The dawn of personalized multi-omics: Detecting disease before you know it
Recent advancements in omics techniques have enabled deep profiling of an individual’s molecular makeup. The wealth of data produced offers insights into genetic predispositions, early disease markers, and personalized treatment strategies. However, the full potential of omics data emerges when combined into longitudinal and personal multi-omics space. Another interesting venue is the inclusion of continuous monitoring of physiological parameters through wearable technology. Wearable health devices, including smartwatches and biosensors, provide real-time data on heart rate, oxygen saturation, sleep patterns, activity levels, and much more. By integrating with omics data, wearables offer a comprehensive view of an individual’s health, allowing for early detection of deviations from normalcy. This convergence allows for the prediction and prevention of diseases at the individual level and provides a powerful monitoring tool in clinical and drug developmental settings. This review explores the fusion of omics and wearable technology, envisioning their synergy as a catalyst for a transformative shift in modern healthcare. Their merging enables predictive and personalized medicine. As these technologies continue to evolve, their translation into routine clinical practice holds the promise of a healthier future for all. Provided herein is a step-by-step vision for how longitudinal personalized multi-omics, combined with wearable devices, will guide proactive healthcare and transform drug discovery in translational medicine.
- Carter AJ, Kraemer O, Zwick M, Mueller-Fahrnow A, Arrowsmith CH, Edwards AM. Target 2035: Probing the human proteome. Drug Discov Today. 2019;24(11):2111-2115. doi: 10.1016/j.drudis.2019.06.020
- Nurk S, Koren S, Rhie A, et al. The complete sequence of a human genome. Science. 2022;376(6588):44-53. doi: 10.1126/science.abj6987
- Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061-1068. doi: 10.1038/nature07385
- Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609-615. doi: 10.1038/nature10166
- Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61-70. doi: 10.1038/nature11412
- GTEx Consortium. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45(6):580-585. doi: 10.1038/ng.2653
- Stunnenberg HG, International Human Epigenome Consortium, Hirst M. The international human epigenome consortium: A blueprint for scientific collaboration and discovery. Cell. 2016;167(5):1145-1149. doi: 10.1016/j.cell.2016.11.007
- Regev A, Teichmann SA, Lander ES, et al. The human cell atlas. Elife. 2017;6:e27041. doi: 10.7554/eLife.27041
- Zhang B, Wang J, Wang X, et al. Proteogenomic characterization of human colon and rectal cancer. Nature. 2014;513(7518):382-387. doi: 10.1038/nature13438
- Mertins P, Mani DR, Ruggles KV, et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature. 2016;534(7605):55-62. doi: 10.1038/nature18003
- Zhang H, Liu T, Zhang Z, et al. Integrated proteogenomic characterization of human high-grade serous ovarian cancer. Cell. 2016;166(3):755-765. doi: 10.1016/j.cell.2016.05.069
- Gillette MA, Satpathy S, Cao S, et al. Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma. Cell. 2020;182(1):200-225.e35. doi: 10.1016/j.cell.2020.06.013
- Mundt F, Rajput S, Li S, et al. Mass spectrometry-based proteomics reveals potential roles of NEK9 and MAP2K4 in resistance to PI3K inhibition in triple-negative breast cancers. Cancer Res. 2018;78(10):2732-2746. doi: 10.1158/0008-5472.CAN-17-1990
- Archer TC, Ehrenberger T, Mundt F, et al. Proteomics, post-translational modifications, and integrative analyses reveal molecular heterogeneity within medulloblastoma subgroups. Cancer Cell. 2018;34(3):396-410.e8. doi: 10.1016/j.ccell.2018.08.004
- Heck AJ, Krijgsveld J. Mass spectrometry-based quantitative proteomics. Expert Rev Proteomics. 2004;1(3):317-326. doi: 10.1586/14789450.1.3.317
- Pernemalm M, Lehtio J. Mass spectrometry-based plasma proteomics: State of the art and future outlook. Expert Rev Proteomics. 2014;11(4):431-448. doi: 10.1586/14789450.2014.901157
- Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature. 2016;537(7620):347-355. doi: 10.1038/nature19949
