AccScience Publishing / GTM / Online First / DOI: 10.36922/gtm.2458

Effects of flavonoids on vascular activity

Sadettin Demirel1* Dursun Alper Yilmaz2
Show Less
1 Department of Physiology, Faculty of Medicine, Bursa Uludag University, Bursa, Bursa Province, Türkiye
2 Department of Nursing, Faculty of Health Sciences, Agri Ibrahim Cecen University, Agri, Agri Province, Türkiye
Global Translational Medicine 2024, 3(2), 2458
Submitted: 17 December 2023 | Accepted: 25 March 2024 | Published: 19 June 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( )

Flavonoids, encompassing various polyphenolic compounds found in plants, exert significant effects on vascular function. Particularly notable is their role in inducing vasodilation, a process crucial for regulating blood pressure (BP) and enhancing cardiovascular health. Through their vasodilatory properties, flavonoids contribute to improved blood flow and endothelial function. In addition, flavonoids demonstrate antiplatelet effects, which play a vital role in preventing abnormal blood clot formation and reducing the risk of thrombotic events. By inhibiting platelet aggregation, flavonoids help maintain vascular integrity and mitigate the likelihood of cardiovascular complications. In addition to vasodilation and antiplatelet effects, flavonoids exhibit potential benefits in managing hypertension. Studies suggest that flavonoids can help regulate BP by promoting vasorelaxation and modulating endothelial function. These mechanisms contribute to the overall maintenance of cardiovascular homeostasis and may offer therapeutic avenues for hypertension management. This review aims to comprehensively explore the multifaceted effects of flavonoids on vascular function, with an emphasis on their vasodilatory properties, antiplatelet effects, and potential implications for hypertension management within the existing literature.

Vascular functions
  1. Rana A, Samtiya M, Dhewa T, Mishra V, Aluko RE. Health benefits of polyphenols: A concise review. J Food Biochem. 2022;46(10):e14264. doi: 10.1111/jfbc.14264


  1. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal. 2013;2013:162750. doi: 10.1155/2013/162750


  1. Jiang B, Song J, Jin Y. A flavonoid monomer tricin in gramineous plants: Metabolism, bio/chemosynthesis, biological properties, and toxicology. Food Chem. 2020;320:126617. doi: 10.1016/j.foodchem.2020.126617


  1. Guven H, Arici A, Simsek O. Flavonoids in our foods: A short review. J Basic Clin Health Sci. 2019;3(2):96-106. doi: 10.30621/jbachs.2019.555


  1. Nabavi SM, Šamec D, Tomczyk M, et al. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnol Adv. 2020;38:107316. doi: 10.1016/j.biotechadv.2018.11.005


  1. Maleki SJ, Crespo JF, Cabanillas B. Anti-inflammatory effects of flavonoids. Food Chem. 2019;299:125124. doi: 10.1016/j.foodchem.2019.125124


  1. Hosseinzade A, Sadeghi O, Biregani AN, Soukhtehzari S, Brandt GS, Esmaillzadeh A. Immunomodulatory effects of flavonoids: Possible induction of T CD4+ regulatory cells through suppression of mTOR pathway signaling activity. Front Immunol. 2019;10:51. doi: 10.3389/fimmu.2019.00051


  1. Hashemzaei M, Delarami Far A, Yari A, et al. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncol Rep. 2017;38(2):819-828. doi: 10.3892/or.2017.5766


  1. Demirel S. Rosa damascena miller essential oil relaxes rat trachea via KV channels, KATP channels, and BKCa channels. Prostaglandins Other Lipid Mediat. 2022;163:106673. doi: 10.1016/j.prostaglandins.2022.106673


  1. Demirel S. Rosa damascena miller essential oil relaxes rat thoracic aorta through the NO-cGMP-dependent pathway. Prostaglandins Other Lipid Mediat. 2022;162:106661. doi: 10.1016/j.prostaglandins.2022.106661


  1. Demirel S. Geraniol and β-citronellol participate in the vasorelaxant effects of Rosa damascena miller essential oil on the rat thoracic aorta. Fitoterapia. 2022;161:105243. doi: 10.1016/j.fitote.2022.105243


  1. Demirel S. Medical evaluation of the antimicrobial activity of rose oil on some standard bacteria strains and clinical isolates. Altern Ther Health Med. 2022;28(6):52-56.


  1. Bjørklund G, Dadar M, Chirumbolo S, Lysiuk R. Flavonoids as detoxifying and pro-survival agents: What’s new? Food Chem Toxicol. 2017;110:240-250. doi: 10.1016/j.fct.2017.10.039


  1. Juliana C, Paula A, Erica A, Mario H, Alexandra C, Maria C. Flavonoid contents and antioxidant activity in fruit, vegetables and other types of food. Agric Sci. 2015;6(4):426-435. doi: 10.4236/as.2015.64042


  1. Atrahimovich D, Avni D, Khatib S. Flavonoids-macromolecules interactions in human diseases with focus on Alzheimer, Atherosclerosis and Cancer. Antioxidants (Basel). 2021;10(3):423. doi: 10.3390/antiox10030423


  1. Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines (Basel). 2018;5(3):93. doi: 10.3390/medicines5030093


  1. Shukla R, Pandey V, Vadnere GP, Lodhi S. Chapter 18 - Role of flavonoids in management of inflammatory disorders. In: Watson RR, Preedy VR, editors. Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases. 2nd ed. United States: Academic Press; 2019. p. 293-322.


