A review of hypertension and vascular cognitive impairment

Vascular cognitive impairment (VCI) is a cognitive dysfunction syndrome caused by various vascular-related risk factors, with hypertension regarded as one of the main pathogenic factors. Chronic hypertension can promote cognitive decline through abnormal microcirculation structure, white matter fiber injury, blood–brain barrier destruction, oxidative stress, and neuroinflammatory reaction, increasing the incidence of vascular dementia. To fully grasp the research status in this field, this study adopted the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 guidelines for literature identification. A controlled vocabulary-based search strategy was employed to screen PubMed, Embase, Web of Science, and Cochrane Library for human studies published from January 2000 to March 2025, focusing on hypertension, VCI, dementia, antihypertensive treatment, and aerobic exercise intervention. Analysis of literature shows that angiotensin converting enzyme inhibitors and calcium channel blockers may play a neuroprotective role by increasing cerebral blood flow, reducing oxidative stress, and delaying amyloid deposition. However, these mechanisms and their clinical results are still controversial. Aerobic exercise, particularly moderate and high-intensity exercise, can continuously improve cerebral blood flow, promote neuroplasticity development, and enhance cognitive performance. However, significant limitations remain in the existing research. Thus, it is essential to conduct a systematic, integrated analysis and further strengthen standardized experimental design and personalization.
- Humphrey JD. Mechanisms of vascular remodeling in hypertension. Am J Hypertens. 2021;34(5):432-441. doi: 10.1093/ajh/hpaa195
- Cipolla MJ, Bishop N, Vinke RS, Godfrey JA. PPAR{gamma} activation prevents hypertensive remodeling of cerebral arteries and improves vascular function in female rats. Stroke. 2010;41(6):1266-1270. doi: 10.1161/STROKEAHA.109.576942
- Intengan HD, Schiffrin EL. Vascular remodeling in hypertension: Roles of apoptosis, inflammation, and fibrosis. Hypertension. 2001;38(3 Pt 2):581-587. doi: 10.1161/hy09t1.096249
- Li J, Wu F, Zhang H, et al. Insulin inhibits leukocyte-endothelium adherence via an akt-NO-dependent mechanism in myocardial ischemia/reperfusion. J Mol Cell Cardiol. 2009;47(4):512-519. doi: 10.1016/j.yjmcc.2009.07.010
- Duan DD. Volume matters: Novel roles of the volume-regulated CLC-3 channels in hypertension-induced cerebrovascular remodeling. Hypertension. 2010;56(3):346-348. doi: 10.1161/HYPERTENSIONAHA.110.155770
- Diaz-Otero JM, Fisher C, Downs K, et al. Endothelial mineralocorticoid receptor mediates parenchymal arteriole and posterior cerebral artery remodeling during angiotensin II-induced hypertension. Hypertension. 2017;70(6):1113-1121. doi: 10.1161/HYPERTENSIONAHA.117.09598
- Toth P, Tucsek Z, Sosnowska D, et al. Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension. J Cereb Blood Flow Metab. 2013;33(11):1732-1742. doi: 10.1038/jcbfm.2013.143
- Fujishima M, Ibayashi S, Fujii K, Mori S. Cerebral blood flow and brain function in hypertension. Hypertens Res. 1995;18(2):111-117. doi: 10.1291/hypres.18.111
- Zeng X, Yang Y. Molecular mechanisms underlying vascular remodeling in hypertension. Rev Cardiovasc Med. 2024;25(2):72. doi: 10.31083/j.rcm2502072
- Lee RM, Dickhout JG, Sandow SL. Vascular structural and functional changes: Their association with causality in hypertension: Models, remodeling and relevance. Hypertens Res. 2017;40(4):311-323. doi: 10.1038/hr.2016.145
