Titanium: Metal of the future or an emerging environmental contaminant?

Naturally occurring and anthropogenic sources, such as ore (minerals), waste disposal, and mine tailings, can introduce titanium (Ti) into both soils and aquatic environments. Ti is the ninth most abundant element in nature (0.63% w/w) and is found in igneous rocks. Major Ti-bearing minerals include rutile, brookite, anatase, ilmenite, and titanite. Among Ti compounds, Ti dioxide (TiO2) is of particular environmental and health concern. It is classified as potentially carcinogenic to humans (Group 2B) by the International Agency for Research on Cancer. Ti is increasingly used in aviation and aerospace fields and has important biomedical applications, including in joint replacements and dental implants. TiO2 nanoparticles (NPs) are one of the most important Ti compounds, entering the environment through various pathways, including biosolid applications, and have been shown to cause deleterious effects on soil microorganisms and, consequently, on soil functioning and health. Excessive Ti uptake can cause toxicity in plants, soil microorganisms, aquatic organisms, animals, and humans. Dust inhalation of TiO2 NPs by humans may cause chest pain, coughing, and breathing difficulty, while dermal contact may cause irritation. To control the main anthropogenic input sources of Ti in the environment, it is critical to develop affordable technologies for Ti removal during wastewater treatment. This comprehensive review examines the presence, sources, biogeochemical behavior, and potential risks of Ti in the environment and provides an in-depth outline of the network visualization bibliography to graphically represent the relationships between key publications, research areas, and authors. Additionally, future research priorities are suggested for the sustainable management of Ti contamination.

- Rudnick RL, Fountain DM. Nature and composition of the continental crust: A lower crustal perspective. Rev Geophys. 1995;33(3):267-309. doi: 10.1029/95rg01302
- Woodruff LG, Bedinger GM, Piatak NM. Titanium. United Kingdom: Professional Paper; 2017. doi: 10.3133/pp1802t
- Bedinger GM. Titanium. Mining Engineering; 2013. Available from: https://pubs.usgs.gov/publication/70047016 [Last accessed on 2025 Jun 08].
- Imahashi M, Takamatsu N. The dissolution of titanium minerals in hydrochloric and sulfuric acids. Bull Chem Soc Jpn. 1976;49(6):1549-1553. doi: 10.1246/bcsj.49.1549
- El-Desoky HM, Abdel-Rahman AM, Fahmy W, et al. Ore genesis of the abu ghalaga ferro-ilmenite ore associated with neoproterozoic massive-type gabbros, south-eastern desert of Egypt: Evidence from texture and mineral chemistry. Minerals. 2023;13(3):307. doi: 10.3390/min13030307
- Mackey TS. Upgrading ilmenite into a high-grade synthetic rutile. JOM. 1994;46(4):59-64. doi: 10.1007/bf03220676
- Middlemas S, Fang ZZ, Fan P. A new method for production of titanium dioxide pigment. Hydrometallurgy. 2013;131-132:107-113. doi: 10.1016/j.hydromet.2012.11.002
- Murphy P, Frick L. Titanium. In: Kogel JE, Trivedi NC, Barker JM, Krukowski ST, editors. Ind Miner Rocks. 7th ed. Littleton: Society for Mining, Metallurgy Exploration Inc; 2006. p. 987-1003.
- Lütjering G, Williams JC. Titanium. 2nd ed. Berlin, Heidelberg: Springer; 2007.
- Arrazola PJ, Garay A, Iriarte LM, Armendia M, Marya S, Le Maître F. Machinability of titanium alloys (Ti6Al4V and Ti555.3). J Mater Process Technol. 2009;209(5):2223-2230. doi: 10.1016/j.jmatprotec.2008.06.020
- De Viteri VS, Fuentes E. Titanium and titanium alloys as biomaterials. In: Tribology: Fundamentals and Advancements. Germany: BoD Books on Demand; 2013. doi: 10.5772/55860
- Findik F. Titanium based biomaterials. Curr Trends Biomed Eng Biosci. 2017;7(3):1-3. doi: 10.19080/ctbeb.2017.07.555714
- Feng E, Gao D, Wang Y, et al. Sustainable recovery of titanium from secondary resources: A review. J Environ Manage. 2023;339:117818. doi: 10.1016/j.jenvman.2023.117818
- Hitchman A. Australian Resources Review: Mineral Sand 2017. Canberra: Geoscience Australia; 2018. doi: 10.11636/9781925297706
- El Khalloufi M, Drevelle O, Soucy G. Titanium: An overview of resources and production methods. Minerals. 2021;11(12):1425. doi: 10.3390/min11121425
- Williams JC, Boyer RR. Opportunities and issues in the application of titanium alloys for aerospace components. Metals (Basel). 2020;10(6):705. doi: 10.3390/met10060705
- Greenwood NN, Earnshaw A. Chemistry of the Elements. 2nd ed. United Kingdom: Butterworth-Heinemann; 1997.