- Invergo BM, Beltrao P. Reconstructing phosphorylation signalling networks from quantitative phosphoproteomic data. Essays Biochem. 2018;62(4):525-534. doi: 10.1042/EBC20180019
- Orre LM, Vesterlund M, Pan Y, et al. SubCellBarCode: Proteome-wide mapping of protein localization and relocalization. Mol Cell. 2019;73(1):166-182.e7. doi: 10.1016/j.molcel.2018.11.035
- Lehtio J, Arslan T, Siavelis I, et al. Proteogenomics of non-small cell lung cancer reveals molecular subtypes associated with specific therapeutic targets and immune evasion mechanisms. Nat Cancer. 2021;2(11):1224-1242. doi: 10.1038/s43018-021-00259-9
- Clish CB. Metabolomics: An emerging but powerful tool for precision medicine. Cold Spring Harb Mol Case Stud. 2015;1(1):a000588. doi: 10.1101/mcs.a000588
- Lu Z, Priya Rajan SA, Song Q, et al. 3D scaffold-free microlivers with drug metabolic function generated by lineage-reprogrammed hepatocytes from human fibroblasts. Biomaterials. 2021;269:120668. doi: 10.1016/j.biomaterials.2021.120668
- Triozzi PL, Stirling ER, Song Q, et al. Circulating immune bioenergetic, metabolic, and genetic signatures predict melanoma patients’ response to Anti-PD-1 immune checkpoint blockade. Clin Cancer Res. 2022;28(6):1192-1202. doi: 10.1158/1078-0432.CCR-21-3114
- Ravindra KC, Vaidya VS, Wang Z, et al. Tandem mass tag-based quantitative proteomic profiling identifies candidate serum biomarkers of drug-induced liver injury in humans. Nat Commun. 2023;14(1):1215. doi: 10.1038/s41467-023-36858-6
- Niu L, Thiele M, Geyer PE, et al. Noninvasive proteomic biomarkers for alcohol-related liver disease. Nat Med. 2022;28(6):1277-1287. doi: 10.1038/s41591-022-01850-y
- Eldjarn GH, Ferkingstad E, Lund SH, et al. Large-scale plasma proteomics comparisons through genetics and disease associations. Nature. 2023;622(7982):348-358. doi: 10.1038/s41586-023-06563-x
- Sun BB, Chiou J, Traylor M, et al. Plasma proteomic associations with genetics and health in the UK Biobank. Nature. 2023;622(7982):329-338. doi: 10.1038/s41586-023-06592-6
- Dhindsa RS, Burren OS, Sun BB, et al. Rare variant associations with plasma protein levels in the UK Biobank. Nature. 2023;622(7982):339-347. doi: 10.1038/s41586-023-06547-x
- Sanyal AJ, Williams SA, Lavine JE, et al. Defining the serum proteomic signature of hepatic steatosis, inflammation, ballooning and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 2023;78(4):693-703. doi: 10.1016/j.jhep.2022.11.029
- Mundt F, Albrechtsen NJW, Mann SP, et al. Foresight in clinical proteomics: current status, ethical considerations, and future perspectives. Open Res Eur. 2023;3:59. doi: 10.12688/openreseurope.15810.1
- Mertins P, Tang LC, Krug K, et al. Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry. Nat Protoc. 2018;13(7):1632-1661. doi: 10.1038/s41596-018-0006-9
- Candia J, Daya GN, Tanaka T, Ferrucci L, Walker KA. Assessment of variability in the plasma 7k SomaScan proteomics assay. Sci Rep. 2022;12(1):17147. doi: 10.1038/s41598-022-22116-0
- Huang T, Wang J, Stukalov A, et al. Protein coronas on functionalized nanoparticles enable quantitative and precise large-scale deep plasma proteomics. bioRxiv [Preprint]. 2023. doi: 10.1101/2023.08.28.555225
- Mund A, Coscia F, Kriston A, et al. Deep visual proteomics defines single-cell identity and heterogeneity. Nat Biotechnol. 2022;40(8):1231-1240. doi: 10.1038/s41587-022-01302-5
- Eckert MA, Coscia F, Chryplewicz A, et al. Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature. 2019;569(7758):723-728. doi: 10.1038/s41586-019-1173-8
- Zhuang YJ, Mangwiro Y, Wake M, Saffery R, Greaves RF. Multi-omics analysis from archival neonatal dried blood spots: Limitations and opportunities. Clin Chem Lab Med. 2022;60(9):1318-1341. doi: 10.1515/cclm-2022-0311
- Omenn GS, Lane L, Overall CM, et al. The 2022 Report on the human proteome from the HUPO human proteome project. J Proteome Res. 2023;22(4):1024-1042. doi: 10.1021/acs.jproteome.2c00498
- Webel H, Niu L, Nielsen BA, et al. Imputation of label-free quantitative mass spectrometry-based proteomics data using self supervised deep learning. bioRxiv [Preprint]. 2023. doi: 10.1101/2023.01.12.523792
- Liu J, Yang M, Yu Y, Xu H, Li K, Zhou X. Large language models in bioinformatics: applications and perspectives. ArXiv [Preprint]. 2024.
