New method for statistical analysis of climate time series

After publishing four articles utilizing a new method for the statistical study of climate time series, we found it useful to provide a detailed review of the method itself, which is the primary objective of this work. Unlike the methods most commonly used by scientists analyzing such data, this new method does not seek to identify trends for explorative forecasts. Instead, it enables the detection of precise signals indicating interactions with other climate entities, thereby enhancing our understanding of the underlying phenomena. As illustrated through three example articles, the mechanisms uncovered using this method can be integrated into a mathematical model. The simulations thus obtained are more deterministic than stochastic – a significant advantage for producing high-quality forecasts in the context of global warming. Even if this was the sole application of the method, it would be sufficient to demonstrate its value. However, as a final example detailed in this work shows, reconsidering the original series using different periods (e.g., month, quarter, semester, year) can further refine our understanding of the mechanisms at play. We conclude this work by exploring the potential applicability of this method for analyzing non-climatic temporal data series.
- Hamilton JD. Time Series Analysis. Princeton, USA: Princeton University Press; 1994. p. XIV+799.
- Ash RB. Information Theory. New York, USA: Wiley Inter Science; 1965. p. XI+345.
- Lortet-Zuckermann MC. Testing the Chain Hypothesis of Markov. Application to the succession of various kinds. Explorations of SS Cyg. Ann Astrophys. 1966;29:205-222.
- Amegandjin J. Démographie Mathématique. Paris: Economica; 1989. p. 265.
- Bourbonnais R, Terraza M. Éco Sup. In: Analyse des Séries Temporelles: Applications à l’économie et à la Gestion. 4th ed. Paris: Dunod; 2016. p. 368.
- Mudelsee M. Trend analysis of climate time series: A review of methods. Earth Sci Rev. 2019;190:310-322. doi: 10.1016/j.earscirev.2018.12.005
- Brockwell PJ, Davis RA. Time Series: Theory and Methods. 2nd ed. New York: Springer; 1991. p. 577.
- Montgomery DC, Peck EA. Introduction to Linear Regression Analysis. 2nd ed. New York: Wiley; 1992. p. 527.
- Sen A, Srivastava M. Regression Analysis: Theory, Methods, and Applications. New York: Springer; 1990. p. 347.
- Mudelsee M. Ramp function regression: A tool for quantifying climate transitions Comput Geosci. 2000;26(3):293-307. doi: 10.1016/S0098-3004(99)00141-7
- Lahiri SN. Resampling Methods for Dependent Data. New York: Springer; 2003. p. 374 .
- Doukhan P, Oppenheim G, Taqqu MS. Theory and Applications of Long-Range Dependence. Boston: Birkhäuser; 2003. p. 719.
- Hall P. Theoretical comparison of bootstrap confidence intervals. Ann Stat. 1988;16(3):927-985. doi: 10.1214/aos/1176350933
- Efron B. Bootstrap methods: Another look at the jackknife. Ann Stat. 1979;7(1):1-26. doi: 10.1214/aos/1176344552
- Gallant AR. Nonlinear Statistical Models. New York: Wiley; 1987. p. 610.
- Seber GAF, Wild CJ. Nonlinear Regression. New York: Wiley; 1989. p. 768.
- Granger CWJ, Newbold P. Spurious regressions in econometrics. J Econom. 1974;2:111-120. doi: 10.1016/0304-4076(74)90034-7
- Engle RF, Granger CWJ. Co-integration and error correction: Representation, estimation and testing. Econometrica. 1987;55:251-276. doi: 10.2307/1913236
- Johansen S. Estimation and hypothesis testing of cointegration vectors in gaussian vector autoregressive models. Econometrica. 1991;59:1551-1580. doi: 10.2307/2938278
- Stock JH, Watson MW. A Simple estimator of cointegrating vectors in higher order integrated systems. Econometrica. 1993;61:783-820. doi: 10.2307/2951763
- Phillips PCB, Ouliaris S. Asymptotic properties of residual based tests for cointegration. Econometrica. 1990;58:165-193. doi: 10.2307/2938339
- Granger CWJ. Some recent development in a concept of causality. J Econom. 1988;39:199-211. doi: 10.1016/0304-4076(88)90045-0
- Zeltz É. Analysis and climatological interpretation of the evolution of global mean temperatures since 1880. Physio- Géo. 2021;16(1):49-70. doi: 10.4000/physio-geo.12176
- Zeltz É. Origins of “natural climatic nervousness” and its current accentuation. J Mod Green Energy. 2023;2:8. doi: 10.53964/jmge.2023008
- Zeltz É. Analysis of the interaction of oceanic cloudiness with the upper oceanic stratum. J Inform Anal. 2024;2:4. doi: 10.53964/jia.2024004
- Zeltz É. Mechanisms driving ocean stratification and mixed layer deepening. Explora Environ Resour. 2024;1(1):4578. doi: 10.36922/eer.4578
- Delmas JF. Stochastic Processes and Applications. Available from: https://cermics.enpc.fr/~delmas/Enseig/proba2- notes.pdf [Last accessed on 2025 Feb 03].