  1. Ginwala R, Bhavsar R, Chigbu DI, Jain P, Khan ZK. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants (Basel). 2019;8(2):35. doi: 10.3390/antiox8020035


  1. Lilamand M, Kelaiditi E, Guyonnet S, et al. Flavonoids and arterial stiffness: Promising perspectives. Nutr Metab Cardiovasc Dis. 2014;24(7):698-704. doi: 10.1016/j.numecd.2014.01.015


  1. Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022;383:132531. doi: 10.1016/j.foodchem.2022.132531


  1. Jaakola L, Hohtola A. Effect of latitude on flavonoid biosynthesis in plants. Plant Cell Environ. 2010;33(8):1239-1247. doi: 10.1111/j.1365-3040.2010.02154.x


  1. Ku YS, Ng MS, Cheng SS, et al. Understanding the composition, biosynthesis, accumulation and transport of flavonoids in crops for the promotion of crops as healthy sources of flavonoids for human consumption. Nutrients. 2020;12(6):1717. doi: 10.3390/nu12061717


  1. Spagnuolo C, Moccia S, Russo GL. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur J Med Chem. 2018;153:105-115. doi: 10.1016/j.ejmech.2017.09.001


  1. Barreca D, Mandalari G, Calderaro A, et al. Citrus flavones: An update on sources, biological functions, and health promoting properties. Plants (Basel). 2020;9(3):288. doi: 10.3390/plants9030288


  1. Lu Y, Zhang C, Bucheli P, Wei D. Citrus flavonoids in fruit and traditional Chinese medicinal food ingredients in China. Plant Foods Hum Nutr. 2006;61(2):57-65. doi: 10.1007/s11130-006-0014-8


  1. Su J, Xu HT, Yu JJ, et al. Luteolin ameliorates hypertensive vascular remodeling through inhibiting the proliferation and migration of vascular smooth muscle cells. Evid Based Complement Alternat Med. 2015;2015:364876. doi: 10.1155/2015/364876


  1. Gao HL, Yu XJ, Feng YQ, et al. Luteolin attenuates hypertension via inhibiting NF-κB-mediated inflammation and PI3K/Akt signaling pathway in the hypothalamic paraventricular nucleus. Nutrients. 2023;15(3):502. doi: 10.3390/nu15030502


  1. Chagas M, Behrens MD, Moragas-Tellis CJ, Penedo GX, Silva AR, Gonçalves-de-Albuquerque CF. Flavonols and flavones as potential anti-inflammatory, antioxidant, and antibacterial compounds. Oxid Med Cell Longev. 2022;2022:9966750. doi: 10.1155/2022/9966750


  1. Sharma D, Shree B, Kumar S, Kumar V, Sharma S, Sharma S. Stress induced production of plant secondary metabolites in vegetables: Functional approach for designing next generation super foods. Plant Physiol Biochem. 2022;192:252-272. doi: 10.1016/j.plaphy.2022.09.034


  1. Popiolek-Kalisz J, Fornal E. The effects of quercetin supplementation on blood pressure - meta-analysis. Curr Probl Cardiol. 2022;47(11):101350. doi: 10.1016/j.cpcardiol.2022.101350


  1. Barrios-Nolasco A, Domínguez-López A, Miliar-García A, Cornejo-Garrido J, Jaramillo-Flores ME. Anti-inflammatory effect of ethanolic extract from Tabebuia rosea (Bertol.) DC., quercetin, and anti-obesity drugs in adipose tissue in wistar rats with diet-induced obesity. Molecules. 2023;28(9):3801. doi: 10.3390/molecules28093801


  1. Rahmani AH, Alsahli MA, Khan AA, Almatroodi SA. Quercetin, a plant flavonol attenuates diabetic complications, renal tissue damage, renal oxidative stress and inflammation in streptozotocin-induced diabetic rats. Metabolites. 2023;13(1):130. doi: 10.3390/metabo13010130


  1. Lin X, Han T, Fan Y, Wu S, Wang F, Wang C. Quercetin improves vascular endothelial function through promotion of autophagy in hypertensive rats. Life Sci. 2020;258:118106. doi: 10.1016/j.lfs.2020.118106


  1. Di Pede G, Mena P, Bresciani L, et al. Revisiting the bioavailability of flavan-3-ols in humans: A systematic review and comprehensive data analysis. Mol Aspects Med. 2023;89:101146. doi: 10.1016/j.mam.2022.101146


  1. Braicu C, Pilecki V, Balacescu O, Irimie A, Neagoe IB. The relationships between biological activities and structure of flavan-3-ols. Int J Mol Sci. 2011;12(12):9342-9353. doi: 10.3390/ijms12129342


