steroids, particularly estradiol (E2), influence the mitochondria both indirectly and directly. It is not well understood how E2 affects mitochondrial function in RV in PAH. Hence, this review focuses on the key mitochondrial genes and proteins that are influenced by PAH, E2, and sex.

Keywords
Estradiol
Pulmonary arterial hypertension
Right ventricle
Mitochondria
Sex differences
Funding
This study was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) Student Excellence Award (SEA) Studentship (C.C.), Faculty Start-Up Fund from the University of Strathclyde (L.T.), RSE Re-Boot (COVID-19 Impact) Research Grants (L.T.), and the Academy of Medical Sciences Springboard Award (L.T.).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Humbert M, Guignabert C, Bonnet S, et al. Pathology and pathobiology of pulmonary hypertension: State of the art and research perspectives. Eur Respir J. 2019;53(1): 1801887. doi: 10.1183/13993003.01887-2018

 

  1. Simonneau G, Montani D, Celermajer DS, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J. 2019;53(1):1801913. doi: 10.1183/13993003.01913-2018

 

  1. Prins KW, Thenappan T. World Health Organization Group I pulmonary hypertension: Epidemiology and pathophysiology. Cardiol Clin. 2016;34(3):363-374. doi: 10.1016/j.ccl.2016.04.001

 

  1. D’Alonzo GE, Barst RJ, Ayres SM, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med. 1991;115(5):343-349. doi: 10.7326/0003-4819-115-5-343

 

  1. Korsholm K, Andersen A, Kirkfeldt RE, Hansen KN, Mellemkjær S, Nielsen-Kudsk JE. Survival in an incident cohort of patients with pulmonary arterial hypertension in Denmark. Pulm Circ. 2015;5(2):364-369. doi: 10.1086/681270

 

  1. Farber HW, Miller DP, Poms AD, et al. Five-year outcomes of patients enrolled in the REVEAL registry. Chest. 2015;148(4):1043-1054. doi: 10.1378/chest.15-0300

 

  1. Chang KY, Duval S, Badesch DB, et al. Mortality in pulmonary arterial hypertension in the modern era: Early Insights from the pulmonary hypertension association registry. J Am Heart Assoc. 2022;11(9):e024969. doi: 10.1161/jaha.121.024969

 

  1. Chen X, Quan R, Qian Y, et al. 10-year survival of pulmonary arterial hypertension associated with connective tissue disease: Insights from a multicentre PAH registry. Rheumatology (Oxford). 2023;62(11):3555-3564. doi: 10.1093/rheumatology/kead103

 

  1. Ghio S, Klersy C, Magrini G, et al. Prognostic relevance of the echocardiographic assessment of right ventricular function in patients with idiopathic pulmonary arterial hypertension. Int J Cardiol. 2010;140(3):272-278. doi: 10.1016/j.ijcard.2008.11.051

 

  1. Voelkel NF, Bogaard HJ, Gomez-Arroyo J. The need to recognize the pulmonary circulation and the right ventricle as an integrated functional unit: Facts and hypotheses (2013 Grover Conference series). Pulm Circ. 2015;5(1):81-89. doi: 10.1086/679702

 

  1. Tello K, Richter MJ, Yogeswaran A, et al. Sex differences in right ventricular-pulmonary arterial coupling in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2020;202(7):1042-1046. doi: 10.1164/rccm.202003-0807LE

 

  1. He Q, Lin Y, Zhu Y, et al. Clinical usefulness of right ventricle-pulmonary artery coupling in cardiovascular disease. J Clin Med. 2023;12(7):2526. doi: 10.3390/jcm12072526

 

  1. Egbe AC, Kothapalli S, Miranda WR, et al. Assessment of right ventricular-pulmonary arterial coupling in chronic pulmonary regurgitation. Can J Cardiol. 2019;35(7):914-922. doi: 10.1016/j.cjca.2019.03.009

 