- Bolan S, Sharma S, Mukherjee S, et al. The distribution, fate, and environmental impacts of food additive nanomaterials in soil and aquatic ecosystems. Sci Total Environ. 2024;916:170013. doi: 10.1016/j.scitotenv.2024.170013
- Reimann C, De Caritat P. Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil. Sci Total Environ. 2017;578:633-648. doi: 10.1016/j.scitotenv.2016.11.010
- Viers J, Dupré B, Gaillardet J. Chemical composition of suspended sediments in world rivers: New insights from a new database. Sci Total Environ. 2009;407(2):853-868. doi: 10.1016/j.scitotenv.2008.09.053
- Kabata-Pendias A, Mukherjee AB. Trace Elements from Soil to Human. United States: CRC Press; 2007. doi: 10.1007/978-3-540-32714-1
- Feizi H, Kamali M, Jafari L, Rezvani Moghaddam P. Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere. 2013;91(4):506-511. doi: 10.1016/j.chemosphere.2012.12.012
- Heringa MB, Peters RJ, Bleys R, et al. Detection of titanium particles in human liver and spleen and possible health implications. Part FibreToxicol. 2018;15:15. doi: 10.1186/s12989-018-0251-7
- Buettner KM, Valentine AM. Bioinorganic chemistry of titanium. Chem Rev. 2012;112(3):1863-1881. doi: 10.1021/cr1002886
- IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Carbon Black, Titanium Dioxide, and Talc. Lyon, France: World Health Organization, International Agency for Research Cancer; 2010. p. 93.
- Guo Z, Martucci NJ, Moreno-Olivas F, Tako E, Mahler GJ. Titanium dioxide nanoparticle ingestion alters nutrient absorption in an in vitro model of the small intestine. NanoImpact. 2017;5:70-82. doi: 10.1016/j.impact.2017.01.002
- Abuodha JO. Environmental impact assessment of the proposed titanium mining project in kwale district, Kenya. Mar Georesources Geotechnol. 2002;20(3):199-207. doi: 10.1080/03608860290051895
- Pele LC, Thoree V, Bruggraber SF, et al. Pharmaceutical/ food grade titanium dioxide particles are absorbed into the bloodstream of human volunteers. Part Fibre Toxicol. 2015;12:26. doi: 10.1186/s12989-015-0101-9
- Fiordaliso F, Bigini P, Salmona M, Diomede L. Toxicological impact of titanium dioxide nanoparticles and food-grade titanium dioxide (E171) on human and environmental health. Environ Sci Nano. 2022;9(4):1199-1211. doi: 10.1039/d1en00833a
- Russell A. The rev. William gregor (1761-1817), discoverer of titanium. Mineral Mag J Mineral Soc. 1955;30(229):617-624. doi: 10.1180/minmag.1955.030.229.01
- Kroll W. The production of ductile titanium. Trans Electrochem Soc. 1940;78(1):35. doi: 10.1149/1.3071290
- Subramanyam RB. Some recent innovations in the Kroll process of titanium sponge production. Bull Mater Sci. 1993;16(6):433-451. doi: 10.1007/bf02757646
- Musial J, Krakowiak R, Mlynarczyk DT, Goslinski T, Stanisz BJ. Titanium dioxide nanoparticles in food and personal care products-what do we know about their safety? Nanomaterials (Basel). 2020;10(6):1110. doi: 10.3390/nano10061110
- Lyu S, Wei X, Chen J, Wang C, Wang X, Pan D. Titanium as a beneficial element for crop production. Front Plant Sci. 2017;8:597. doi: 10.3389/fpls.2017.00597
- Norman DJ, Chen J. Effect of foliar application of titanium dioxide on bacterial blight of Geranium and Xanthomonas leaf spot of poinsettia. HortScience. 2011;46(3):426-428. doi: 10.21273/hortsci.46.3.426
- Farjana SH, Huda N, Mahmud MAP, Lang C. Towards sustainable TiO2 production: An investigation of environmental impacts of ilmenite and rutile processing routes in Australia. J Clean Prod. 2018;196:1016-1025. doi: 10.1016/j.jclepro.2018.06.156
- Statista. Leading Countries Based on the Mine Production of Titanium Minerals Worldwide in 2023 (in 1,000 Metric tons of Titanium Dioxide Content); 2024. Available from: https:// www.statista.com/statistics/759972/mine-production-titanium-minerals-worldwide-by-country [Last accessed on 2025 Jun 08].
- Gredilla A, Fdez-Ortiz De Vallejuelo S, Gomez-Nubla L, et al. Are children playgrounds safe play areas? Inorganic analysis and lead isotope ratios for contamination assessment in recreational (Brazilian) parks. Environ Sci Pollut Res Int. 2017;24:24333-24345. doi: 10.1007/s11356-017-9831-6
- Hauser-Davis RA. Titanium: Metallic Pollutants in the Aquatic Environment. United States: CRC Press; 2024.