  1. Al-Dashti YA, Holt RR, Stebbins CL, Keen CL, Hackman RM. Dietary flavanols: A review of select effects on vascular function, blood pressure, and exercise performance. J Am Coll Nutr. 2018;37(7):553-567. doi: 10.1080/07315724.2018.1451788


  1. Haskell-Ramsay CF, Schmitt J, Actis-Goretta L. The impact of epicatechin on human cognition: The role of cerebral blood flow. Nutrients. 2018;10(8):986. doi: 10.3390/nu10080986


  1. Barreca D, Gattuso G, Bellocco E, et al. Flavanones: Citrus phytochemical with health-promoting properties. Biofactors. 2017;43(4):495-506. doi: 10.1002/biof.1363


  1. Liu Y, Niu L, Cui L, et al. Hesperetin inhibits rat coronary constriction by inhibiting Ca(2+) influx and enhancing voltage-gated K(+) channel currents of the myocytes. Eur J Pharmacol. 2014;735:193-201. doi: 10.1016/j.ejphar.2014.03.057


  1. Razavi BM, Hosseinzadeh H. Chapter 34 - A review of the effects of Citrus paradisi (grapefruit) and its flavonoids, naringin, and naringenin in metabolic syndrome. In: Watson RR, Preedy VR, editors. Bioactive Food as Dietary Interventions for Diabetes. 2nd ed. United States: Academic Press; 2019. p. 515-543.


  1. Salehi B, Fokou PV, Sharifi-Rad M, et al. The therapeutic potential of Naringenin: A review of clinical trials. Pharmaceuticals (Basel). 2019;12(1):11. doi: 10.3390/ph12010011


  1. Albert NW, Lafferty DJ, Moss SM, Davies KM. Flavonoids - flowers, fruit, forage and the future. J R Soc N Z. 2023;53(3):304-331. doi: 10.1080/03036758.2022.2034654


  1. Qi Q, Chu M, Yu X, et al. Anthocyanins and proanthocyanidins: Chemical structures, food sources, bioactivities, and product development. Food Rev Int. 2023;39(7):4581-4609. doi: 10.1080/87559129.2022.2029479


  1. Liga S, Paul C, Péter F. Flavonoids: Overview of biosynthesis, biological activity, and current extraction techniques. Plants (Basel). 2023;12(14):2732. doi: 10.3390/plants12142732


  1. Soukup ST, Engelbert AK, Watzl B, Bub A, Kulling SE. Microbial metabolism of the soy isoflavones daidzein and genistein in postmenopausal women: Human intervention study reveals new metabotypes. Nutrients. 2023;15(10):2352. doi: 10.3390/nu15102352


  1. Poasakate A, Maneesai P, Potue P, et al. Genistein alleviates renin-angiotensin system mediated vascular and kidney alterations in renovascular hypertensive rats. Biomed Pharmacother. 2022;146:112601. doi: 10.1016/j.biopha.2021.112601


  1. Singh S, Grewal S, Sharma N, et al. Unveiling the pharmacological and nanotechnological facets of daidzein: Present state-of-the-art and future perspectives. Molecules. 2023;28(4):1765. doi: 10.3390/molecules28041765


  1. Cahill PA, Redmond EM. Vascular endothelium - Gatekeeper of vessel health. Atherosclerosis. 2016;248:97-109. doi: 10.1016/j.atherosclerosis.2016.03.007


  1. Xi YD, Yu HL, Ding J, et al. Flavonoids protect cerebrovascular endothelial cells through Nrf2 and PI3K from β-amyloid peptide-induced oxidative damage. Curr Neurovasc Res. 2012;9(1):32-41. doi: 10.2174/156720212799297092


  1. Bellavite P. Neuroprotective potentials of flavonoids: Experimental studies and mechanisms of action. Antioxidants (Basel). 2023;12(2):280. doi: 10.3390/antiox12020280


  1. Incalza MA, D’Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol. 2018;100:1-19. doi: 10.1016/j.vph.2017.05.005


  1. Zhang D, Du M, Wei Y, Wang C, Shen L. A review on the structure-activity relationship of dietary flavonoids for protecting vascular endothelial function: Current understanding and future issues. J Food Biochem. 2018;42(5):e12557. doi: 10.1111/jfbc.12557


  1. Bondonno CP, Croft KD, Ward N, Considine MJ, Hodgson JM. Dietary flavonoids and nitrate: Effects on nitric oxide and vascular function. Nutr Rev. 2015;73(4):216-235. doi: 10.1093/nutrit/nuu014


  1. Iqbal I, Wilairatana P, Saqib F, et al. Plant polyphenols and their potential benefits on cardiovascular health: A review. Molecules. 2023;28(17):6403. doi: 10.3390/molecules28176403


  1. Maaliki D, Shaito AA, Pintus G, El-Yazbi A, Eid AH. Flavonoids in hypertension: A brief review of the underlying mechanisms. Curr Opin Pharmacol. 2019;45:57-65. doi: 10.1016/j.coph.2019.04.014


