Computer simulations in left atrial appendage occlusion: Current applications and future potential
Left atrial appendage (LAA) occlusion (LAAO) prevents thromboembolic stroke in patients with atrial fibrillation, particularly those unsuitable for long-term anticoagulation therapy. However, complex and variable LAA morphology challenges LAAO, including device selection and post-procedural device-related thrombosis. To address these issues, in silico/virtual optimization via computational modeling and simulation has been utilized to improve pre-procedural planning, device design, thrombosis prediction, and optimization for LAAO. This review examines the evolving landscape of LAAO, with a focus on computer modeling and simulation. We assess the capabilities, key limitations, and future potential of these computational tools through literature evaluation. These tools demonstrate clinical translatability but face limitations in simulating dynamic physiological interactions. Their broader adoption will drive personalized LAAO strategies, reduce procedural complications, and inform future research aimed at bridging the gap between virtual optimization and real-world clinical outcomes.
- Yaghi S, Song C, Gray WA, Furie KL, Elkind MSV, Kamel H. Left atrial appendage function and stroke risk. Stroke. 2015;46(12):3554-3559. doi: 10.1161/strokeaha.115.011273
- Holmes DR Jr., Lakkireddy DR, Whitlock RP, Waksman R, Mack MJ. Left atrial appendage occlusion: Opportunities and challenges. J Am Coll Cardiol. 2014;63(4):291-298. doi: 10.1016/j.jacc.2013.08.1631
- Ruff CT, Giugliano RP, Braunwald E, et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: A meta-analysis of randomised trials. Lancet. 2014;383(9921):955-962. doi: 10.1016/s0140-6736(13)62343-0
- Ozaki AF, Choi AS, Le QT, et al. Real-world adherence and persistence to direct oral anticoagulants in patients with atrial fibrillation: A systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2020;13(3):e005969. doi: 10.1161/circoutcomes.119.005969
- Salmasi S, Loewen PS, Tandun R, Andrade JG, De Vera MA. Adherence to oral anticoagulants among patients with atrial fibrillation: A systematic review and meta-analysis of observational studies. BMJ Open. 2020;10(4):e034778. doi: 10.1136/bmjopen-2019-034778
- Nasr GH, Rushworth PM, Donaldson DM. Left atrial appendage closure. Interv Cardiol Clin. 2025;14(3):367-379. doi: 10.1016/j.iccl.2024.09.002
- Chaudhary A, Trovato J, Subodh R. Minimalist approach to left atrial appendage occlusion through three-dimensional intracardiac echocardiography: Procedural steps and single-center experience. Brain Heart. 2024;2(4):4018. doi: 10.36922/bh.4018
- Odak MV, Kalutota C, Douedi S, et al. Left atrial appendage occlusion: Contemporary review and current challenges. Brain Heart. 2025;3(3):4016. doi: 10.36922/bh.4016
- Garg J, Kabra R, Gopinathannair R, et al. State of the art in left atrial appendage occlusion. JACC Clin Electrophysiol. 2025;11(3):602-641. doi: 10.1016/j.jacep.2024.10.024
- Holmes DR, Korsholm K, Rodés-Cabau J, Saw J, Berti S, Alkhouli MA. Left atrial appendage occlusion. EuroIntervention. 2023;18(13):e1038-e1065. doi: 10.4244/eij-d-22-00627
- Ueno H, Imamura T, Tanaka S, Fukuda N, Kinugawa K. Left atrial appendage closure for stroke prevention in nonvalvular atrial fibrillation: A current overview. J Cardiol. 2023;81(5):420-428. doi: 10.1016/j.jjcc.2022.11.006
- Sharma SP, Cheng J, Turagam MK, et al. Feasibility of left atrial appendage occlusion in left atrial appendage thrombus: A systematic review. JACC Clin Electrophysiol. 2020;6(4):414-424. doi: 10.1016/j.jacep.2019.11.017
- Osmancik P, Herman D, Neuzil P, et al. 4-year outcomes after left atrial appendage closure versus nonwarfarin oral anticoagulation for atrial fibrillation. J Am Coll Cardiol. 2022;79(1):1-14. doi: 10.1016/j.jacc.2021.10.023