- Sergeeva A, Zinicovscaia I, Vergel K, Yushin N, Urošević MA. The effect of heavy industry on air pollution studied by active moss biomonitoring in Donetsk Region (Ukraine). Arch Environ Contam Toxicol. 2021;80:546-557. doi: 10.1007/s00244-021-00834-2
- Le Riche HH. Ion-exchange concentration of trace elements for spectrochemical analysis of rocks and soils. Geochim Cosmochim Acta. 1968;32(7):791-794. doi: 10.1016/0016-7037(68)90013-6
- Weaver CE. The nature of TiO2 in kaolinite. Clays Clay Miner. 1976;24(5):215-218. doi: 10.1346/ccmn.1976.0240501
- Stace HCT, Hubble GD, Brewer R, et al. A handbook of Australian soils. Soil Sci. 1969;108(4):308. doi: 10.1097/00010694-196910000-00013
- Hutton JT, Stephens CG. The paleopedology of Norfolk Island. J Soil Sci. 1956;7(2):255-267. doi: 10.1111/j.1365-2389.1956.tb00883.x
- Sherman GD. The titanium content of hawaiian soils and its significance. Soil Sci Soc Am Proc. 1952;16(1):15-18. doi: 10.2136/sssaj1952.03615995001600010006x
- Cornu S, Lucas Y, Lebon E, et al. Evidence of titanium mobility in soil profiles, Manaus, central Amazonia. Geoderma. 1999;91(3-4):281-295. doi: 10.1016/s0016-7061(99)00007-5
- Steinmetz GL, Mohan MS, Zingaro RA. Characterization of titanium in United States coals. Energy Fuels. 1988;2(5):684-692. doi: 10.1021/ef00011a015
- Shan Y, Wang W, Qin Y. Data on trace element concentrations in coal and host rock and leaching product in different pH values and open/closed environments. Data Brief. 2019;25:104053. doi: 10.1016/j.dib.2019.104053
- Wu X, Wang H, Wang Y. A review: Synthesis and applications of titanium sub-oxides. Materials (Basel). 2023;16(21):6874. doi: 10.3390/ma16216874
- Zeman T, Loh EW, Čierný D, Šerý O. Penetration, distribution and brain toxicity of titanium nanoparticles in rodents’ body: A review. IET Nanobiotechnol. 2018;12(6):695-700. doi: 10.1049/iet-nbt.2017.0109
- Yanguo T, Xianguo T, Shijun N, Chengjiang Z, Zhengqi X. Environmental geochemistry of heavy metal contaminants in soil and stream sediment in Panzhihua mining and smelting area, Southwestern China. Chin J Geochem. 2003;22(3):253-262. doi: 10.1007/bf02842869
- Maina DM, Ndirangu DM, Mangala MM, Boman J, Shepherd K, Gatari MJ. Environmental implications of high metal content in soils of a titanium mining zone in Kenya. Environ Sci Pollut Res Int. 2016;23(21):21431-21440. doi: 10.1007/s11356-016-7249-1
- Osoro QA. Assessment of Heavy Metals and Radioactivity of the Soil Around Titanium Mining in Kinondo Area, Kwale County. Kenya: University of Nairobi; 2021.