- Mani DR, Krug K, Zhang B, et al. Cancer proteogenomics: current impact and future prospects. Nat Rev Cancer. 2022;22(5):298-313. doi: 10.1038/s41568-022-00446-5
- Santos A, Colaço AR, Nielsen AB, et al. A knowledge graph to interpret clinical proteomics data. Nat Biotechnol. 2022;40(5):692-702. doi: 10.1038/s41587-021-01145-6
- Smith AA, Li R, Tse ZTH. Reshaping healthcare with wearable biosensors. Sci Rep. 2023;13(1):4998. doi: 10.1038/s41598-022-26951-z
- Huhn S, Axt M, Gunga HC, et al. The impact of wearable technologies in health research: Scoping review. JMIR Mhealth Uhealth. 2022;10(1):e34384. doi: 10.2196/34384
- Lu L, Zhang J, Xie Y, et al. Wearable health devices in health care: Narrative systematic review. JMIR Mhealth Uhealth. 2020;8(11):e18907. doi: 10.2196/18907
- Wells CI, Xu W, Penfold JA, et al. Wearable devices to monitor recovery after abdominal surgery: Scoping review. BJS Open. 2022;6(2):zrac031. doi: 10.1093/bjsopen/zrac031
- Horsham C, Antrobus J, Olsen CM, Ford H, Abernethy D, Hacker E. Testing wearable UV Sensors to improve sun protection in young adults at an outdoor festival: Field study. JMIR Mhealth Uhealth. 2020;8(9):e21243. doi: 10.2196/21243
- Salusky IB, Holloway M, Kuizon BD. Peritoneal dialysis in children: Issues for the 21st century. Perit Dial Int. 1999;19(Suppl 2):S484-S488.
- Al Younis SM, Hadjileontiadis LJ, Stefanini C, Khandoker AH. Non-invasive technologies for heart failure, systolic and diastolic dysfunction modeling: A scoping review. Front Bioeng Biotechnol. 2023;11:1261022. doi: 10.3389/fbioe.2023.1261022
- Prieto-Avalos G, Cruz-Ramos NA, Alor-Hernandez G, Sanchez-Cervantes JL, Rodriguez-Mazahua L, Guarneros- Nolasco LR. Wearable devices for physical monitoring of heart: A review. Biosensors (Basel). 2022;12(5):292. doi: 10.3390/bios12050292
- Handy C, Chaudhry MS, Qureshi MRA, et al. Noninvasive continuous glucose monitoring with a novel wearable dial resonating sensor: A clinical proof-of-concept study. J Diabetes Sci Technol. 2023. doi: 10.1177/19322968231170242
- Van de Hei SJ, Poot CC, van den Berg LN, et al. Effectiveness, usability and acceptability of a smart inhaler programme in patients with asthma: Protocol of the multicentre, pragmatic, open-label, cluster randomised controlled ACCEPTANCE trial. BMJ Open Respir Res. 2022;9(1):e001400. doi:10.1136/bmjresp-2022-001400
- Iqbal SMA, Mahgoub I, Du E, Leavitt MA, Asghar W. Advances in healthcare wearable devices. NPJ Flex Electron. 2021;5(1):9. doi: 10.1038/s41528-021-00107-x
- Özsoylu D, Janus KA, Achtsnicht S, Wagner T, Keusgen M, Schöning MJ. (Bio-)Sensors for skin grafts and skin flaps monitoring. Sens Actuators Rep. 2023;6:100163. doi: 10.1016/j.snr.2023.100163
- (FDA) USFaDA. Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices. Available from: https:// www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices [Last accessed on 2023 Nov 30].