  1. Mair KM, Johansen AKZ, Wright AF, Wallace E, MacLean MR. Pulmonary arterial hypertension: Basis of sex differences in incidence and treatment response. Br J Pharmacol. 2014;171(3):567-579. doi: 10.1111/bph.12281

 

  1. Shapiro S, Traiger GL, Turner M, McGoon MD, Wason P, Barst RJ. Sex differences in the diagnosis, treatment, and outcome of patients with pulmonary arterial hypertension enrolled in the registry to evaluate early and long-term pulmonary arterial hypertension disease management. Chest. 2012;141(2):363-373. doi: 10.1378/chest.10-3114

 

  1. Walker AM, Langleben D, Korelitz JJ, et al. Temporal trends and drug exposures in pulmonary hypertension: An American experience. Am Heart J. 2006;152(3):521-526. doi: 10.1016/j.ahj.2006.02.020

 

  1. Badesch DB, Raskob GE, Elliott CG, et al. Pulmonary arterial hypertension: Baseline characteristics from the REVEAL Registry. Chest. 2010;137(2):376-387. doi: 10.1378/chest.09-1140

 

  1. Keen J, Prisco SZ, Prins KW. Sex differences in right ventricular dysfunction: Insights from the bench to bedside. Front Physiol. 2020;11:623129. doi: 10.3389/fphys.2020.623129

 

  1. Ventetuolo CE, Moutchia J, Baird GL, et al. Baseline sex differences in pulmonary arterial hypertension randomized clinical trials. Ann Am Thorac Soc. 2023;20(1):58-66. doi: 10.1513/AnnalsATS.202203-207OC

 

  1. Dignam JP, Sharma S, Stasinopoulos I, MacLean MR. Pulmonary arterial hypertension: Sex matters. Br J Pharmacol. 2024;181(7):938-966. doi: 10.1111/bph.16277

 

  1. Lahm T, Tuder RM, Petrache I. Progress in solving the sex hormone paradox in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2014;307(1):L7-L26. doi: 10.1152/ajplung.00337.2013

 

  1. Foderaro A, Ventetuolo CE. Pulmonary arterial hypertension and the sex hormone paradox. Curr Hypertens Rep. 2016;18(11):84. doi: 10.1007/s11906-016-0689-7

 

  1. Morris H, Denver N, Gaw R, Labazi H, Mair K, MacLean MR. Sex differences in pulmonary hypertension. Clin Chest Med. 2021;42(1):217-228. doi: 10.1016/j.ccm.2020.10.005

 

  1. Austin ED, Cogan JD, West JD, et al. Alterations in oestrogen metabolism: Implications for higher penetrance of familial pulmonary arterial hypertension in females. Eur Respir J. 2009;34(5):1093-1039. doi: 10.1183/09031936.00010409

 

  1. Viales RR, Eichstaedt CA, Ehlken N, et al. Mutation in BMPR2 promoter: A ‘second hit’ for manifestation of pulmonary arterial hypertension? PLoS One. 2015;10(7):e0133042. doi: 10.1371/journal.pone.0133042

 

  1. Machado RD, Eickelberg O, Elliott CG, et al. Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol. 2009;54(1 Suppl):S32-S42. doi: 10.1016/j.jacc.2009.04.015

 

  1. Pfarr N, Szamalek-Hoegel J, Fischer C, et al. Hemodynamic and clinical onset in patients with hereditary pulmonary arterial hypertension and BMPR2 mutations. Respir Res. 2011;12(1):99. doi: 10.1186/1465-9921-12-99

 

  1. Mair KM, Yang XD, Long L, et al. Sex affects bone morphogenetic protein type II receptor signaling in pulmonary artery smooth muscle cells. Am J Respir Crit Care Med. 2015;191(6):693-703. doi: 10.1164/rccm.201410-1802OC

 

  1. Frump AL, Goss KN, Vayl A, et al. Estradiol improves right ventricular function in rats with severe angioproliferative pulmonary hypertension: Effects of endogenous and exogenous sex hormones. Am J Physiol Lung Cell Mol Physiol. 2015;308(9):L873-L890. doi: 10.1152/ajplung.00006.2015