- Negral L, Suárez-Peña B, Zapico E, et al. Anthropogenic and meteorological influences on PM10 metal/semi-metal concentrations: Implications for human health. Chemosphere. 2020;243:125347. doi: 10.1016/j.chemosphere.2019.125347
- Nabi MM, Wang J, Baalousha M. Detection and quantification of anthropogenic titanium-, cerium-, and lanthanum-bearing home dust particles. Environ Sci Nano. 2023;10(5):1372-1384. doi: 10.1039/d2en00890d
- Luo H, Wang Q, Guan Q, et al. Heavy metal pollution levels, source apportionment and risk assessment in dust storms in key cities in Northwest China. J Hazard Mater. 2022;422:126878. doi: 10.1016/j.jhazmat.2021.126878
- Wang X, Dong Z, Zhang C, Qian G, Luo W. Characterization of the composition of dust fallout and identification of dust sources in arid and semiarid North China. Geomorphology. 2009;112(1-2):144-157. doi: 10.1016/j.geomorph.2009.05.013
- Adamiec E, Jarosz-Krzemińska E, Wieszała R. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ Monit Assess. 2016;188(6):369. doi: 10.1007/s10661-016-5377-1
- Ravisankar R, Sivakumar S, Chandrasekaran A, Kanagasabapathy KV, Prasad MV, Satapathy KK. Statistical assessment of heavy metal pollution in sediments of east coast of Tamilnadu using energy dispersive X-ray fluorescence spectroscopy (EDXRF). Appl Radiat Isot. 2015;102:42-47. doi:10.1016/j.apradiso.2015.03.018
- Harikrishnan N, Ravisankar R, Chandrasekaran A, et al. Assessment of heavy metal contamination in marine sediments of east coast of Tamil nadu affected by different pollution sources. Mar Pollut Bull. 2017;121(1-2):418-424. doi: 10.1016/j.marpolbul.2017.05.047
- Yang Y, Chen B, Hower J, et al. Discovery and ramifications of incidental magnéli phase generation and release from industrial coal-burning. Nat Commun. 2017;8(1):194. doi: 10.1038/s41467-017-00276-2
- Slomberg DL, Auffan M, Guéniche N, et al. Anthropogenic release and distribution of titanium dioxide particles in a river downstream of a nanomaterial manufacturer industrial site. Front Environ Sci. 2020;8:76. doi: 10.3389/fenvs.2020.00076
- Vidmar J, Zuliani T, Milačič R, Ščančar J. Following the occurrence and origin of titanium dioxide nanoparticles in the sava river by single particle ICP-MS. Water. 2022;14(6):959. doi: 10.3390/w14060959
- Förstner U, Müller G. Concentrations of heavy metals and polycyclic aromatic hydrocarbons in river sediments: Geochemical background, man’s influence and environmental impact. GeoJournal. 1981;5(5):417-432. doi: 10.1007/bf02484715
- Kabata-Pendias A, Pendias H. Trace Elements in Soils and Plants. 3rd ed. Raton Boca: CRC Press; 2001.
- Wang H, Wick RL, Xing B. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the Nematoda Caenorhabditis elegans. Environ Pollut. 2009;157(4):1171-1177. doi: 10.1016/j.envpol.2008.11.004
- Pradas Del Real AE, Castillo-Michel H, Kaegi R, et al. Searching for relevant criteria to distinguish natural vs. Anthropogenic TiO2 nanoparticles in soils. Environ Sci Nano. 2018;5(12):2853-2863. doi: 10.1039/c8en00386f
- Bland GD, Battifarano M, Pradas Del Real AE, Sarret G, Lowry GV. Distinguishing engineered TiO2 nanomaterials from natural ti nanomaterials in soil using spICP-TOFMS and machine learning. Environ Sci Technol. 2022;56(5):2990-3001. doi: 10.1021/acs.est.1c02950
- Karkee H, Gundlach-Graham A. Characterization and quantification of natural and anthropogenic titanium-containing particles using single-particle ICP-TOFMS. Environ Sci Technol. 2023;57(37):14058-14070. doi: 10.1021/acs.est.3c04473
- Oliva SR, Espinosa AJF. Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources. Microchem J. 2007;86(1):131-139. doi: 10.1016/j.microc.2007.01.003
- Abdu N, Agbenin JO, Buerkert A. Geochemical assessment, distribution, and dynamics of trace elements in urban agricultural soils under long‐term wastewater irrigation in Kano, northern Nigeria. J Plant Nutr Soil Sci. 2011;174(3):447-458. doi: 10.1002/jpln.201000333
- Baalousha M, Wang J, Nabi MM, et al. Stormwater green infrastructures retain high concentrations of TiO2 engineered (nano)-particles. J Hazard Mater. 2020;392:122335. doi: 10.1016/j.jhazmat.2020.122335
- Agyeman PC, Ahado SK, Kingsley J, et al. Source apportionment, contamination levels, and spatial prediction of potentially toxic elements in selected soils of the Czech republic. Environ Geochem Health. 2021;43(1):601-620. doi: 10.1007/s10653-020-00743-8