- Peters DM, O’Brien ES, Kamrud KE, et al. Utilization of wearable technology to assess gait and mobility post-stroke: A systematic review. J Neuroeng Rehabil. 2021;18(1):67. doi: 10.1186/s12984-021-00863-x
- Daskalaki E, Parkinson A, Brew-Sam N, et al. The potential of current noninvasive wearable technology for the monitoring of physiological signals in the management of type 1 diabetes: Literature survey. J Med Internet Res. 2022;24(4):e28901. doi: 10.2196/28901
- Smarr BL, Aschbacher K, Fisher SM, et al. Feasibility of continuous fever monitoring using wearable devices. Sci Rep. 2020;10(1):21640. doi: 10.1038/s41598-020-78355-6
- Gilliam FR, 3rd, Ciesielski R, Shahinyan K, et al. In-ear infrasonic hemodynography with a digital health device for cardiovascular monitoring using the human audiome. NPJ Digit Med. 2022;5(1):189. doi: 10.1038/s41746-022-00725-3
- Cheng CH, Wong KL, Chin JW, Chan TT, So RHY. Deep learning methods for remote heart rate measurement: A review and future research agenda. Sensors (Basel). 2021;21(18):6296. doi: 10.3390/s21186296
- Sadad T, Bukhari SAC, Munir A, Ghani A, El-Sherbeeny AM, Rauf HT. Detection of cardiovascular disease based on ppg signals using machine learning with cloud computing. Comput Intell Neurosci. 2022;2022:1672677. doi: 10.1155/2022/1672677
- Heiden E, Jones T, Brogaard Maczka A, et al. Measurement of vital signs using lifelight remote photoplethysmography: Results of the VISION-D and VISION-V observational studies. JMIR Form Res. 2022;6(11):e36340. doi: 10.2196/36340
- Saboo B, Kesavadev J, Shankar A, et al. Time-in-range as a target in type 2 diabetes: An urgent need. Heliyon. 2021;7(1):e05967. doi: 10.1016/j.heliyon.2021.e05967
- Zou Y, Chu Z, Guo J, Liu S, Ma X, Guo J. Minimally invasive electrochemical continuous glucose monitoring sensors: Recent progress and perspective. Biosens Bioelectron. 2023;225:115103. doi: 10.1016/j.bios.2023.115103
- Ma YL, Ke JF, Wang JW, Wang YJ, Xu MR, Li LX. Blood lactate levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease in type 2 diabetes: A real-world study. Front Endocrinol (Lausanne). 2023;14:1133991. doi: 10.3389/fendo.2023.1133991
- Liu F, Lu JX, Tang JL, et al. Relationship of plasma creatinine and lactic acid in type 2 diabetic patients without renal dysfunction. Chin Med J (Engl). 2009;122(21):2547-2553.
- (FDA) USFaDA. ECG App Classified into Class II-FDA. Cupertino: Apple Inc.; 2018. Available from: https://www. accessdata.fda.gov/cdrh_docs/pdf18/den180044.pdf [Last accessed on 2024 Mar 20].
- Smith S. Which Smartwatch is FDA Approved?; 2023. Available from: https://isp.page/news/which-smartwatch-is-fda-approved/#gsc.tab=0 [Last accessed on 2023 Nov 30].
- FDA.Report. Omron Heart Guide Wrist Blood Pressure Monitor, Large BP8000-L. Available from: https://fda.report/ GUDID/20073796268026 [Last accessed on 2024 Mar 20].