  1. Leo CH, Woodman OL. Flavonols in the prevention of diabetes-induced vascular dysfunction. J Cardiovasc Pharmacol. 2015;65(6):532-544. doi: 10.1097/fjc.0000000000000180


  1. Eisvand F, Tajbakhsh A, Seidel V, Zirak MR, Tabeshpour J, Shakeri A. Quercetin and its role in modulating endoplasmic reticulum stress: A review. Phytother Res. 2022;36(1):73-84. doi: 10.1002/ptr.7283


  1. Procházková D, Boušová I, Wilhelmová N. Antioxidant and pro-oxidant properties of flavonoids. Fitoterapia. 2011;82(4):513-523. doi: 10.1016/j.fitote.2011.01.018


  1. Duarte J, Francisco V, Perez-Vizcaino F. Modulation of nitric oxide by flavonoids. Food Funct. 2014;5(8):1653-1668. doi: 10.1039/c4fo00144c


  1. Schini-Kerth VB, Auger C, Kim JH, Etienne-Selloum N, Chataigneau T. Nutritional improvement of the endothelial control of vascular tone by polyphenols: Role of NO and EDHF. Pflugers Arch. 2010;459(6):853-862. doi: 10.1007/s00424-010-0806-4


  1. Chen G, Zhang L, Van Schepdael A, Wang X. Recent advances in activation of endothelial nitric oxide synthase by natural products: An effects and mechanisms review. Food Rev Int. 2024;40:260-275. doi: 10.1080/87559129.2023.2166061


  1. Ritchie RH, Drummond GR, Sobey CG, De Silva TM, Kemp- Harper BK. The opposing roles of NO and oxidative stress in cardiovascular disease. Pharmacol Res. 2017;116:57-69. doi: 10.1016/j.phrs.2016.12.017


  1. Dagher O, Mury P, Thorin-Trescases N, Noly PE, Thorin E, Carrier M. Therapeutic potential of quercetin to alleviate endothelial dysfunction in age-related cardiovascular diseases. Front Cardiovasc Med. 2021;8:658400. doi: 10.3389/fcvm.2021.658400


  1. Chen T, Zhang X, Zhu G, et al. Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via down-regulating NF-kB and AP-1 signaling pathway in vitro. Medicine (Baltimore). 2020;99(38):e22241. doi: 10.1097/md.0000000000022241


  1. Haynes AP, Desta S, Ahmad T, et al. The antioxidative effects of flavones in hypertensive disease. Biomedicines. 2023;11(11):2877. doi: 10.3390/biomedicines11112877


  1. Ghoshal K, Bhattacharyya M. Overview of platelet physiology: Its hemostatic and nonhemostatic role in disease pathogenesis. ScientificWorldJournal. 2014;2014:781857. doi: 10.1155/2014/781857


  1. McGrath RT, McRae E, Smith OP, O’Donnell JS. Platelet von Willebrand factor--structure, function and biological importance. Br J Haematol. 2010;148(6):834-843. doi: 10.1111/j.1365-2141.2009.08052.x


  1. Lebas H, Yahiaoui K, Martos R, Boulaftali Y. Platelets are at the nexus of vascular diseases. Front Cardiovasc Med. 2019;6:132. doi: 10.3389/fcvm.2019.00132


  1. Kannan M, Ahmad F, Saxena R. Platelet activation markers in evaluation of thrombotic risk factors in various clinical settings. Blood Rev. 2019;37:100583. doi: 10.1016/j.blre.2019.05.007


  1. Braune S, Küpper JH, Jung F. Effect of prostanoids on human platelet function: An overview. Int J Mol Sci. 2020;21(23):9020. doi: 10.3390/ijms21239020


  1. Ciumărnean L, Milaciu MV, Runcan O, et al. The effects of flavonoids in cardiovascular diseases. Molecules. 2020;25(18):4320. doi: 10.3390/molecules25184320


  1. Hong HJ, Nam GS, Nam KS. Daidzein inhibits human platelet activation by downregulating thromboxane A(2) production and granule release, regardless of COX-1 activity. Int J Mol Sci. 2023;24(15):11985. doi: 10.3390/ijms241511985


  1. Sharifi-Rad J, Quispe C, Shaheen S, et al. Flavonoids as potential anti-platelet aggregation agents: from biochemistry to health promoting abilities. Crit Rev Food Sci Nutr. 2022;62(29):8045-8058. doi: 10.1080/10408398.2021.1924612


  1. Oh TW, Do HJ, Jeon JH, Kim K. Quercitrin inhibits platelet activation in arterial thrombosis. Phytomedicine. 2021;80:153363. doi: 10.1016/j.phymed.2020.153363


  1. Zaragozá C, Monserrat J, Mantecón C, et al. Binding and antiplatelet activity of quercetin, rutin, diosmetin, and diosmin flavonoids. Biomed Pharmacother. 2021;141:111867. doi: 10.1016/j.biopha.2021.111867