- Martinez-Quinones P, McCarthy CG, Watts SW, et al. Hypertension induced morphological and physiological changes in cells of the arterial wall. Am J Hypertens. 2018;31(10):1067-1078. doi: 10.1093/ajh/hpy083
- Song Y, Jia H, Hua Y, et al. The molecular mechanism of aerobic exercise improving vascular remodeling in hypertension. Front Physiol. 2022;13:792292. doi: 10.3389/fphys.2022.792292
- Li Y, Li R, Liu M, Nie Z, Muir ER, Duong TQ. MRI study of cerebral blood flow, vascular reactivity, and vascular coupling in systemic hypertension. Brain Res. 2021;1753:147224. doi: 10.1016/j.brainres.2020.147224
- Pires PW, Dams Ramos CM, Matin N, Dorrance AM. The effects of hypertension on the cerebral circulation. Am J Physiol Heart Circ Physiol. 2013;304(12):H1598-H1614. doi: 10.1152/ajpheart.00490.2012
- Tzeng YC, Ainslie PN. Blood pressure regulation IX: Cerebral autoregulation under blood pressure challenges. Eur J Appl Physiol. 2014;114(3):545-559. doi: 10.1007/s00421-013-2667-y
- Willie CK, Tzeng YC, Fisher JA, Ainslie PN. Integrative regulation of human brain blood flow. J Physiol. 2014;592(5):841-859. doi: 10.1113/jphysiol.2013.268953
- Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: Insights from neuroimaging. Lancet Neurol. 2013;12(5):483-497. doi: 10.1016/S1474-4422(13)70060-7
- Faraco G, Iadecola C. Hypertension: A harbinger of stroke and dementia. Hypertension. 2013;62(5):810-817. doi: 10.1161/HYPERTENSIONAHA.113.01063
- Toth P, Tucsek Z, Tarantini S, et al. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice. J Cereb Blood Flow Metab. 2014;34(12):1887-1897. doi: 10.1038/jcbfm.2014.156
- Fan F, Geurts AM, Murphy SR, Pabbidi MR, Jacob HJ, Roman RJ. Impaired myogenic response and autoregulation of cerebral blood flow is rescued in CYP4A1 transgenic dahl salt-sensitive rat. Am J Physiol Regul Integr Comp Physiol. 2015;308(5):R379-R390. doi: 10.1152/ajpregu.00256.2014
- Shekhar S, Liu R, Travis OK, Roman RJ, Fan F. Cerebral autoregulation in hypertension and ischemic stroke: A mini review. J Pharm Sci Exp Pharmacol. 2017;2017(1):21-27.
- Ungvari Z, Tarantini S, Kirkpatrick AC, Csiszar A, Prodan CI. Cerebral microhemorrhages: Mechanisms, consequences, and prevention. Am J Physiol Heart Circ Physiol. 2017;312(6):H1128-H1143. doi: 10.1152/ajpheart.00780.2016
- Iadecola C. The pathobiology of vascular dementia. Neuron. 2013;80(4):844-866. doi: 10.1016/j.neuron.2013.10.008
- Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: Systematic review and meta-analysis. BMJ. 2010;341:c3666. doi: 10.1136/bmj.c3666
- De Leeuw FE, De Groot JC, Achten E, et al. Prevalence of cerebral white matter lesions in elderly people: A population based magnetic resonance imaging study. The rotterdam scan study. J Neurol Neurosurg Psychiatry. 2001;70(1):9-14. doi: 10.1136/jnnp.70.1.9
- Saavedra JM. Angiotensin II AT(1) receptor blockers as treatments for inflammatory brain disorders. Clin Sci (Lond). 2012;123(10):567-590. doi: 10.1042/CS20120078
- Presa JL, Saravia F, Bagi Z, Filosa JA. Vasculo-neuronal coupling and neurovascular coupling at the neurovascular unit: Impact of hypertension. Front Physiol. 2020;11:584135. doi: 10.3389/fphys.2020.584135
- Toth P, Tarantini S, Csiszar A, Ungvari Z. Functional vascular contributions to cognitive impairment and dementia: Mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am J Physiol Heart Circ Physiol. 2017;312(1):H1-H20. doi: 10.1152/ajpheart.00581.2016
- Ungvari Z, Toth P, Tarantini S, et al. Hypertension-induced cognitive impairment: From pathophysiology to public health. Nat Rev Nephrol. 2021;17(10):639-654. doi: 10.1038/s41581-021-00430-6
- Mogi M, Horiuchi M. Effects of angiotensin II receptor blockers on dementia. Hypertens Res. 2009;32(9):738-740. doi: 10.1038/hr.2009.110