- Osmancik P, Herman D, Neuzil P, et al. Left atrial appendage closure versus direct oral anticoagulants in high-risk patients with atrial fibrillation. J Am Coll Cardiol. 2020;75(25):3122-3135. doi: 10.1016/j.jacc.2020.04.067
- Holmes D Jr., Doshi SK, Kar S, et al. Left atrial appendage closure as an alternative to warfarin for stroke prevention in atrial fibrillation: A patient-level meta-analysis. J Am Coll Cardiol. 2015;65(24):2614-2623. doi: 10.1016/j.jacc.2015.04.025
- Di Biase L, Santangeli P, Anselmino M, et al. Does the left atrial appendage morphology correlate with the risk of stroke in patients with atrial fibrillation? Results from a multicenter study. J Am Coll Cardiol. 2012;60(6):531-538. doi: 10.1016/j.jacc.2012.04.032
- Samaras A, Papazoglou AS, Balomenakis C, et al. Residual leaks following percutaneous left atrial appendage occlusion and outcomes: A meta-analysis. Eur Heart J. 2024;45(3):214-229. doi: 10.1093/eurheartj/ehad828
- Simard TS, Hibbert B, Alkhouli MA, Abraham NA, Holmes DH. Device-related thrombus following left atrial appendage occlusion. EuroIntervention. 2022;18(3):224-232. doi: 10.4244/eij-d-21-01010
- Cepas-Guillén P, Flores-Umanzor E, Leduc N, et al. Impact of device implant depth after left atrial appendage occlusion. JACC Cardiovasc Interv. 2023;16(17):2139-2149. doi: 10.1016/j.jcin.2023.05.045
- Bäck S, Lantz J, Skoda I, et al. Virtual left atrial appendage occlusion in paroxysmal atrial fibrillation during sinus rhythm predicts variable reductions in blood stasis. J Physiol. 2025. doi: 10.1113/JP288587
- Wang H, Uhlmann K, Vedula V, Balzani D, Varnik F. Fluid-structure interaction simulation of tissue degradation and its effects on intra-aneurysm hemodynamics. Biomech Model Mechanobiol. 2022;21(2):671-683. doi: 10.1007/s10237-022-01556-7
- Wang H, Balzani D, Vedula V, Uhlmann K, Varnik F. On the potential self-amplification of aneurysms due to tissue degradation and blood flow revealed from FSI simulations. Front Physiol. 2021;12:785780. doi: 10.3389/fphys.2021.785780
- Wang H, Krüger T, Varnik F. Effects of size and elasticity on the relation between flow velocity and wall shear stress in side-wall aneurysms: A lattice Boltzmann-based computer simulation study. PLoS One. 2020;15(1):e0227770. doi: 10.1371/journal.pone.0227770
- Chen X, Cao H, Li Y, et al. Hemodynamic influence of mild stenosis morphology in different coronary arteries: A computational fluid dynamic modelling study. Front Bioeng Biotechnol. 2024;12:1439846. doi: 10.3389/fbioe.2024.1439846
- Li S, Tian X, Ip B, et al. Cerebral hemodynamics and stroke risks in symptomatic intracranial atherosclerotic stenosis with internal versus cortical borderzone infarcts: A computational fluid dynamics study. J Cereb Blood Flow Metab. 2023;44(4):516-526. doi: 10.1177/0271678x231211449
- Zingaro A, Ahmad Z, Kholmovski E, et al. A comprehensive stroke risk assessment by combining atrial computationalfluid dynamics simulations and functional patient data. Sci Rep. 2024;14(1):9515.doi: 10.1038/s41598-024-59997-2
- Wang H, Fan L, Choy JS, Kassab GS, Lee LC. Simulation of coronary capillary transit time based on full vascular model of the heart. Comput Methods Programs Biomed. 2024;243:107908. doi: 10.1016/j.cmpb.2023.107908
- Choy JS, Hubbard T, Wang H, et al. Preconditioning with selective autoretroperfusion: In vivo and in silico evidence of washout hypothesis. Front Bioeng Biotechnol. 2024;12:1386713. doi: 10.3389/fbioe.2024.1386713
- Wang H, Fan L, Choy JS, Kassab GS, Lee LC. Mechanisms of coronary sinus reducer for treatment of myocardial ischemia: In silico study. J Appl Physiol (1985). 2024;136(5):1157-1169. doi: 10.1152/japplphysiol.00910.2023
- Md RI, Lee MT, Cook AC, et al. A new braided model of the Amulet Amplatzer for accurate simulations of left atrial appendage occlusion procedures. Comput Biol Med. 2025;192:110355. doi: 10.1016/j.compbiomed.2025.110355