 

  1. Kawut SM, Archer-Chicko CL, DeMichele A, et al. Anastrozole in pulmonary arterial hypertension. A randomized, double-blind, placebo-controlled trial. Am J Respir Crit Care Med. 2017;195(3):360-368. doi: 10.1164/rccm.201605-1024OC

 

  1. Ryan JJ, Archer SL. The right ventricle in pulmonary arterial hypertension: Disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure. Circ Res. 2014;115(1):176-188. doi: 10.1161/circresaha.113.301129

 

  1. Piao L, Fang YH, Cadete VJ, et al. The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: Resuscitating the hibernating right ventricle. J Mol Med (Berl). 2010;88(1):47-60. doi: 10.1007/s00109-009-0524-6

 

  1. Oikawa M, Kagaya Y, Otani H, et al. Increased [18F] fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol. J Am Coll Cardiol. 2005;45(11):1849-1855. doi: 10.1016/j.jacc.2005.02.065

 

  1. Ryan J, Dasgupta A, Huston J, Chen KH, Archer SL. Mitochondrial dynamics in pulmonary arterial hypertension. J Mol Med (Berl). 2015;93(3):229-242. doi: 10.1007/s00109-015-1263-5

 

  1. Paulin R, Michelakis ED. The metabolic theory of pulmonary arterial hypertension. Circ Res. 2014;115(1):148-164. doi: 10.1161/circresaha.115.301130

 

  1. Velarde MC. Mitochondrial and sex steroid hormone crosstalk during aging. Longev Healthspan. 2014;3(1):2. doi: 10.1186/2046-2395-3-2

 

  1. Ohira H, deKemp R, Pena E, et al. Shifts in myocardial fatty acid and glucose metabolism in pulmonary arterial hypertension: A potential mechanism for a maladaptive right ventricular response. Eur Heart J Cardiovasc Imaging. 2016;17(12):1424-1431. doi: 10.1093/ehjci/jev136

 

  1. Lundgrin EL, Park MM, Sharp J, et al. Fasting 2-deoxy-2- [18F]fluoro-D-glucose positron emission tomography to detect metabolic changes in pulmonary arterial hypertension hearts over 1 year. Ann Am Thorac Soc. 2013;10(1):1-9. doi: 10.1513/AnnalsATS.201206-029OC

 

  1. Bokhari S, Raina A, Rosenweig EB, et al. PET imaging may provide a novel biomarker and understanding of right ventricular dysfunction in patients with idiopathic pulmonary arterial hypertension. Circ Cardiovasc Imaging. 2011;4(6):641-647. doi: 10.1161/circimaging.110.963207

 

  1. Kim Y, Goto H, Kobayashi K, et al. Detection of impaired fatty acid metabolism in right ventricular hypertrophy: Assessment by I-123 beta-methyl iodophenyl pentadecanoic acid (BMIPP) myocardial single-photon emission computed tomography. Ann Nucl Med. 1997;11(3):207-212. doi: 10.1007/bf03164765

 

  1. Nagaya N, Got MY, Satoh T, et al. Impaired regional fatty acid uptake and systolic dysfunction in hypertrophied right ventricle. J Nucl Med. 1998;39(10):1676-1680.

 

  1. Tian L, Neuber-Hess M, Mewburn J, et al. Ischemia-induced Drp1 and Fis1-mediated mitochondrial fission and right ventricular dysfunction in pulmonary hypertension. J Mol Med (Berl). 2017;95(4):381-393. doi: 10.1007/s00109-017-1522-8

 

  1. Tian L, Wu D, Dasgupta A, et al. Epigenetic metabolic reprogramming of right ventricular fibroblasts in pulmonary arterial hypertension: A pyruvate dehydrogenase kinase-dependent shift in mitochondrial metabolism promotes right ventricular fibrosis. Circ Res. 2020;126(12):1723-1745. doi: 10.1161/circresaha.120.316443