- Bergman L, Acurio J, Leon J, et al. Preeclampsia and increased permeability over the blood-brain barrier: A role of vascular endothelial growth receptor 2. Am J Hypertens. 2021;34(1):73-81. doi: 10.1093/ajh/hpaa142
- Iadecola C, Gottesman RF. Neurovascular and cognitive dysfunction in hypertension. Circ Res. 2019;124(7):1025-1044. doi: 10.1161/CIRCRESAHA.118.313260
- Tarantini S, Tran CHT, Gordon GR, Ungvari Z, Csiszar A. Impaired neurovascular coupling in aging and alzheimer’s disease: Contribution of astrocyte dysfunction and endothelial impairment to cognitive decline. Exp Gerontol. 2017;94:52-58. doi: 10.1016/j.exger.2016.11.004
- Iadecola C. The neurovascular unit coming of age: A journey through neurovascular coupling in health and disease. Neuron. 2017;96(1):17-42. doi: 10.1016/j.neuron.2017.07.030
- Girouard H, Park L, Anrather J, Zhou P, Iadecola C. Angiotensin II attenuates endothelium-dependent responses in the cerebral microcirculation through nox-2-derived radicals. Arterioscler Thromb Vasc Biol. 2006;26(4):826-832. doi: 10.1161/01.ATV.0000205849.22807.6e
- Alfieri A, Koudelka J, Li M, et al. Nox2 underpins microvascular inflammation and vascular contributions to cognitive decline. J Cereb Blood Flow Metab. 2022;42(7):1176-1191. doi: 10.1177/0271678X221077766
- Santisteban MM, Iadecola C, Carnevale D. Hypertension, neurovascular dysfunction, and cognitive impairment. Hypertension. 2023;80(1):22-34. doi: 10.1161/HYPERTENSIONAHA.122.18085
- Capone C, Faraco G, Park L, Cao X, Davisson RL, Iadecola C. The cerebrovascular dysfunction induced by slow pressor doses of angiotensin II precedes the development of hypertension. Am J Physiol Heart Circ Physiol. 2011;300(1):H397-H407. doi: 10.1152/ajpheart.00679.2010
- Bloch S, Obari D, Girouard H. Angiotensin and neurovascular coupling: Beyond hypertension. Microcirculation. 2015;22(3):159-167. doi: 10.1111/micc.12193
- Moretti R, Caruso P. Small vessel disease-related dementia: An invalid neurovascular coupling? Int J Mol Sci. 2020;21(3):1095. doi: 10.3390/ijms21031095
- Wang R, Wang M, Du D, Shan Z, Bi L, Chen QH. Brain-targeted reactive oxygen species in hypertension: Unveiling subcellular dynamics, immune cross-talk, and novel therapeutic pathways. Antioxidants (Basel). 2025;14(4):408. doi: 10.3390/antiox14040408
- You TY, Dong Q, Cui M. Emerging links between cerebral blood flow regulation and cognitive decline: A role for brain microvascular pericytes. Aging Dis. 2023;14(4):1276-1291. doi: 10.14336/AD.2022.1204
- Youwakim J, Girouard H. Inflammation: A mediator between hypertension and neurodegenerative diseases. Am J Hypertens. 2021;34(10):1014-1030. doi: 10.1093/ajh/hpab094
- Noureddine FY, Altara R, Fan F, Yabluchanskiy A, Booz GW, Zouein FA. Impact of the renin-angiotensin system on the endothelium in vascular dementia: Unresolved issues and future perspectives. Int J Mol Sci. 2020;21(12):4268. doi: 10.3390/ijms21124268
- Vaseghi S, Mostafavijabbari A, Alizadeh MS, Ghaffarzadegan R, Kholghi G, Zarrindast MR. Intricate role of sleep deprivation in modulating depression: Focusing on BDNF, VEGF, serotonin, cortisol, and TNF-α. Metab Brain Dis. 2023;38(1):195-219. doi: 10.1007/s11011-022-01124-z
- Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7(1):41-53. doi: 10.1038/nrn1824
- Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV. Establishment and dysfunction of the blood-brain barrier. Cell. 2015;163(5):1064-1078. doi: 10.1016/j.cell.2015.10.067
- Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013;19(12):1584-1596. doi: 10.1038/nm.3407