- Taboada JJ. Cosmic Rays: Influences on Climate and Eteorology. SlideShare; 2010. Available from: https://fr.slideshare.net/ slideshow/jj-taboada-c-rays-climate/3171290 [Last accessed on 2024 Dec 20].
- Hasselmann K. Stochastic climate models: Part I. Theory. Tellus. 1976;28:473-485. doi: 10.3402/tellusa.v28i6.11316
- Eastman R, Warren SG, Hahn CJ. Variations in cloud cover and cloud types over the ocean from surface observations, 1954-2008. J Clim. 2011;24:5914-5934. doi: 10.1175/2011JCLI3972.1
- World Climate Research Programme. WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity. Available from: https://www.wcrp-climate.org/gc-clouds [Last accessed on 2024 Dec 20].
- Li G, Cheng L, Zhu J, Trenberth KE, Mann ME, Abraham JP. Increasing ocean stratification over the past half-century. Nat Clim Chang. 2020;10:1116-1123. doi: 10.1038/s41558-020-00918-2
- Sallée JB, Pellichero V, Akhoudas C, et al. Summertime increases in upper-ocean stratification and mixed-layer depth. Nature. 2021;591:592-598. doi: 10.1038/s41586-021-03303-x
- Intergovernmental Panel on Climate Change. Sea level rise and implications for low-lying Islands, coasts and communities. In: Special Report on the Ocean and Cryosphere in a Changing Climate. Ch. 4., Table. 4.1. Geneva, Switzerland: Intergovernmental Panel on Climate Change; 2019. p. 336.
- Lacombe H. Généralités sur les Thermoclines, Leur Genèse et Leur Prévision. Exposé Introductif. La Houille Blanche/N 7/8-1974; 1974.
- Haine TWN, Curry B, Gerdes R, et al. Arctic freshwater export: Status, mechanisms, and prospects. Glob Planet Change. 2015;125:13-35. doi: 10.1016/j.gloplacha.2014.11.013
- Schneider T, Bischoff T, Haug GH. Migrations and dynamics of the intertropical convergence zone. Nature. 2014;513(7516):45-53. doi: 10.1038/nature13636
- Trenberth K, National Center for Atmospheric Research Staff, editors. The Climate Data Guide: Nino SST Indices (Nino 1+2, 3, 3.4, 4; ONI and TNI). Climate Data Guide; 2023.
- Météo Contact “Partageons le Temps de Demain. Available from: https://www.meteocontact.fr/pour-aller-plus-loin/el-nino-la-nina#google_vignette [Last accessed on 2024 Dec 20].
- Abarca Del Rio A, Gambis D, Salstein D, Dewitte B. El Niño et la rotation de la terre. Pour Sci. 2001;281:78-82.
- Clarke AJ. An Introduction to the Dynamics of El Niño and the Southern Oscillation. United States: Academic Press; 2008. p. 308.
- Sarachik ES, Cane MA. The El Niño-Southern Oscillation Phenomenon. Cambridge: Cambridge University Press; 2010. p. 369.
- Cromwell T, Montgomery RB, Stroup ED. Equatorial undercurrent in Pacific Ocean revealed by new methods. Science. 1954;119(3097):648-649. doi: 10.1126/science.119.3097.648
- Strang EJ, Fernando HJS. Vertical mixing and transports through a stratified shear layer. J Phys Oceanogr. 2001;31:2026-2048. doi: 10.1175/1520-0485(2001)031<2026:VMATTA>2.0.CO;2
- Gordon AL, Huber B, McKee D, Visbeck M. A seasonal cycle in the export of bottom water from the Weddell Sea. Nat Geosci. 2010;3:551-556. doi: 10.1038/ngeo916
- Box G, Jenkins G. Time Series Analysis: Forecasting and Control. Deerfield, IL: Holden-Day; 1970.
- Bresson G, Pirotte A. Économétrie des Séries Temporelles: Théorie et Applications. Paris: Presses Universitaires de France; 1995.
- Vandenhouten R. Non-stationary Time Series Analysis of Complex Systems and Applications in Physiology. Aachen: Shaker Verlag GmbH; 1998.
- Pirotte A. L’économétrie: Des Origines aux Développements Récents. Paris: CNRS; 2004. p. 242.