Mechanistic insights of Cystobasidium slooffiae JSUX1: Yeast-derived microbial fuel cells and conversion of organic wastes to electricity
The pursuit of sustainable energy from abundant and renewable waste biomass has positioned microbial fuel cells (MFCs) as a capable technology. While bacterial MFCs are widely studied, yeast-based MFCs offer advantages in safety, ease of handling, and broader substrate utilization. The recent discovery and characterization of the exoelectrogenic yeast Cystobasidium slooffiae JSUX1 have opened new avenues for direct biomass-to-energy conversion. This review synthesizes recent advancements in leveraging C. slooffiae JSUX1 for efficient electricity and hydrogen production from pentose sugars and raw lignocellulosic biomass. We delve into the unique extracellular electron transfer mechanisms employed by this strain, notably its secretion of riboflavin and the newly identified role of humic acid-iron complexes (Fe-HA) derived from biomass degradation. C. slooffiae JSUX1 MFCs achieved peak power densities up to ≈152 mW/m2 and hydrogen yields ≈41 L/m3 (with engineered anodes), roughly double the baseline values of 67 mW/m2 and 16 L/m3. We further analyze applied strategies for enhancing MFCs’ performance through anode engineering, including yeast-induced reduced graphene oxide hydrogels and polyaniline nanofiber anodes. These anode modifications significantly improved anode conductivity, microbial adhesion, and interfacial charge transfer, leading to a dramatic boost in simultaneous power and hydrogen output. This review consolidates the mechanistic understanding of C. slooffiae JSUX1 and situates it within broader yeast-MFC research trends, outlining its potential as a new biocatalyst for developing waste-valorizing bioelectrochemical systems.

- Pal M, Sharma RK. Development of wheat straw based catholyte for power generation in microbial fuel cell. Biomass Bioener. 2020;138:105591. doi: 10.1016/j.biombioe.2020.105591
- Moradian JM, Fang Z, Yong YC. Recent advances on biomass-fueled microbial fuel cell. Bioresour Bioprocess. 2021;8(1):14. doi: 10.1186/s40643-021-00365-7
- Moradian JM, Wang SM, Ali A, Liu J, Mi J, Wang H. Biomass-derived carbon anode for high-performance microbial fuel cells. Catalysts. 2022;12(8):894. doi: 10.3390/catal12080894
- Idris MO, Noh NA, Ibrahim MN, Yaqoob AA. Sustainable microbial fuel cell functionalized with a bio-waste: A feasible route to formaldehyde bioremediation along with bioelectricity generation. Chem Eng J. 2023;455:140781. doi: 10.1016/j.cej.2022.140781
- Arliyani I, Noori MT, Ammarullah MI, Tangahu BV, Mangkoedihardjo S, Min B. Constructed wetlands combined with microbial fuel cells (CW-MFCs) as a sustainable technology for leachate treatment and power generation. Rsc Adv. 2024;14(44):32073-32100. doi: 10.1039/D4RA04658G
- Moradian JM, Ali A, Yang K, et al. Direct transformation of rice straw to electricity and hydrogen by a single yeast strain: Performance and mechanism. Fuel. 2024;376:132697. doi: 10.1016/j.fuel.2024.132697
- Gurav R, Bhatia SK, Choi TR, et al. Utilization of different lignocellulosic hydrolysates as carbon source for electricity generation using novel shewanella marisflavi BBL25. J Clean Prod. 2020;277:124084. doi: 10.1016/j.jclepro.2020.124084
- Antolini E. Lignocellulose, cellulose and lignin as renewable alternative fuels for direct biomass fuel cells. ChemSusChem. 2021;14(1):189-207. doi: 10.1002/cssc.202001807