 

  1. Tian L, Potus F, Wu D, et al. Increased Drp1-mediated mitochondrial fission promotes proliferation and collagen production by right ventricular fibroblasts in experimental pulmonary arterial hypertension. Front Physiol. 2018;9:828. doi: 10.3389/fphys.2018.00828

 

  1. Drozd K, Ahmadi A, Deng Y, et al. Effects of an endothelin receptor antagonist, Macitentan, on right ventricular substrate utilization and function in a Sugen 5416/hypoxia rat model of severe pulmonary arterial hypertension. J Nucl Cardiol. 2017;24(6):1979-1989. doi: 10.1007/s12350-016-0663-4

 

  1. Piao L, Sidhu VK, Fang YH, et al. FOXO1-mediated upregulation of pyruvate dehydrogenase kinase-4 (PDK4) decreases glucose oxidation and impairs right ventricular function in pulmonary hypertension: Therapeutic benefits of dichloroacetate. J Mol Med (Berl). 2013;91(3):333-346. doi: 10.1007/s00109-012-0982-0

 

  1. Fang YH, Piao L, Hong Z, et al. Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: Exploiting Randle’s cycle. J Mol Med (Berl). 2012;90(1):31-43. doi: 10.1007/s00109-011-0804-9

 

  1. Piao L, Fang YH, Parikh K, Ryan JJ, Toth PT, Archer SL. Cardiac glutaminolysis: A maladaptive cancer metabolism pathway in the right ventricle in pulmonary hypertension. J Mol Med (Berl). 2013;91(10):1185-1197. doi: 10.1007/s00109-013-1064-7

 

  1. Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms. Adv Protein Chem Struct Biol. 2019;116:135-170. doi: 10.1016/bs.apcsb.2019.01.001

 

  1. Tutzauer J, Sjöström M, Bendahl PO, et al. Plasma membrane expression of G protein-coupled estrogen receptor (GPER)/G protein-coupled receptor 30 (GPR30) is associated with worse outcome in metachronous contralateral breast cancer. PLoS One. 2020;15(4):e0231786. doi: 10.1371/journal.pone.0231786

 

  1. Hall JM, McDonnell DP. The estrogen receptor beta-isoform (ERbeta) of the human estrogen receptor modulates ERalpha transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens. Endocrinology. 1999;140(12):5566-5578. doi: 10.1210/endo.140.12.7179

 

  1. Thomas P, Pang Y, Filardo EJ, Dong J. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology. 2005;146(2):624-632. doi: 10.1210/en.2004-1064

 

  1. Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science. 2005;307(5715):1625-1630. doi: 10.1126/science.1106943

 

  1. Yaşar P, Ayaz G, User SD, Güpür G, Muyan M. Molecular of estrogen-estrogen receptor signaling. Reprod Med Biol. 2017;16(1):4-20. doi: 10.1002/rmb2.12006

 

  1. Sun Y, Sangam S, Guo Q, et al. Sex differences, estrogen metabolism and signaling in the development of pulmonary arterial hypertension. Front Cardiovasc Med. 2021;8:719058. doi: 10.3389/fcvm.2021.719058

 

  1. Grohé C, Kahlert S, Löbbert K, Vetter H. Expression of oestrogen receptor alpha and beta in rat heart: Role of local oestrogen synthesis. J Endocrinol. 1998;156(2):R1-R7. doi: 10.1677/joe.0.156r001

 

  1. Klinge CM. Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res. 2001;29(14):2905-2919. doi: 10.1093/nar/29.14.2905

 

  1. Heldring N, Isaacs GD, Diehl AG, et al. Multiple sequence-specific DNA-binding proteins mediate estrogen receptor signaling through a tethering pathway. Mol Endocrinol. 2011;25(4):564-574. doi: 10.1210/me.2010-0425

 