- Mendez K, Singh M, Willoughby P, et al. Design and validation of a high-fidelity left atrial cardiac simulator for the study and advancement of left atrial appendage occlusion. Cardiovasc Eng Technol. 2025;16(3):279-295. doi: 10.1007/s13239-025-00773-2
- Albors C, Terreros NA, Saiz-Vivó M, et al. In silico estimation of thrombogenic risk after left atrial appendage excision: Towards digital twins in atrial fibrillation. Comput Biol Med. 2025;194:110483. doi: 10.1016/j.compbiomed.2025.110483
- Aguado AM, Olivares AL, Yagüe C, et al. In silico optimization of left atrial appendage occluder implantation using interactive and modeling tools. Front Physiol. 2019;10:237. doi: 10.3389/fphys.2019.00237
- Zhong Z, Gao Y, Kovács S, et al. Impact of left atrial appendage occlusion device position on potential determinants of device-related thrombus: A patient-specific in silico study. Clin Res Cardiol. 2024;113(10):1405-1418. doi: 10.1007/s00392-023-02228-x
- Albors C, Mill J, Olivares AL, Iriart X, Cochet H, Camara O. Impact of occluder device configurations in in-silico left atrial hemodynamics for the analysis of device-related thrombus. PLOS Comput Biol. 2024;20(9):e1011546. doi: 10.1371/journal.pcbi.1011546
- Chirag B, Chirag P, Arpit D, Hrishikesh S. Safety and efficacy of left atrial appendage closure devices: In-vitro controlled simulations and in-vivo correlations. Int J Clin Sci Med Res. 2024;04(11):414-420. doi: 10.55677/ijcsmr/v4i11-05/2024
- Koizumi R, Funamoto K, Hayase T, et al. Numerical analysis of hemodynamic changes in the left atrium due to atrial fibrillation. J Biomech. 2015;48(3):472-478. doi: 10.1016/j.jbiomech.2014.12.025
- Otani T, Al-Issa A, Pourmorteza A, McVeigh ER, Wada S, Ashikaga H. A computational framework for personalized blood flow analysis in the human left atrium. Ann Biomed Eng. 2016;44(11):3284-3294. doi: 10.1007/s10439-016-1590-x
- Masci A, Alessandrini M, Dede L, et al. Development of a Computational Fluid Dynamics Model of the Left Atrium in Atrial Fibrillation on a Patient Specific Basis. In: Computing in Cardiology (CinC), 2012; 2017. doi: 10.22489/CINC.2017.004-429
- Himburg HA, Grzybowski DM, Hazel AL, LaMack JA, Li XM, Friedman MH. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am J Physiol Heart Circ Physiol. 2004;286(5):H1916-H1922. doi: 10.1152/ajpheart.00897.2003
- Bosi GM, Cook A, Rai R, et al. Computational fluid dynamic analysis of the left atrial appendage to predict thrombosis risk. Front Cardiovasc Med. 2018;5:34. doi: 10.3389/fcvm.2018.00034
- Dueñas-Pamplona J, García JG, Sierra-Pallares J, Ferrera C, Agujetas R, López-Mínguez JR. A comprehensive comparison of various patient-specific CFD models of the left atrium for atrial fibrillation patients. Comput Biol Med. 2021;133:104423. doi: 10.1016/j.compbiomed.2021.104423
- Dueñas-Pamplona J, García JG, Castro F, Muñoz- Paniagua J, Goicolea J, Sierra-Pallares J. Morphing the left atrium geometry: A deeper insight into blood stasis within the left atrial appendage. Appl Math Model. 2022;108:27-45. doi: 10.1016/j.apm.2022.03.012
- Corti M, Zingaro A, Dede’ L, Quarteroni AM. Impact of atrial fibrillation on left atrium haemodynamics: A computational fluid dynamics study. Comput Biol Med. 2022;150:106143. doi: 10.1016/j.compbiomed.2022.106143
- Fanni BM, Capellini K, Di Leonardo M, et al. Correlation between LAA morphological features and computational fluid dynamics analysis for non-valvular atrial fibrillation patients. Appl Sci. 2020;10(4):1448. doi: 10.3390/app10041448
- Wang LF, Wang ZD, Fang RX, Li ZY. Evaluation of strokerisk in patients with atrial fibrillation using morphological and hemodynamic characteristics. Front Cardiovasc Med. 2022;9:842364. doi: 10.3389/fcvm.2022.842364
- Alinezhad L, Ghalichi F, Ahmadlouydarab M, Chenaghlou M. Left atrial appendage shape impacts on the left atrial flow hemodynamics: A numerical hypothesis generating study on two cases. Comput Methods Programs Biomed. 2022;213:106506. doi: 10.1016/j.cmpb.2021.106506