- Poddar BJ, Nakhate SP, Gupta RK, et al. A comprehensive review on the pretreatment of lignocellulosic wastes for improved biogas production by anaerobic digestion. Int J Environ Sci Technol. 2022;19(4):3429-3456. doi: 10.1007/s13762-021-03248-8
- Grover S, Doyle LE. Advanced electrode materials for microbial extracellular electron transfer. Trends Chem. 2024;6(3):144-158. doi: 10.1016/j.trechm.2024.01.005
- Kondrotaitė-Intė T, Zinovičius A, Pirštelis D, Morkvėnaitė I. Enhancing electron transfer efficiency in microbial fuel cells through gold nanoparticle modification of Saccharomyces cerevisiae. Microorganisms. 2025;13(8):1938. doi: 10.3390/microorganisms13081938
- Guo TT, Wang JZ, Yu XD, et al. Improvement of microbial extracellular electron transfer via outer membrane cytochromes expression of engineered bacteria. Biochem Eng J. 2022;187:108636. doi: 10.1016/j.bej.2022.108636
- Reguera G. Harnessing the power of microbial nanowires. Microbial Biotechnol. 2018;11(6):979-994. doi: 10.1111/1751-7915.13280
- Okamoto A, Hashimoto K, Nealson KH, Nakamura R. Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones. Proc Natl Acad Sci U S A. 2013;110(19):7856-7861. doi: 10.1073/pnas.1220823110
- Liu X, Holmes DE, Walker DJ, et al. Cytochrome OmcS is not essential for extracellular electron transport via conductive pili in Geobacter sulfurreducens strain KN400. Appl Environ Microbiol. 2022;88(1):e01622-21. doi: 10.1128/AEM.01622-21
- Wang FB, Craig L, Liu X, Rensing C, Egelman EH. Microbial nanowires: Type IV pili or cytochrome filaments? Trends Microbiol. 2023;31(4):384-392. doi: 10.1016/j.tim.2022.11.004
- Amara NI, Chukwuemeka ES, Obiajulu NO, Chukwuma OJ. Yeast-driven valorization of agro-industrial wastewater: An overview. Environ Monit Assess. 2023;195(10):1252. doi: 10.1007/s10661-023-11863-w
- Xie R, Wang S, Wang K, et al. Improved energy efficiency in microbial fuel cells by bioethanol and electricity co-generation. Biotechnol Biofuels Bioprod. 2022;15(1):84. doi: 10.1186/s13068-022-02180-4
- Kižys K, Pirštelis D, Bružaitė I, Morkvėnaitė I. Polypyrrole-modified saccharomyces cerevisiae used in microbial fuel cell. Biosensors. 2025;15(8):519. doi: 10.3390/bios15080519
- Sarma H, Bhattacharyya PN, Jadhav DA, et al. Fungal-mediated electrochemical system: Prospects, applications and challenges. Curr Res Microb Sci. 2021;2:100041. doi: 10.1016/j.crmicr.2021.100041
- Boedicker JQ, Gangan M, Naughton K, Zhao F, Gralnick JA, El-Naggar MY. Engineering biological electron transfer and redox pathways for nanoparticle synthesis. Bioelectricity. 2021;3(2):126-135. doi: 10.1089/bioe.2021.0010
- Moradian JM, Xu ZA, Shi YT, Fang Z, Yong YC. Efficient biohydrogen and bioelectricity production from xylose by microbial fuel cell with newly isolated yeast of Cystobasidium slooffiae. Int J Ener Res. 2020;44(1):325-333. doi: 10.1002/er.4922
- Moradian JM, Mi JL, Dai XY, et al. Yeast-induced formation of graphene hydrogels anode for efficient xylose-fueled microbial fuel cells. Chemosphere. 2022;291:132963. doi: 10.1016/j.chemosphere.2021.132963
- Rozene J, Morkvenaite-Vilkonciene I, Bruzaite I, Zinovicius A, Ramanavicius A. Baker’s yeast-based microbial fuel cell mediated by 2-methyl-1,4-naphthoquinone. Membranes (Basel). 2021;11(3):182. doi: 10.3390/membranes11030182
- Kižys K, Zinovičius A, Jakštys B, et al. Microbial biofuel cells: Fundamental principles, development and recent obstacles. Biosensors. 2023;13(2):221. doi: 10.3390/bios13020221
- Moradian JM, Yang FQ, Xu N, et al. Enhancement of bioelectricity and hydrogen production from xylose by a nanofiber polyaniline modified anode with yeast microbial fuel cell. Fuel. 2022;326:125056. doi: 10.1016/j.fuel.2022.125056