  1. Luconi M, Forti G, Baldi E. Genomic and nongenomic effects of estrogens: Molecular mechanisms of action and clinical implications for male reproduction. J Steroid Biochem Mol Biol. 2002;80(4-5):369-381. doi: 10.1016/s0960-0760(02)00041-9

 

  1. Felty Q, Roy D. Estrogen, mitochondria, and growth of cancer and non-cancer cells. J Carcinog. 2005;4(1):1. doi: 10.1186/1477-3163-4-1

 

  1. Yang SH, Sarkar SN, Liu R, et al. Estrogen receptor beta as a mitochondrial vulnerability factor. J Biol Chem. 2009;284(14):9540-9548. doi: 10.1074/jbc.M808246200

 

  1. Yang SH, Liu R, Perez EJ, et al. Mitochondrial localization of estrogen receptor beta. Proc Natl Acad Sci U S A. 2004;101(12):4130-4135. doi: 10.1073/pnas.0306948101

 

  1. Pedram A, Razandi M, Wallace DC, Levin ER. Functional estrogen receptors in the mitochondria of breast cancer cells. Mol Biol Cell. 2006;17(5):2125-2137. doi: 10.1091/mbc.e05-11-1013

 

  1. Le Dily F, Beato M. Signaling by steroid hormones in the 3D nuclear space. Int J Mol Sci. 2018;19(2):306. doi: 10.3390/ijms19020306

 

  1. Bourdeau V, Deschênes J, Métivier R, et al. Genome-wide identification of high-affinity estrogen response elements in human and mouse. Mol Endocrinol. 2004;18(6):1411-1427. doi: 10.1210/me.2003-0441

 

  1. Klinge CM. Estrogenic control of mitochondrial function and biogenesis. J Cell Biochem. 2008;105(6):1342-1351. doi: 10.1002/jcb.21936

 

  1. Liu A, Philip J, Vinnakota KC, et al. Estrogen maintains mitochondrial content and function in the right ventricle of rats with pulmonary hypertension. Physiol Rep. 2017;5(6):e13157. doi: 10.14814/phy2.13157

 

  1. Ventura-Clapier R, Piquereau J, Veksler V, Garnier A. Estrogens, estrogen receptors effects on cardiac and skeletal muscle mitochondria. Front Endocrinol (Lausanne). 2019;10:557. doi: 10.3389/fendo.2019.00557

 

  1. Alvarez-Delgado C, Mendoza-Rodríguez CA, Picazo O, Cerbón M. Different expression of alpha and beta mitochondrial estrogen receptors in the aging rat brain: interaction with respiratory complex V. Exp Gerontol. 2010;45(7-8):580-585. doi: 10.1016/j.exger.2010.01.015

 

  1. Dworatzek E, Mahmoodzadeh S, Schubert C, et al. Sex differences in exercise-induced physiological myocardial hypertrophy are modulated by oestrogen receptor beta. Cardiovasc Res. 2014;102(3):418-428. doi: 10.1093/cvr/cvu065

 

  1. Cui J, Shen Y, Li R. Estrogen synthesis and signaling pathways during aging: From periphery to brain. Trends Mol Med. 2013;19(3):197-209. doi: 10.1016/j.molmed.2012.12.007

 

  1. Moreno AJ, Moreira PI, Custódio JB, Santos MS. Mechanism of inhibition of mitochondrial ATP synthase by 17β-estradiol. J Bioenerg Biomembr. 2013;45(3):261-270. doi: 10.1007/s10863-012-9497-1

 

  1. Vesper HW, Botelho JC, Vidal ML, Rahmani Y, Thienpont LM, Caudill SP. High variability in serum estradiol measurements in men and women. Steroids. 2014;82:7-13. doi: 10.1016/j.steroids.2013.12.005

 

  1. Wu WH, Yuan P, Zhang SJ, et al. Impact of pituitary-gonadal axis hormones on pulmonary arterial hypertension in men. Hypertension. 2018;72(1):151-158. doi: 10.1161/HYPERTENSIONAHA.118.10963

 