- De Lima MW, Hamid SS, De Souza ES, et al. Geochemical background concentrations of potentially toxic elements in soils of the carajás mineral province, southeast of the amazonian craton. Environ Monit Assess. 2020;192(10):649. doi: 10.1007/s10661-020-08611-9
- Agnan Y, Courault R, Alexis MA, et al. Distribution of trace and major elements in subarctic ecosystem soils: Sources and influence of vegetation. Sci Total Environ. 2019;682:650-662. doi: 10.1016/j.scitotenv.2019.05.178
- Lian Z, Zhao X, Gu X, Li X, Luan M, Yu M. Presence, sources, and risk assessment of heavy metals in the upland soils of northern China using Monte Carlo simulation. Ecotoxicol Environ Saf. 2022;230:113154. doi: 10.1016/j.ecoenv.2021.113154
- Négrel P, Ladenberger A, Reimann C, et al. GEMAS: Chemical weathering of silicate parent materials revealed by agricultural soil of Europe. Chem Geol. 2023;639:121732. doi: 10.1016/j.chemgeo.2023.121732
- Shezi B, Street RA, Webster C, Kunene Z, Mathee A. Heavy metal contamination of soil in preschool facilities around industrial operations, kuils river, cape town (South Africa). Int J Environ Res Public Health. 2022;19(7):4380. doi: 10.3390/ijerph19074380
- Wang T, Huang X, Jiang X, Hu M, Huang W, Wang Y. Differential in vivo hemocyte responses to nano titanium dioxide in mussels: Effects of particle size. Aquat Toxicol. 2019;212:28-36. doi: 10.1016/j.aquatox.2019.04.012
- Zhang M, Li X, Yang R, et al. Multipotential toxic metals accumulated in urban soil and street dust from Xining City, NW China: Spatial occurrences, sources, and health risks. Arch Environ Contam Toxicol. 2019;76(2):308-330. doi: 10.1007/s00244-018-00592-8
- Wang W, Wang X, Liu X, et al. Spatial distribution of the critical mineral resource element titanium in China and its influencing factors. J Geochem Explor. 2024;256:107334. doi: 10.1016/j.gexplo.2023.107334
- Tepanosyan G, Sahakyan L, Zhang C, Saghatelyan A. The application of local moran’s I to identify spatial clusters and hot spots of Pb, mo and ti in urban soils of Yerevan. Appl Geochem. 2019;104:116-123. doi: 10.1016/j.apgeochem.2019.03.022
- Al-Swadi HA, Usman ARA, Al-Farraj AS, Al-Wabel MI, Ahmad M, Al-Faraj A. Sources, toxicity potential, and human health risk assessment of heavy metals-laden soil and dust of urban and suburban areas as affected by industrial and mining activities. Sci Rep. 2022;12(1):8972. doi: 10.1038/s41598-022-12345-8
- Migaszewski ZM, Gałuszka A. Hydrothermal TiO2 polymorphs in a pyrite stratiform deposit: Lessons from a mineralogical and geochemical multiproxy record. Chem Geol. 2023;632:121551. doi: 10.1016/j.chemgeo.2023.121551
- Wang S, Cai LM, Wen HH, Luo J, Wang QS, Liu X. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China. Sci Total Environ. 2019;655:92-101. doi: 10.1016/j.scitotenv.2018.11.244
- Sadiq IM, Dalai S, Chandrasekaran N, Mukherjee A. Corrigendum to “ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp”. Ecotoxicol Environ Saf. 2011;142:597. doi: 10.1016/j.ecoenv.2017.04.029
- Hong F, Zhou J, Liu C, et al. Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res. 2005;105(1-3):269-280. doi: 10.1385/bter:105:1-3:269
- Choi S, Johnston M, Wang GS, Huang CP. A seasonal observation on the distribution of engineered nanoparticles in municipal wastewater treatment systems exemplified by TiO2 and ZnO. Sci Total Environ. 2018;625:1321-1329. doi: 10.1016/j.scitotenv.2017.12.326
- Fan X, Wang C, Wang P, Hu B, Wang X. TiO2 nanoparticles in sediments: Effect on the bioavailability of heavy metals in the freshwater bivalve Corbicula fluminea. J Hazard Mater. 2018;342:41-50. doi: 10.1016/j.jhazmat.2017.07.041
- Chakraborty B, Weinstock IA. Water-soluble titanium-oxides: Complexes, clusters and nanocrystals. Coord Chem Rev. 2019;382:85-102. doi: 10.1016/j.ccr.2018.11.011
- Fang X, Yu R, Li B, Somasundaran P, Chandran K. Stresses exerted by ZnO, CeO2 and anatase TiO2 nanoparticles on the Nitrosomonas Europaea. J Colloid Interface Sci. 2010;348(2):329-334. doi: 10.1016/j.jcis.2010.04.075
- Huang X, Lin D, Ning K, et al. Hemocyte responses of the thick shell mussel Mytilus coruscus exposed to nano-TiO2 and seawater acidification. Aquat Toxicol. 2016;180:1-10. doi: 10.1016/j.aquatox.2016.09.008
- Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL. Toxicity of engineered nanoparticles in the environment. Anal Chem. 2013;85(6):3036-3049. doi: 10.1021/ac303636s
- Shi W, Han Y, Guo C, et al. Ocean acidification increases the accumulation of titanium dioxide nanoparticles (nTiO2) in edible bivalve mollusks and poses a potential threat to seafood safety. Sci Rep. 2019;9(1):3516. doi: 10.1038/s41598-019-40047-1
- Mangold L, Halleux H, Leclerc S, Moncomble A, Cote G, Chagnes A. New insights for titanium(iv) speciation in acidic media based on UV-visible and 31P NMR spectroscopies and molecular modeling. RSC Adv. 2021;11(43):27059-27073. doi: 10.1039/D1RA04284J
- Kumar D, Rajeshwari A, Roy R, et al. A temporal study on the effects of TiO2 nanoparticles in a fresh water microcosm. Proc Natl Acad Sci India Sect B Biol Sci. 2016;86(2):415-420. doi: 10.1007/s40011-014-0462-0
- Rashid MM, Forte Tavčer P, Tomšič B. Influence of titanium dioxide nanoparticles on human health and the environment. Nanomaterials (Basel, Switzerland). 2021;11(9):2354. doi: 10.3390/nano11092354
- Sousa VS, Corniciuc C, Teixeira MR. The effect of TiO2 nanoparticles removal on drinking water quality produced by conventional treatment C/F/S. Water Res. 2017;109:1-12. doi: 10.1016/j.watres.2016.11.030
- Loosli F, Wang J, Rothenberg S, et al. Sewage spills are a major source of titanium dioxide engineered (nano)-particle into the environment. Environ Sci Nano. 2019;6(3):763-777. doi: 10.1039/C8EN01376D
- Wu S, Zhang S, Gong Y, Shi L, Zhou B. Identification and quantification of titanium nanoparticles in surface water: A case study in Lake Taihu, China. J Hazard Mater. 2020;382:121045. doi: 10.1016/j.jhazmat.2019.121045
- Azimzada A, Jreije I, Hadioui M, Shaw P, Farner JM, Wilkinson KJ. Quantification and characterization of Ti-, Ce-, and ag-nanoparticles in global surface waters and precipitation. Environ Sci Technol. 2021;55(14):9836-9844. doi: 10.1021/acs.est.1c00488
- Hwang YH, Chung CH, Chen YT, Chen JA. Characterization of Ti-containing nanoparticles in the aquatic environment of the Tamsuei river basin in northern Taiwan. Sci Total Environ. 2021;797:149163. doi: 10.1016/j.scitotenv.2021.149163
- Sanchís J, Jiménez-Lamana J, Abad E, Szpunar J, Farré M. Occurrence of cerium-, titanium-, and silver-bearing nanoparticles in the besòs and Ebro Rivers. Environ Sci Technol. 2020;54(7):3969-3978. doi: 10.1021/acs.est.9b05996
- Fang X, Peng B, Guo X, et al. Distribution, source and contamination of rare earth elements in sediments from lower reaches of the Xiangjiang River, China. Environ Pollut. 2023;336:122384. doi: 10.1016/j.envpol.2023.122384
- Gonzalez De Vega R, Lockwood TE, Xu X, et al. Analysis of Ti- and Pb-based particles in the aqueous environment of Melbourne (Australia) via single particle ICP-MS. Anal Bioanal Chem. 2022;414(18):5671-5681. doi: 10.1007/s00216-022-04052-0
- Bruvold AS, Bienfait AM, Ervik TK, Loeschner K, Valdersnes S. Vertical distribution of inorganic nanoparticles in a Norwegian fjord. Mar Environ Res. 2023;188:105975. doi: 10.1016/j.marenvres.2023.105975
- Li G, Liu X, Wang H, et al. Detection, distribution and environmental risk of metal-based nanoparticles in a coastal bay. Water Res. 2023;242:120242. doi: 10.1016/j.watres.2023.120242
- Luo Z, Wang Z, Li Q, Pan Q, Yan C, Liu F. Spatial distribution, electron microscopy analysis of titanium and its correlation to heavy metals: Occurrence and sources of titanium nanomaterials in surface sediments from Xiamen Bay, China. J Environ Monit. 2011;13(4):1046-1052. doi: 10.1039/c0em00199f
- Subasinghe HCS, Ratnayake AS. Processing of ilmenite into synthetic rutile using ball milling induced sulphurisation and carbothermic reduction. Miner Eng. 2021;173:107197. doi: 10.1016/j.mineng.2021.107197
- Labille J, Slomberg D, Catalano R, et al. Assessing UV filter inputs into beach waters during recreational activity: A field study of three French Mediterranean beaches from consumer survey to water analysis. Sci Total Environ. 2020;706:136010. doi: 10.1016/j.scitotenv.2019.136010
- Wang L, Guo J, Wang H, Luo J, Hou D. Stimulated leaching of metalloids along 3D-printed fractured rock vadose zone. Water Res. 2022;226:119224. doi: 10.1016/j.watres.2022.119224