- Jia D, Jeon B, Park HB, Chang HJ, Zhang LT. Image-based flow simulations of pre- and post-left atrial appendage closure in the left atrium. Cardiovasc Eng Technol. 2019;10(2):225-241. doi: 10.1007/s13239-019-00412-7
- Di Achille P, Tellides G, Figueroa CA, Humphrey JD. A haemodynamic predictor of intraluminal thrombus formation in abdominal aortic aneurysms. Proc R Soc A. 2014;470:20140163. doi: 10.1098/rspa.2014.0163
- Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282(21):2035-2042. doi: 10.1001/jama.282.21.2035
- Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 1985;5(3):293-302. doi: 10.1161/01.atv.5.3.293
- D’Alessandro N, Falanga M, Masci A, Severi S, Corsi C. Preliminary findings on left atrial appendage occlusion simulations applying different endocardial devices. Front Cardiovasc Med. 2023;10:1037964. doi: 10.3389/fcvm.2023.1067964
- Shenzhen Salubris Medtech Co., Ltd. Salubris Medical Devices - Structural Heart Disease. Salubris Medtech Website. Available from: https://www.salubrismed.com/jgxxzb; [Last accessed on 2025 Nov 10].
- Holmes DR, Reddy VY, Turi ZG, et al. Percutaneous closure of the left atrial appendage versus warfarin therapy for prevention of stroke in patients with atrial fibrillation: A randomised non-inferiority trial. Lancet. 2009;15;374(9689):534-542. doi: 10.1016/S0140-6736(09)61343-X
- Holmes DR, Kar S, Price MJ, et al. Prospective randomized evaluation of the watchman left atrial appendage closure device in patients with atrial fibrillation versus long-term warfarin therapy. J Am Coll Cardiol. 2014;64(1):1-12. doi: 10.1016/j.jacc.2014.04.029
- Kar S, Doshi SK, Sadhu A, et al. Primary outcome evaluation of a next-generation left atrial appendage closure device: Results from the PINNACLE FLX trial. Circulation. 2021;143(18):1754-1762. doi: 10.1161/circulationaha.120.050117
- Tzikas A, Shakir S, Gafoor S, et al. Left atrial appendage occlusion for stroke prevention in atrial fibrillation: Multicentre experience with the AMPLATZER Cardiac Plug. EuroIntervention. 2016;11(10):1170-1179. doi: 10.4244/eijy15m01_06
- Landmesser U, Schmidt B, Nielsen-Kudsk JE, et al. Left atrial appendage occlusion with the AMPLATZER amulet device: Periprocedural and early clinical/echocardiographic data from a global prospective observational study. EuroIntervention. 2017;13(7):867-876. doi: 10.4244/eij-d-17-00493
- Yasmin F, Ali E, Moeed A, Zaidi F, Umar M, Virwani V. Safety and efficacy of percutaneous Watchman 2.5 device versus Amplatzer Amulet for left atrial appendage closure in patients with non-valvular atrial fibrillation: A systematic review and study-level meta-analysis. PLoS One. 2024;19(2):e0295804. doi: 10.1371/journal.pone.0295804
- Bing S, Chen RR. Clinical efficacy and safety comparison of Watchman device versus ACP/Amulet device for percutaneous left atrial appendage closure in patients with nonvalvular atrial fibrillation: A study‐level meta‐analysis of clinical trials. Clin Cardiol. 2022;46(2):117-125. doi: 10.1002/clc.23956
- Lakkireddy D, Thaler D, Ellis CR, et al. Amplatzer amulet left atrial appendage occluder versus watchman device for stroke prophylaxis (amulet IDE): A randomized, controlled trial. Circulation. 2021;144(19):1543-1552. doi: 10.1161/circulationaha.121.057063
- Lakkireddy D, Ellis CR, Thaler D, et al. 5-year results from the AMPLATZER amulet left atrial appendage occluder randomized controlled trial. J Am Coll Cardiol. 2025;85(11):1141-1153. doi: 10.1016/j.jacc.2024.10.101
- Albors C, Olivares AL, Iriart X, Cochet H, Mill J, Camara O. Impact of Blood Rheological Strategies on the Optimization of Patient-Specific LAAO Configurations for Thrombus Assessment. Berlin: Springer Nature Switzerland; 2023. p. 485-494. doi: 10.1007/978-3-031-35302-4_50
- Planas E, Mill J, Olivares AL, et al. In-Silico Analysis of Device- Related Thrombosis for Different Left Atrial Appendage Occluder Settings. Berlin: Springer International Publishing; 2022. p. 160-168.