  1. Denver N, Homer NZM, Andrew R, et al. Estrogen metabolites in a small cohort of patients with idiopathic pulmonary arterial hypertension. Pulm Circ. 2020;10(1):1-5. doi: 10.1177/2045894020908783

 

  1. Ventetuolo CE, Baird GL, Barr RG, et al. Higher estradiol and lower dehydroepiandrosterone-sulfate levels are associated with pulmonary arterial hypertension in men. Am J Respir Crit Care Med. 2016;193(10):1168-1175. doi: 10.1164/rccm.201509-1785OC

 

  1. Baird GL, Walsh T, Aliotta J, et al. Insights from the menstrual cycle in pulmonary arterial hypertension. Ann Am Thorac Soc. 2021;18(2):218-228. doi: 10.1513/AnnalsATS.202006-671OC

 

  1. Baird GL, Archer-Chicko C, Barr RG, et al. Lower DHEA-S levels predict disease and worse outcomes in post-menopausal women with idiopathic, connective tissue disease- and congenital heart disease-associated pulmonary arterial hypertension. Eur Respir J. 2018;51(6):1800467. doi: 10.1183/13993003.00467-2018

 

  1. Al-Naamani N, Krowka MJ, Forde KA, et al. Estrogen signaling and portopulmonary hypertension: The pulmonary vascular complications of liver disease study (PVCLD2). Hepatology. 2021;73(2):726-737. doi: 10.1002/hep.31314

 

  1. Liang H, Ward WF. PGC-1alpha: A key regulator of energy metabolism. Adv Physiol Educ. 2006;30(4):145-151. doi: 10.1152/advan.00052.2006

 

  1. Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005;1(6):361-370. doi: 10.1016/j.cmet.2005.05.004

 

  1. Jung S, Kim K. Exercise-induced PGC-1α transcriptional factors in skeletal muscle. Integr Med Res. 2014;3(4):155-160. doi: 10.1016/j.imr.2014.09.004

 

  1. Picca A, Lezza AM. Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: Useful insights from aging and calorie restriction studies. Mitochondrion. 2015;25:67-75. doi: 10.1016/j.mito.2015.10.001

 

  1. Gomez-Arroyo J, Mizuno S, Szczepanek K, et al. Metabolic gene remodeling and mitochondrial dysfunction in failing right ventricular hypertrophy secondary to pulmonary arterial hypertension. Circ Heart Fail. 2013;6(1):136-144. doi: 10.1161/circheartfailure.111.966127

 

  1. Enache I, Charles AL, Bouitbir J, et al. Skeletal muscle mitochondrial dysfunction precedes right ventricular impairment in experimental pulmonary hypertension. Mol Cell Biochem. 2013;373(1-2):161-170. doi: 10.1007/s11010-012-1485-6

 

  1. Soriano FX, Liesa M, Bach D, Chan DC, Palacín M, Zorzano A. Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, estrogen-related receptor-alpha, and mitofusin 2. Diabetes. 2006;55(6):1783-1791. doi: 10.2337/db05-0509

 

  1. Ryan JJ, Marsboom G, Fang YH, et al. PGC1α-mediated mitofusin-2 deficiency in female rats and humans with pulmonary arterial hypertension. Am J Respir Crit Care Med. 2013;187(8):865-878. doi: 10.1164/rccm.201209-1687OC

 

  1. Luo F, Fu M, Wang T, et al. Down-regulation of the mitochondrial fusion protein Opa1/Mfn2 promotes cardiomyocyte hypertrophy in Su5416/hypoxia-induced pulmonary hypertension rats. Arch Biochem Biophys. 2023;747:109743. doi: 10.1016/j.abb.2023.109743

 

  1. Virbasius JV, Scarpulla RC. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: A potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci U S A. 1994;91(4):1309-1313. doi: 10.1073/pnas.91.4.1309

 