- Nabi MM, Wang J, Erfani M, Goharian E, Baalousha M. Urban runoff drives titanium dioxide engineered particle concentrations in urban watersheds: Field measurements. Environ Sci Nano. 2023;10(3):718-731. doi: 10.1039/d2en00826b
- Kiser MA, Westerhoff P, Benn T, Wang Y, Pérez-Rivera J, Hristovski K. Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol. 2009;43(17):6757-6763. doi: 10.1021/es901102n
- Li K, Xu D, Liao H, et al. A review on the generation, discharge, distribution, environmental behavior, and toxicity (especially to microbial aggregates) of nano-TiO2 in sewage and surface-water and related research prospects. Sci Total Environ. 2022;824:153866. doi: 10.1016/j.scitotenv.2022.153866
- Hsu CY, Mahmoud ZH, Abdullaev S, et al. Nano titanium oxide (nano-TiO2): A review of synthesis methods, properties, and applications. Case Stud Chem Environ Eng. 2024;9:100626. doi: 10.1016/j.cscee.2024.100626
- ZehlikeL, Peters A, Ellerbrock RH, Degenkolb L, Klitzke S. Aggregation of TiO2 and Ag nanoparticles in soil solution - effects of primary nanoparticle size and dissolved organic matter characteristics. Sci Total Environ. 2019;688:288-298. doi: 10.1016/j.scitotenv.2019.06.020
- Xu F. Review of analytical studies on TiO2 nanoparticles and particle aggregation, coagulation, flocculation, sedimentation, stabilization. Chemosphere. 2018;212:662-677. doi: 10.1016/j.chemosphere.2018.08.108
- Ayorinde T, Sayes CM. An updated review of industrially relevant titanium dioxide and its environmental health effects. J Hazard Mater Lett. 2023;4:100085. doi: 10.1016/j.hazl.2023.100085
- La Maestra S, D’Agostini F, Sanguineti E, et al. Dispersion of natural airborne TiO2 fibres in excavation activity as a potential environmental and human health risk. Int J Environ Res Public Health. 2021;18(12):6587. doi: 10.3390/ijerph18126587
- Abdel-Latif HMR, Dawood MAO, Menanteau-Ledouble S, El-Matbouli M. Environmental transformation of n-TiO2 in the aquatic systems and their ecotoxicity in bivalve mollusks: A systematic review. Ecotoxicol Environ Saf. 2020;200:110776. doi: 10.1016/j.ecoenv.2020.110776
- Zhu Y, Wu J, Chen M, et al. Recent advances in the biotoxicity of metal oxide nanoparticles: Impacts on plants, animals and microorganisms. Chemosphere. 2019;237:124403. doi: 10.1016/j.chemosphere.2019.124403
- Gan Y, Li J, Zhang L, et al. Potential of titanium coagulants for water and wastewater treatment: Current status and future perspectives. Chem Eng J. 2021;406:126837. doi: 10.1016/j.cej.2020.126837
- Thomas M, Bąk J, Królikowska J. Efficiency of titanium salts as alternative coagulants in water and wastewater treatment: Short review. Desalin Water Treat. 2020;208:261-272. doi: 10.5004/dwt.2020.26689
- Kuzin E. Synthesis and use of complex titanium-containing coagulant in water purification processes. Inorganics. 2025;13(1):9. doi: 10.3390/inorganics13010009
- Bourgeault A, Cousin C, Geertsen V, et al. The challenge of studying TiO2 nanoparticle bioaccumulation at environmental concentrations: Crucial use of a stable isotope tracer. Environ Sci Technol. 2015;49(4):2451-2459. doi: 10.1021/es504638f
- Bellani L, Siracusa G, Giorgetti L, et al. TiO2 nanoparticles in a biosolid-amended soil and their implication in soil nutrients, microorganisms and Pisum sativum nutrition. Ecotoxicol Environ Saf. 2020;190:110095. doi: 10.1016/j.ecoenv.2019.110095
- Kaur H, Kalia A, Sandhu JS, Dheri GS, Kaur G, Pathania S. Interaction of TiO2 nanoparticles with soil: Effect on microbiological and chemical traits. Chemosphere. 2022;301:134629. doi: 10.1016/j.chemosphere.2022.134629
- Simonin M, Richaume A, Guyonnet JP, Dubost A, Martins JMF, Pommier T. Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers. Sci Rep. 2016;6:33643. doi: 10.1038/srep33643
- Moll J, Klingenfuss F, Widmer F, et al. Effects of titanium dioxide nanoparticles on soil microbial communities and wheat biomass. Soil Biol Biochem. 2017;111:85-93. doi: 10.1016/j.soilbio.2017.03.019
- Zhang L, Ren Z, Chen H, Huang F, Huang Y, Chu G. Effects of nano-TiO2/Fe3O4 addition on soil phosphorus fractions, microbial characteristics, and plant growth. J Soils Sediments. 2024;24(1):275-288. doi: 10.1007/s11368-023-03631-7