  1. Oh YS. Arterial stiffness and hypertension. Clin Hypertens. 2018;24(1):17. doi: 10.1186/s40885-018-0102-8


  1. Papathanasiou G, Zerva E, Zacharis I, et al. Association of high blood pressure with body mass index, smoking and physical activity in healthy young adults. Open Cardiovasc Med J. 2015;9:5-17. doi: 10.2174/1874192401509010005


  1. Bian K, Doursout MF, Murad F. Vascular system: Role of nitric oxide in cardiovascular diseases. J Clin Hypertens (Greenwich). 2008;10(4):304-310. doi: 10.1111/j.1751-7176.2008.06632.x


  1. Dehghani F, Sezavar Seyedi Jandaghi SH, Janani L, Sarebanhassanabadi M, Emamat H, Vafa M. Effects of quercetin supplementation on inflammatory factors and quality of life in post-myocardial infarction patients: A double blind, placebo-controlled, randomized clinical trial. Phytother Res. 2021;35(4):2085-2098. doi: 10.1002/ptr.6955


  1. Dower JI, Geleijnse JM, Gijsbers L, Zock PL, Kromhout D, Hollman PC. Effects of the pure flavonoids epicatechin and quercetin on vascular function and cardiometabolic health: A randomized, double-blind, placebo-controlled, crossover trial. Am J Clin Nutr. 2015;101(5):914-921. doi: 10.3945/ajcn.114.098590


  1. Edwards RL, Lyon T, Litwin SE, Rabovsky A, Symons JD, Jalili T. Quercetin reduces blood pressure in hypertensive subjects. J Nutr. 2007;137(11):2405-2411. doi: 10.1093/jn/137.11.2405


  1. Nishihira J, Nishimura M, Kurimoto M, et al. The effect of 24-week continuous intake of quercetin-rich onion on age-related cognitive decline in healthy elderly people: A randomized, double-blind, placebo-controlled, parallel-group comparative clinical trial. J Clin Biochem Nutr. 2021;69(2):203-215. doi: 10.3164/jcbn.21-17


  1. Shatylo V, Antoniuk-Shcheglova I, Naskalova S, et al. Cardio-metabolic benefits of quercetin in elderly patients with metabolic syndrome. Pharma Nutr. 2021;15:100250. doi: 10.1016/j.phanu.2020.100250


  1. Shi Y, Williamson G. Quercetin lowers plasma uric acid in pre-hyperuricaemic males: A randomised, double-blinded, placebo-controlled, cross-over trial. Br J Nutr. 2016;115(5):800-806. doi: 10.1017/s0007114515005310


  1. Ali F, Wang D, Cheng Y, et al. Quercetin attenuates angiotensin II-induced proliferation of vascular smooth muscle cells and p53 pathway activation in vitro and in vivo. BioFactors. 2023;49(4):956-970. doi: 10.1002/biof.1959


  1. Gallo EF, Iadecola C. Neuronal nitric oxide contributes to neuroplasticity-associated protein expression through cGMP, protein kinase G, and extracellular signal-regulated kinase. J Neurosci. 2011;31(19):6947-6955. doi: 10.1523/jneurosci.0374-11.2011


  1. Wojta J. Vascular smooth muscle cells: Regulation of vasoconstriction and vasodilation. In: Geiger M, editor. Fundamentals of Vascular Biology. Germany: Springer International Publishing; 2019. p. 97-111.


  1. De Souza P, da Silva LM, de Andrade SF, Gasparotto A Jr. Recent advances in the knowledge of naturally-derived bioactive compounds as modulating agents of the renin-angiotensin-aldosterone system: Therapeutic benefits in cardiovascular diseases. Curr Pharm Des. 2019;25(6):670-684. doi: 10.2174/1381612825666190329122443


  1. Te Riet L, van Esch JH, Roks AJ, van den Meiracker AH, Danser AH. Hypertension: renin-angiotensin-aldosterone system alterations. Circ Res. 2015;116(6):960-975. doi: 10.1161/circresaha.116.303587


  1. Hall JE, Do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat Rev Nephrol. 2019;15(6):367-385. doi: 10.1038/s41581-019-0145-4


  1. Verma N, Rastogi S, Chia YC, et al. Non-pharmacological management of hypertension. J Clin Hypertens (Greenwich). 2021;23(7):1275-1283. doi: 10.1111/jch.14236


  1. Siervo M, Lara J, Chowdhury S, Ashor A, Oggioni C, Mathers JC. Effects of the dietary approach to stop hypertension (DASH) diet on cardiovascular risk factors: A systematic review and meta-analysis. Br J Nutr. 2015;113(1):1-15. doi: 10.1017/s0007114514003341


  1. Ellwood L, Torun G, Bahar Z, Fernandez R. Effects of flavonoid-rich fruits on hypertension in adults: A systematic review. JBI Database Syst Rev Implement Rep. 2019;17(10):2075-2105. doi: 10.11124/jbisrir-d-19-00050