- Xiaorui L, Longji Y, Xudong Y. Evolution of chemical functional groups during torrefaction of rice straw. Bioresour Technol. 2021;320:124328. doi: 10.1016/j.biortech.2020.124328
- Nazar M, Xu L, Ullah MW, et al. Biological delignification of rice straw using laccase from Bacillus ligniniphilus L1 for bioethanol production: A clean approach for agro-biomass utilization. J Clean Prod. 2022;360:132171. doi: 10.1016/j.jclepro.2022.132171
- Trache D, Hussin MH, Haafiz MM, Thakur VK. Recent progress in cellulose nanocrystals: Sources and production. Nanoscale. 2017;9(5):1763-1786. doi: 10.1039/C6NR09494E
- Sang S, Zhuang X, Chen H, et al. Effect of supramolecular structural changes during the crystalline transformation of cellulose on its enzymatic hydrolysis. Ind Crops Prod. 2022;180:114687. doi: 10.1016/j.indcrop.2022.114687
- Ling Z, Chen S, Zhang X, Takabe K, Xu F. Unraveling variations of crystalline cellulose induced by ionic liquid and their effects on enzymatic hydrolysis. Sci Rep. 2017;7(1):10230. doi: 10.1038/s41598-017-09885-9
- Gao TY, Lai CY, Zhao HP. Riboflavin-meditated interspecies electron transfer in a H2-based denitrifying biofilm. J Water Process Eng. 2024;66:105920. doi: 10.1016/j.jwpe.2024.105920
- Liu YN, Han Y, Guo TT, et al. Insights to Fe(II) on the fate of humic acid and humic acid Fe complex with biogeobattery effect in simultaneous partial nitritation, anammox and denitrification (SNAD) system. Bioresour Technol. 2023;374:128782. doi: 10.1016/j.biortech.2023.128782
- Luo W, Zhao X, Wang G, et al. Humic acid and fulvic acid facilitate the formation of vivianite and the transformation of cadmium via microbially-mediated iron reduction. J Hazard Mater. 2023;446:130655. doi: 10.1016/j.jhazmat.2022.130655
- Abdelraheem A, El-Shazly AH, Elkady MF. Characterization of atypical polyaniline nano-structures prepared via advanced techniques. Alex Eng J. 2018;57(4):3291-3297. doi: 10.1016/j.aej.2018.01.012
- Xu HL, Li XW, Wang GC. Polyaniline nanofibers with a high specific surface area and an improved pore structure for supercapacitors. J Power Sour. 2015;294:16-21. doi: 10.1016/j.jpowsour.2015.06.053
- Beygisangchin M, Rashid SA, Shafie S, Sadrolhosseini AR, Lim HN. Preparations, properties, and applications of polyaniline and polyaniline thin films-a review. Polymers (Basel). 2021;13(12):2003. doi: 10.3390/polym13122003
- Namsheer K, Rout CS. Correction: Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 2024;14(25):17467-17470. doi: 10.1039/D0RA07800J
- Holze R. Overoxidation of intrinsically conducting polymers. Polymers (Basel). 2022;14(8):1584. doi: 10.3390/polym14081584
- Rauhala T, Davodi F, Sainio J, Sorsa O, Kallio T. On the stability of polyaniline/carbon nanotube composites as binder-free positive electrodes for electrochemical energy storage. Electrochim Acta. 2020;336:135735. doi: 10.1016/j.electacta.2020.135735
- Archana M, Lekha CC, Deepa S, Kalarikkal N. A novel mesoporous taurine-doped polyaniline/PVA electrospun composite nanofibers: Comprehensive study. Results Surfaces Interfaces. 2025;20:100610. doi: 10.1016/j.rsurfi.2025.100610
- Chen JY, Xie P, Zhang ZP. Reduced graphene oxide/ polyacrylamide composite hydrogel scaffold as biocompatible anode for microbial fuel cell. Chem Eng J. 2019;361:615-624. doi: 10.1016/j.cej.2018.12.116
- Yu F, Wang CX, Ma J. Capacitance-enhanced 3D graphene anode for microbial fuel cell with long-time electricity generation stability. Electrochim Acta. 2018;259:1059-1067. doi: 10.1016/j.electacta.2017.11.038