- Bavo AM, Wilkins BT, Garot P, et al. Validation of acomputational model aiming to optimize preprocedural planning in percutaneous left atrial appendage closure. J Cardiovasc Comput Tomogr. 2020;14(2):149-154. doi: 10.1016/j.jcct.2019.08.010
- Ranard LS, Vahl TP, Sommer R, et al. FEops HEARTguide patient-specific computational simulations for WATCHMAN FLX left atrial appendage closure: A retrospective study. JACC Adv. 2022;1(5):100139. doi: 10.1016/j.jacadv.2022.100139
- Tejman-Yarden S, Freidin D, Nagar N, et al. Virtual reality utilization for left atrial appendage occluder device size prediction. Heliyon. 2023;9(4):e14790. doi: 10.1016/j.heliyon.2023.e14790
- Heidari HH, Kanschik DK, Wolff GW, et al. Feasibility, accuracy, and reproducibility of device sizing in virtual reality for percutaneous left atrial appendage closure-a single center study. Eur Heart J. 2024;45:ehae666.086.doi: 10.1093/eurheartj/ehae666.086
- Heidari H, Kanschik D, Erkens R, et al. Left atrial appendage sizing for percutaneous closure in virtual reality-a feasibility study. Front Cardiovasc Med. 2023;10:1188571. doi: 10.3389/fcvm.2023.1188571
- Yang J, Song C, Ding H, Chen M, Sun J, Liu X. Numerical study of the risk of thrombosis in the left atrial appendage of chicken wing shape in atrial fibrillation. Front Cardiovasc Med. 2022;9:985674. doi: 10.3389/fcvm.2022.985674
- Masci A, Barone L, Dedè L, et al. The impact of left atrium appendage morphology on stroke risk assessment in atrial fibrillation: A computational fluid dynamics study. Front Physiol. 2019;9:1938. doi: 10.3389/fphys.2018.01938
- Pons MI, Mill J, Fernandez-Quilez A, et al. Joint analysis of morphological parameters and in silico haemodynamics of the left atrial appendage for thrombogenic risk assessment. J Interv Cardiol. 2022;2022:9125224. doi: 10.1155/2022/9125224
- Mill J, Harrison J, Saiz-Vivo M, et al. The role of the pulmonary veins on left atrial flow patterns and thrombus formation. Sci Rep. 2024;14(1):5860. doi: 10.1038/s41598-024-56658-2
- Rodríguez-Aparicio S, Ferrera C, Fuentes-Cañamero ME, García García J, Dueñas-Pamplona J. Morphing the left atrium geometry: The role of the pulmonary veins on flow patterns and thrombus formation. Comput Biol Med. 2025;186:109612. doi: 10.1016/j.compbiomed.2024.109612
- Rossini L, Martinez-Legazpi P, Vu V, et al. A clinical method for mapping and quantifying blood stasis in the left ventricle. J Biomech. 2016;49(11):2152-2161. doi: 10.1016/j.jbiomech.2015.11.049
- García-Villalba M, Rossini L, Gonzalo A, et al. Demonstration of patient-specific simulations to assess left atrial appendage thrombogenesis risk. Front Physiol. 2021;12:596596. doi: 10.3389/fphys.2021.596596
- Kjeldsberg HA, Albors C, Mill J, et al. Impact of left atrial wall motion assumptions in fluid simulations on proposed predictors of thrombus formation. Int J Numer Method Biomedl Eng. 2024;40(6):e3825. doi: 10.1002/cnm.3825
- Schmidt B, Nielsen-Kudsk JE, Ellis CR, et al. Incidence, predictors, and clinical outcomes of device-related thrombus in the amulet IDE trial. JACC Clin Electrophysiol. 2023;9(1):96-107. doi: 10.1016/j.jacep.2022.07.014
- Simard T, Jung RG, Lehenbauer K, et al. Predictors of device-related thrombus following percutaneous left atrial appendage occlusion. J Am Coll Cardiol. 2021;78(4):297-313. doi: 10.1016/j.jacc.2021.04.098