  1. Zięba K, Makarewicz-Wujec M, Kozłowska- Wojciechowska M. Cardioprotective mechanisms of cocoa. J Am Coll Nutr. 2019;38(6):564-575. doi: 10.1080/07315724.2018.1557087


  1. Gai Z, Hu S, Gong G, Zhao J. Recent advances in understanding dietary polyphenols protecting against hypertension. Trends Food Sci Technol. 2023;138:685-696. doi: 10.1016/j.tifs.2023.07.008


  1. Clark JL, Zahradka P, Taylor CG. Efficacy of flavonoids in the management of high blood pressure. Nutr Rev. 2015;73(12):799-822. doi: 10.1093/nutrit/nuv048


  1. Syed AA, Lahiri S, Mohan D, et al. Evaluation of anti-hypertensive activity of Ulmus wallichiana extract and fraction in SHR, DOCA-salt- and L-NAME-induced hypertensive rats. J Ethnopharmacol. 2016;193:555-565. doi: 10.1016/j.jep.2016.10.008


  1. Mzhelskaya KV, Shipelin VA, Shumakova AA, et al. Effects of quercetin on the neuromotor function and behavioral responses of Wistar and Zucker rats fed a high-fat and high-carbohydrate diet. Behav Brain Res. 2020;378:112270. doi: 10.1016/j.bbr.2019.112270


  1. Carresi C, Cardamone A, Coppoletta AR, et al. The protective effect of Bergamot Polyphenolic Fraction on reno-cardiac damage induced by DOCA-salt and unilateral renal artery ligation in rats. Biomed Pharmacother. 2024;171:116082. doi: 10.1016/j.biopha.2023.116082


  1. Egert S, Bosy-Westphal A, Seiberl J, et al. Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: A double-blinded, placebo-controlled cross-over study. Br J Nutr. 2009;102(7):1065-1074. doi: 10.1017/S0007114509359127


  1. Lee KH, Park E, Lee HJ, et al. Effects of daily quercetin-rich supplementation on cardiometabolic risks in male smokers. NRP. 2011;5(1):28-33. doi: 10.4162/nrp.2011.5.1.28


  1. Larson A, Witman MA, Guo Y, et al. Acute, quercetin-induced reductions in blood pressure in hypertensive individuals are not secondary to lower plasma angiotensin-converting enzyme activity or endothelin-1: Nitric oxide. Nutr Res. 2012;32(8):557-564. doi: 10.1016/j.nutres.2012.06.018


  1. Huang H, Liao D, Dong Y, Pu R. Effect of quercetin supplementation on plasma lipid profiles, blood pressure, and glucose levels: A systematic review and meta-analysis. Nutr Rev. 2020;78(8):615-626. doi: 10.1093/nutrit/nuz071


  1. Serban MC, Sahebkar A, Zanchetti A, et al. Effects of quercetin on blood pressure: A systematic review and meta‐analysis of randomized controlled trials. J Am Heart Assoc. 2016;5(7):e002713. doi: 10.1161/JAHA.115.002713


  1. Vogiatzoglou A, Mulligan AA, Lentjes MA, et al. Flavonoid intake in European adults (18 to 64 years). PLoS One. 2015;10(5):e0128132. doi: 10.1371/journal.pone.0128132


  1. Perez A, Gonzalez-Manzano S, Jimenez R, et al. The flavonoid quercetin induces acute vasodilator effects in healthy volunteers: Correlation with beta-glucuronidase activity. Pharmacol Res. 2014;89:11-18. doi: 10.1016/j.phrs.2014.07.005


  1. Papakyriakopoulou P, Velidakis N, Khattab E, Valsami G, Korakianitis I, Kadoglou NP. Potential pharmaceutical applications of quercetin in cardiovascular diseases. Pharmaceuticals (Basel). 2022;15(8):1019. doi: 10.3390/ph15081019


  1. Gómez-Guzmán M, Jiménez R, Sánchez M, et al. Epicatechin lowers blood pressure, restores endothelial function, and decreases oxidative stress and endothelin-1 and NADPH oxidase activity in DOCA-salt hypertension. Free Radic Biol Med. 2012;52(1):70-79. doi: 10.1016/j.freeradbiomed.2011.09.015


  1. Connolly K, Batacan R, Jackson D, Fenning AS. Effects of epicatechin on cardiovascular function in middle-aged diet-induced obese rat models of metabolic syndrome. Br J Nutr. 2024;131:593-605. doi: 10.1017/S000711452300209X


  1. Sabarathinam S, Dhanasekaran D, Ganamurali N. Insight on sarcopenic obesity and epicatechin as a promising treatment option. Diabetes Metab Syndr. 2023;17(10):102856. doi: 10.1016/j.dsx.2023.102856


  1. Talebi M, Talebi M, Farkhondeh T, Mishra G, İlgün S, Samarghandian S. New insights into the role of the Nrf2 signaling pathway in green tea catechin applications. Phytother Res. 2021;35(6):3078-3112. doi: 10.1002/ptr.7033