- Mason AE, Hecht FM, Davis SK, et al. Detection of COVID- 19 using multimodal data from a wearable device: Results from the first TemPredict Study. Sci Rep. 2022;12(1):3463. doi: 10.1038/s41598-022-07314-0
- Cheong SHR, Ng YJX, Lau Y, Lau ST. Wearable technology for early detection of COVID-19: A systematic scoping review. Prev Med. 2022;162:107170. doi: 10.1016/j.ypmed.2022.107170
- Messner CB, Demichev V, Wendisch D, et al. Ultra-high-throughput clinical proteomics reveals classifiers of COVID- 19 infection. Cell Syst. 2020;11(1):11-24.e4. doi: 10.1016/j.cels.2020.05.012
- Vayena E, Blasimme A, Sugarman J. Decentralised clinical trials: Ethical opportunities and challenges. Lancet Digit Health. 2023;5(6):e390-e394. doi: 10.1016/S2589-7500(23)00052-3
- Porsdam Mann S, Treit PV, Geyer PE, Omenn GS, Mann M. Ethical principles, opportunities and constraints in clinical proteomics. Mol Cell Proteomics. 2021;20:100046. doi: 10.1074/mcp.RA120.002435
- Caufield JH, Fu J, Wang D, Guevara-Gonzalez V, Wang W, Ping P. A Second look at FAIR in proteomic investigations. J Proteome Res. 2021;20(5):2182-2186. doi: 10.1021/acs.jproteome.1c00177
- Giannattasio S, Heil KF, Hermjakob H, et al. The next challenge: Data management, submission and FAIRness in multi-omics experiments. F1000Res. 2023;12:1379. doi: 10.7490/f1000research.1119646.1
- Medicine IoMURoE-B. 6, Missed Prevention Opportunities. In: Yong PL, Olsen LA, editors. The Healthcare Imperative: Lowering Costs and Improving Outcomes: Workshop Series Summary. Washington, D.C: National Academies Press; 2010.
- Dhingra LS, Aminorroaya A, Oikonomou EK, et al. Use of wearable devices in individuals with or at risk for cardiovascular disease in the US, 2019 to 2020. JAMA Netw Open. 2023;6(6):e2316634. doi: 10.1001/jamanetworkopen.2023.16634
- Roche. Technical Specifications-FoundationOne®CDx (F1CDx); 2023. Available from: https://assets.ctfassets. net/w98cd481qyp0/yqqkhaqqmfeqc5ueqk48w/ d12f19680205941ea3fee417f08e9524/f1cdx_technical_ specifications.pdf [Last accessed on 2024 Mar 20].
- Mundt F. Nielsen, AB, Duel JK, et al. In depth profiling of the cancer proteome from the flowthrough of standard RNA-preparation kits for precision oncology. bioRxiv [Perprint]. 2023. doi: 10.1101/2023.05.12.540582
- Doll S, Kriegmair MC, Santos A, et al. Rapid proteomic analysis for solid tumors reveals LSD1 as a drug target in an end-stage cancer patient. Mol Oncol. 2018;12(8):1296-1307. doi: 10.1002/1878-0261.12326
- Chen R, Mias GI, Li-Pook-Than J, et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell. 2012;148(6):1293-1307. doi: 10.1016/j.cell.2012.02.009
- Li X, Dunn J, Salins D, et al. Digital health: Tracking physiomes and activity using wearable biosensors reveals useful health-related information. PLoS Biol. 2017;15(1):e2001402. doi: 10.1371/journal.pbio.2001402
- Schussler-Fiorenza Rose SM, Contrepois K, Moneghetti KJ, et al. A longitudinal big data approach for precision health. Nat Med. 2019;25(5):792-804. doi: 10.1038/s41591-019-0414-6
- Shen X, Kellogg R, Panyard DJ, et al. Multi-omics microsampling for the profiling of lifestyle-associated changes in health. Nat Biomed Eng. 2023;8:11-29. doi: 10.1038/s41551-022-00999-8
- (FDA) USFaDA. Use of Electronic Informed Consent in Clinical Investigations–Questions and Answers; 2023. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/use-electronic-informed-consent-clinical-investigations-questions-and-answers [Last accessed on 2024 Mar 20].
- Sharma S, Efird JT, Knupp C, et al. Sleep disorders in adult sickle cell patients. J Clin Sleep Med. 2015;11(3):219-223. doi: 10.5664/jcsm.4530