- Doronila AI, Fox JED. Ecosystem development on a titanium dioxide residue pond after five years in Capel, Western Australia. Int J Surf Mining, Reclam Environ. 2000;14(2):137-150. doi: 10.1080/13895260008953309
- Asli S, Neumann PM. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ. 2009;32(5):577-584. doi: 10.1111/j.1365-3040.2009.01952.x
- Ghosh M, Bandyopadhyay M, Mukherjee A. Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: Plant and human lymphocytes. Chemosphere. 2010;81(10):1253-1262. doi: 10.1016/j.chemosphere.2010.09.022
- Song G, Gao Y, Wu H, Hou W, Zhang C, Ma H. Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ Toxicol Chem. 2012;31(9):2147-2152. doi: 10.1002/etc.1933
- Hou J, Wang L, Wang C, et al. Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J Environ Sci (China). 2019;75:40-53. doi: 10.1016/j.jes.2018.06.010
- Larue C, Khodja H, Herlin-Boime N, et al. Investigation of titanium dioxide nanoparticles toxicity and uptake by plants. J Phys Conf Ser. 2011;304:12057. doi: 10.1088/1742-6596/304/1/012057
- Song U, Shin M, Lee G, Roh J, Kim Y, Lee EJ. Functional analysis of TiO2 nanoparticle toxicity in three plant species. Biol Trace Elem Res. 2013;155(1):93-103. doi: 10.1007/s12011-013-9765-x
- Andersen CP, King G, Plocher M, et al. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles. Environ Toxicol Chem. 2016;35(9):2223-2229. doi: 10.1002/etc.3374
- Boykov IN, Shuford E, Zhang B. Nanoparticle titanium dioxide affects the growth and microRNA expression of switchgrass (Panicum virgatum). Genomics. 2019;111(3):450-456. doi: 10.1016/j.ygeno.2018.03.002
- Kubo-Irie M, Yokoyama M, Shinkai Y, Niki R, Takeda K, Irie M. The transfer of titanium dioxide nanoparticles from the host plant to butterfly larvae through a food chain. Sci Rep. 2016;6:23819. doi: 10.1038/srep23819
- De Melo GSR, Constantin RP, Abrahão J, et al. Titanium dioxide nanoparticles induce root growth inhibition in soybean due to physical damages. Water Air Soil Pollut. 2021;232(1):25. doi: 10.1007/s11270-020-04955-7
- Alklaf SA, Zhang S, Zhu J, et al. Impacts of nano-titanium dioxide toward Vallisneria natans and epiphytic microbes. J Hazard Mater. 2022;436:129066. doi: 10.1016/j.jhazmat.2022.129066
- Bakshi M, Kumar S. Investigating impacts of nanosized titanium dioxide (Nano-TiO2) on maize (Zea mays L.) and their ensuing implications on soil physiochemistry: A soil exposure study. Water Air Soil Pollut. 2023;234(9):559. doi: 10.1007/s11270-023-06556-6
- Skiba E, Pietrzak M, Michlewska S, et al. Photosynthesis governed by nanoparticulate titanium dioxide. The Pisum sativum L. Case study. Environ Pollut. 2024;340:122735. doi: 10.1016/j.envpol.2023.122735
- Racovita AD. Titanium dioxide: Structure, impact, and toxicity. Int J Environ Res Public Health. 2022;19(9):5681. doi: 10.3390/ijerph19095681
- EFSA Panel on Food Additives and Flavourings (FAF), Younes M, Aquilina G, Castle L, Engel K, Fowler P, et al. Safety assessment of titanium dioxide (E171) as a food additive. Efsa J. 2021;19(5):e06585. doi: 10.2903/j.efsa.2021.6585
- Ling C, An H, Li L, et al. Genotoxicity evaluation of titanium dioxide nanoparticles in vitro: A systematic review of the literature and meta-analysis. Biol Trace Elem Res. 2021;199(5):2057-2076. doi: 10.1007/s12011-020-02311-8
- Wang L, Rinklebe J, Tack FMG, Hou D. A review of green remediation strategies for heavy metal contaminated soil. Soil Use Manag. 2021;37(4):936-963. doi: 10.1111/sum.12717
- Sundaram T, Rajendran S, Natarajan S, Vinayagam S, Rajamohan R, Lackner M. Environmental fate and transformation of TiO₂ nanoparticles: A comprehensive assessment. Alex Eng J. 2025;115:264-276. doi: 10.1016/j.aej.2024.12.054
- Fadeel B, Pietroiusti A, Shvedova AA. In: Academic P, editors. Adverse Effects of Engineered Nanomaterials: Exposure, Toxicology, and Impact on Human Health. Netherlands: Elsevier; 2017. p. xv-xvii. doi: 10.1016/b978-0-12-809199-9.00024-0
- OEHHA. Titanium Dioxide (Airborne, Unbound Particles of Respirable Size);2024. Available from: https://oehha. ca.gov/media/downloads/crnr/isortio2nsrl051024.pdf [Last accessed on 2025 Jun 08].
- Cannon HL, Shacklette HT, Bastron H. Metal Absorption by Equisetum (Horsetail). United States: US Geological Survey; 1968. doi: 10.3133/b1278a