  1. Jiménez R, Duarte J, Perez-Vizcaino F. Epicatechin: Endothelial function and blood pressure. J Agric Food Chem. 2012;60(36):8823-8830. doi: 10.1021/jf205370q


  1. Kumar N, Kant R, Maurya PK. Concentration-dependent effect of (−) epicatechin in hypertensive patients. Phytother Res. 2010;24(10):1433-1436. doi: 10.1002/ptr.3119


  1. Huang WY, Fu L, Li CY, Xu LP, Zhang LX, Zhang WM. Quercetin, hyperin, and chlorogenic acid improve endothelial function by antioxidant, antiinflammatory, and ACE inhibitory effects. J Food Sci. 2017;82(5):1239-1246. doi: 10.1111/1750-3841.13706


  1. Wang H, Patterson C. Atherosclerosis: Risks, mechanisms, and therapies. United States: John Wiley and Sons; 2015.


  1. Suri JS, Kathuria C, Molinari F. Atherosclerosis Disease Management. Germany: Springer Science and Business Media; 2010.


  1. Ritchey MD, Wall HK, George MG, Wright JS. US trends in premature heart disease mortality over the past 50 years: Where do we go from here? Trends Cardiovasc Med. 2020;30(6):364-374. doi: 10.1016/j.tcm.2019.09.005


  1. Rathee P, Chaudhary H, Rathee S, Rathee D, Kumar V, Kohli K. Mechanism of action of flavonoids as anti-inflammatory agents: A review. Inflamm Allergy Drug Targets. 2009;8(3):229-235. doi: 10.2174/187152809788681029


  1. Grassi D, Desideri G, Ferri C. Flavonoids: antioxidants against atherosclerosis. Nutrients. 2010;2(8):889-902. doi: 10.3390/nu2080889


  1. Phie J, Krishna SM, Moxon JV, Omer SM, Kinobe R, Golledge J. Flavonols reduce aortic atherosclerosis lesion area in apolipoprotein E deficient mice: A systematic review and meta-analysis. PLoS One. 2017;12(7):e0181832. doi: 10.1371/journal.pone.0181832


  1. Wu WB, Hung DK, Chang FW, Ong ET, Chen BH. Anti-inflammatory and anti-angiogenic effects of flavonoids isolated from Lycium barbarum Linnaeus on human umbilical vein endothelial cells. Food Funct. 2012;3(10):1068-1081. doi: 10.1039/c2fo30051f


  1. Xiao L, Liu L, Guo X, et al. Quercetin attenuates high fat diet-induced atherosclerosis in apolipoprotein E knockout mice: A critical role of NADPH oxidase. Food Chem Toxicol. 2017;105:22-33. doi: 10.1016/j.fct.2017.03.048


  1. D’Andrea G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia. 2015;106:256-271. doi: 10.1016/j.fitote.2015.09.018


  1. Liu TT, Zeng Y, Tang K, Chen X, Zhang W, Xu XL. Dihydromyricetin ameliorates atherosclerosis in LDL receptor deficient mice. Atherosclerosis. 2017;262:39-50. doi: 10.1016/j.atherosclerosis.2017.05.003


  1. Bolduc V, Baraghis E, Duquette N, et al. Catechin prevents severe dyslipidemia-associated changes in wall biomechanics of cerebral arteries in LDLr-/-:hApoB+/+ mice and improves cerebral blood flow. Am J Physiol Heart Circ Physiol. 2012;302(6):H1330-H1339. doi: 10.1152/ajpheart.01044.2011


  1. Jia Z, Nallasamy P, Liu D, et al. Luteolin protects against vascular inflammation in mice and TNF-alpha-induced monocyte adhesion to endothelial cells via suppressing IΚBα/ NF-κB signaling pathway. J Nutr Biochem. 2015;26(3):293-302. doi: 10.1016/j.jnutbio.2014.11.008


  1. Yoshida H, Watanabe H, Ishida A, et al. Naringenin suppresses macrophage infiltration into adipose tissue in an early phase of high-fat diet-induced obesity. Biochem Biophys Res Commun. 2014;454(1):95-101. doi: 10.1016/j.bbrc.2014.10.038


  1. Liu L, Liao P, Wang B, Fang X, Li W, Guan S. Baicalin inhibits the expression of monocyte chemoattractant protein-1 and interleukin-6 in the kidneys of apolipoprotein E-knockout mice fed a high cholesterol diet. Mol Med Rep. 2015;11(5):3976-3980. doi: 10.3892/mmr.2015.3186


  1. Yang L, Liu X, Zhang N, et al. Flavonoids in resina draconis protect against pulmonary fibrosis via the TGF-β1/ NOTCH1 pathway. Mol Cell Toxicol. 2020;16(2):193-201. doi: 10.1007/s13273-019-00070-9


  1. Soltani S, Boozari M, Cicero AF, Jamialahmadi T, Sahebkar A. Effects of phytochemicals on macrophage cholesterol efflux capacity: Impact on atherosclerosis. Phytother Res. 2021;35(6):2854-2878. doi: 10.1002/ptr.6991