  1. Gureev AP, Shaforostova EA, Popov VN. Regulation of mitochondrial biogenesis as a way for active longevity: Interaction between the Nrf2 and PGC-1α signaling pathways. Front Genet. 2019;10:435. doi: 10.3389/fgene.2019.00435

 

  1. Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98(1):115-124. doi: 10.1016/s0092-8674(00)80611-x

 

  1. Zungu M, Alcolea MP, García-Palmer FJ, Young ME, Essop MF. Genomic modulation of mitochondrial respiratory genes in the hypertrophied heart reflects adaptive changes in mitochondrial and contractile function. Am J Physiol Heart Circ Physiol. 2007;293(5):H2819-H2825. doi: 10.1152/ajpheart.00806.2006

 

  1. Maniura-Weber K, Goffart S, Garstka HL, Montoya J, Wiesner RJ. Transient overexpression of mitochondrial transcription factor A (TFAM) is sufficient to stimulate mitochondrial DNA transcription, but not sufficient to increase mtDNA copy number in cultured cells. Nucleic Acids Res. 2004;32(20):6015-6027. doi: 10.1093/nar/gkh921

 

  1. Mahoney JP, Sunahara RK. Mechanistic insights into GPCR-G protein interactions. Curr Opin Struct Biol. 2016;41:247-254. doi: 10.1016/j.sbi.2016.11.005

 

  1. Prossnitz ER, Barton M. The G-protein-coupled estrogen receptor GPER in health and disease. Nat Rev Endocrinol. 2011;7(12):715-726. doi: 10.1038/nrendo.2011.122

 

  1. Ding Q, Gros R, Limbird LE, Chorazyczewski J, Feldman RD. Estradiol-mediated ERK phosphorylation and apoptosis in vascular smooth muscle cells requires GPR 30. Am J Physiol Cell Physiol. 2009;297(5):C1178-C1187. doi: 10.1152/ajpcell.00185.2009

 

  1. Yu X, Li T, Liu X, et al. Modulation of pulmonary vascular remodeling in hypoxia: Role of 15-LOX-2/15-HETE-MAPKs pathway. Cell Physiol Biochem. 2015;35(6):2079-97. doi: 10.1159/000374015

 

  1. Roque C, Mendes-Oliveira J, Duarte-Chendo C, Baltazar G. The role of G protein-coupled estrogen receptor 1 on neurological disorders. Front Neuroendocrinol. 2019;55:100786. doi: 10.1016/j.yfrne.2019.100786

 

  1. Feng W, Wang J, Yan X, et al. ERK/Drp1-dependent mitochondrial fission contributes to HMGB1-induced autophagy in pulmonary arterial hypertension. Cell Prolif. 2021;54(6):e13048. doi: 10.1111/cpr.13048

 

  1. Culley MK, Chan SY. Mitochondrial metabolism in pulmonary hypertension: Beyond mountains there are mountains. J Clin Invest. 2018;128(9):3704-3715. doi: 10.1172/jci120847

 

  1. Potus F, Hindmarch CCT, Dunham-Snary KJ, Stafford J, Archer SL. Transcriptomic signature of right ventricular failure in experimental pulmonary arterial hypertension: Deep sequencing demonstrates mitochondrial, fibrotic, inflammatory and angiogenic abnormalities. Int J Mol Sci. 2018;19(9):2730. doi: 10.3390/ijms19092730

 

  1. Hindmarch CCT, Tian L, Xiong PY, et al. An integrated proteomic and transcriptomic signature of the failing right ventricle in monocrotaline induced pulmonary arterial hypertension in male rats. Front Physiol. 2022;13:966454. doi: 10.3389/fphys.2022.966454

 

  1. Wits M, Becher C, de Man F, Sanchez-Duffhues G, Goumans MJ. Sex-biased TGFβ signalling in pulmonary arterial hypertension. Cardiovasc Res. 2023;119(13):2262-2277. doi: 10.1093/cvr/cvad129
Share
Back to top
Global Translational Medicine, Electronic ISSN: 2811-0021 Print ISSN: 3060-8600, Published by AccScience Publishing