- Mesnier J, Simard T, Jung RG, et al. Persistent and recurrent device-related thrombus after left atrial appendage closure: Incidence, predictors, and outcomes. JACC Cardiovasc Interv. 2023;16(22):2722-2732. doi: 10.1016/j.jcin.2023.09.017
- Mill J, Agudelo V, Hion Li C, et al. Patient-specific flow simulation analysis to predict device-related thrombosis in left atrial appendage occluders. REC Interv Cardiol (English Ed). 2022;3:278-285.doi: 10.24875/recice.M21000224
- Mill J, Agudelo V, Olivares AL, et al. Sensitivity analysis of in silico fluid simulations to predict thrombus formation after left atrial appendage occlusion. Mathematics. 2021;9(18):1-19. doi: 10.3390/math9182304
- Vogl BJ, Vitale E, Ahn S, et al. Flow dynamic factors correlated with device-related thrombosis after left atrial appendage occlusion. JACC Adv. 2024;3(11):101339. doi: 10.1016/j.jacadv.2024.101339
- Fang R, Li Y, Zhang Y, Chen Q, Liu Q, Li Z. Impact of left atrial appendage location on risk of thrombus formation in patients with atrial fibrillation. Biomech Model Mechanobiol. 2021;20(4):1431-1443. doi: 10.1007/s10237-021-01454-4
- Fang R, Wang Z, Zhao X, et al. Stroke risk evaluation for patients with atrial fibrillation: Insights from left atrial appendage with fluid-structure interaction analysis. Comput Biol Med. 2022;148:105897. doi: 10.1016/j.compbiomed.2022.105897
- Musotto G, Monteleone A, Vella D, et al. The role of patient-specific morphological features of the left atrial appendage on the thromboembolic risk under atrial fibrillation. Front Cardiovasc Med. 2022;9:894187. doi: 10.3389/fcvm.2022.894187
- Musotto G, Monteleone A, Vella D, et al. Fluid-structure interaction analysis of the thromboembolic risk in the left atrial appendage under atrial fibrillation: Effect of hemodynamics and morphological features. Comput Methods Prog Biomed. 2024;246:108056. doi: 10.1016/j.cmpb.2024.108056
- Fang R, Wang Z, Wang J, et al. Patient-specific pulmonary venous flow characterization and its impact on left atrial appendage thrombosis in atrial fibrillation patients. Comput Methods Programs Biomed. 2024;257:108428. doi: 10.1016/j.cmpb.2024.108428
- Morales Ferez X, Mill J, Juhl KA, et al. Deep learning framework for real-time estimation of in-silico thrombotic risk indices in the left atrial appendage. Front Physiol. 2021;12:694945. doi: 10.3389/fphys.2021.694945
- Gao Q, Lin H, Qian J, et al. A deep learning model for efficient end-to-end stratification of thrombotic risk in left atrial appendage. Eng Appl Artif Intell. 2023;126:107187. doi: 10.1016/j.engappai.2023.107187
- Liu X, Lin H, Liu X, et al. LAFlowNet: A dynamic graph method for the prediction of velocity and pressure fields in left atrium and left atrial appendage. Eng Appl Artif Intell. 2024;136:108896. doi: 10.1016/j.engappai.2024.108896
- Yilmaz A, Hayıroğlu Mİ, Salturk S, et al. Machine learning approach on high risk treadmill exercise test to predict obstructive coronary artery disease by using P, QRS, and T waves’ features. Curr Probl Cardiol. 2023;48(2):101482. doi: 10.1016/j.cpcardiol.2022.101482
- Cicek V, Orhan AL, Saylik F, et al. Predicting short-term mortality in patients with acute pulmonary embolism with deep learning. Circ J. 2025;89(5):602-611. doi: 10.1253/circj.CJ-24-0630