  1. Yang Y, Trevethan M, Wang S, Zhao L. Beneficial effects of citrus flavanones naringin and naringenin and their food sources on lipid metabolism: An update on bioavailability, pharmacokinetics, and mechanisms. J Nutr Biochem. 2022;104:108967. doi: 10.1016/j.jnutbio.2022.108967


  1. Mohammed CJ, Lamichhane S, Connolly JA, et al. A PON for all seasons: Comparing paraoxonase enzyme substrates, activity and action including the role of PON3 in health and disease. Antioxidants (Basel). 2022;11(3):590. doi: 10.3390/antiox11030590


  1. Ghahremani S, Soodi M, Atashi A. Quercetin ameliorates chlorpyrifos-induced oxidative stress in the rat brain: Possible involvment of PON2 pathway. J Food Biochem. 2018;42(3):e12530. doi: 10.1111/jfbc.12530


  1. Ibrahim KA, Eleyan M, Khwanes SA, Mohamed RA, Abd El-Rahman HA. Quercetin ameliorates the hepatic apoptosis of foetal rats induced by in utero exposure to fenitrothion via the transcriptional regulation of paraoxonase-1 and apoptosis-related genes. Biomarkers. 2021;26(2):152-162. doi: 10.1080/1354750X.2021.1875505


  1. Deng Q, Li XX, Fang Y, Chen X, Xue J. Therapeutic potential of quercetin as an antiatherosclerotic agent in atherosclerotic cardiovascular disease: A review. Evid Based Complement Altern Med. 2020;2020:5926381. doi: 10.1155/2020/5926381


  1. Peters LJ, Biessen EA, Hohl M, Weber C, van der Vorst EP, Santovito D. Small things matter: Relevance of MicroRNAs in cardiovascular disease. Front Physiol. 2020;11:793. doi: 10.3389/fphys.2020.00793


  1. Luo HY, Li G, Liu YG, et al. The accelerated progression of atherosclerosis correlates with decreased miR-33a and miR-21 and increased miR-122 and miR-3064-5p in circulation and the liver of ApoE-/-mice with streptozocin (STZ)-induced type 2 diabetes. Curr Issues Mol Biol. 2022;44(10):4822-4837. doi: 10.3390/cimb44100328


  1. Boesch-Saadatmandi C, Loboda A, Wagner AE, et al. Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155. J Nutr Biochem. 2011;22(3):293-299.doi: 10.1016/j.jnutbio.2010.02.008


  1. Wang S, Zhang X, Liu M, et al. Chrysin inhibits foam cell formation through promoting cholesterol efflux from RAW264.7 macrophages. Pharm Biol. 2015;53(10):1481-1487. doi: 10.3109/13880209.2014.986688


  1. Lian Z, Zhu B, Lei C, et al. Reverse cholesterol transport-related miRNAs and their regulation by natural functional compounds. Curr Protein Pept Sci. 2019;20(10):1004-1011. doi: 10.2174/1389203720666190827143218


  1. Rangarajan S, Orujyan D, Rangchaikul P, Radwan MM. Critical role of inflammation and specialized pro-resolving mediators in the pathogenesis of atherosclerosis. Biomedicines. 2022;10(11):2829. doi: 10.3390/biomedicines10112829


  1. Vernocchi P, Del Chierico F, Putignani L. Gut microbiota metabolism and interaction with food components. Int J Mol Sci. 2020;21(10):3688. doi: 10.3390/ijms21103688


  1. Zhen J, Zhou Z, He M, et al. The gut microbial metabolite trimethylamine N-oxide and cardiovascular diseases. Front Endocrinol (Lausanne). 2023;14:1085041. doi: 10.3389/fendo.2023.1085041


  1. Ren D, Liu Y, Zhao Y, Yang X. Hepatotoxicity and endothelial dysfunction induced by high choline diet and the protective effects of phloretin in mice. Food Chem Toxicol. 2016;94:203-212. doi: 10.1016/j.fct.2016.06.004


  1. Pfeuffer M, Auinger A, Bley U, et al. Effect of quercetin on traits of the metabolic syndrome, endothelial function and inflammation in men with different APOE isoforms. Nutr Metab Cardiovasc Dis. 2013;23(5):403-409. doi: 10.1016/j.numecd.2011.08.010


  1. Curtis PJ, Potter J, Kroon PA, et al. Vascular function and atherosclerosis progression after 1 y of flavonoid intake in statin-treated postmenopausal women with type 2 diabetes: A double-blind randomized controlled trial. Am J Clin Nutr. 2013;97(5):936-942. doi: 10.3945/ajcn.112.043745


  1. Zhu Y, Ling W, Guo H, et al. Anti-inflammatory effect of purified dietary anthocyanin in adults with hypercholesterolemia: A randomized controlled trial. Nutr Metab Cardiovasc Dis. 2013;23(9):843-849. doi: 10.1016/j.numecd.2012.06.005


Conflict of interest
The authors declare no conflicts of interest.
Back to top
Global Translational Medicine, Electronic ISSN: 2811-0021 Published by AccScience Publishing