- Nation DA, Sweeney MD, Montagne A, et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med. 2019;25(2):270-276. doi: 10.1038/s41591-018-0297-y
- Biancardi VC, Son SJ, Ahmadi S, Filosa JA, Stern JE. Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood-brain barrier. Hypertension. 2014;63(3):572-579. doi: 10.1161/HYPERTENSIONAHA.113.01743
- Montagne A, Nation DA, Sagare AP, et al. APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline. Nature. 2020;581(7806):71-76. doi: 10.1038/s41586-020-2247-3
- Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood-brain barrier: From physiology to disease and back. Physiol Rev. 2019;99(1):21-78. doi: 10.1152/physrev.00050.2017
- Faraco G, Park L, Anrather J, Iadecola C. Brain perivascular macrophages: Characterization and functional roles in health and disease. J Mol Med (Berl). 2017;95(11):1143-1152. doi: 10.1007/s00109-017-1573-x
- Montagne A, Barnes SR, Sweeney MD, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 2015;85(2):296-302. doi: 10.1016/j.neuron.2014.12.032
- Nijssen KMR, Mensink RP, Plat J, Joris PJ. Longer-term mixed nut consumption improves brain vascular function and memory: A randomized, controlled crossover trial in older adults. Clin Nutr. 2023;42(7):1067-1075. doi: 10.1016/j.clnu.2023.05.025
- Xie J, Bruggeman A, De Nolf C, et al. Gut microbiota regulates blood-cerebrospinal fluid barrier function and aβ pathology. EMBO J. 2023;42(17):e111515. doi: 10.15252/embj.2022111515
- Amazaki Y, Kanekiyo T. Blood-brain barrier dysfunction and the pathogenesis of alzheimer’s disease. Int J Mol Sci. 2017;18(9):1965. doi: 10.3390/ijms18091965
- Camelo S, Dioh W, Teixeira JP, et al. Modulation of the renin-angiotensin system against COVID-19: A path forward? Int J Infect Dis. 2025;154:107867. doi: 10.1016/j.ijid.2025.107867
- Ho JK, Moriarty F, Manly JJ, et al. Blood-brain barrier crossing renin-angiotensin drugs and cognition in the elderly: A meta-analysis. Hypertension. 2021;78(3):629-643. doi: 10.1161/HYPERTENSIONAHA.121.17049
- Fournier A, Oprisiu-Fournier R, Serot JM, et al. Prevention of dementia by antihypertensive drugs: How AT1-receptor-blockers and dihydropyridines better prevent dementia in hypertensive patients than thiazides and ACE-inhibitors. Expert Rev Neurother. 2009;9(9):1413-1431. doi: 10.1586/ern.09.89
- Lithell H, Hansson L, Skoog I, et al. The study on cognition and prognosis in the elderly (SCOPE): Principal results of a randomized double-blind intervention trial. J Hypertens. 2003;21(5):875-886. doi: 10.1097/00004872-200305000-00011
- Deng Z, Jiang J, Wang J, et al. Angiotensin receptor blockers are associated with a lower risk of progression from mild cognitive impairment to dementia. Hypertension. 2022;79(10):2159-2169. doi: 10.1161/HYPERTENSIONAHA.122.19378
- Lüders S. Principal results of a prospective randomised controlled study: Morbidity and mortality after stroke - eprosartan compared with nitrendipine for secondary prevention (MOSES). J Renin Angiotensin Aldosterone Syst. 2005;6(1_Suppl):S12-S15. doi: 10.1177/14703203050060010401
- D’Silva E, Meor Azlan NF, Zhang J. Angiotensin II receptor blockers in the management of hypertension in preventing cognitive impairment and dementia-a systematic review. Pharmaceutics. 2022;14(10):2123. doi: 10.3390/pharmaceutics14102123
- Kehoe PG. The coming of age of the angiotensin hypothesis in alzheimer’s disease: Progress toward disease prevention and treatment? J Alzheimers Dis. 2018;62(3):1443-1466. doi: 10.3233/JAD-171119
- Kherada N, Heimowitz T, Rosendorff C. Antihypertensive therapies and cognitive function: A review. Curr Hypertens Rep. 2015;17(10):79. doi: 10.1007/s11906-015-0592-7
- Gouveia F, Camins A, Ettcheto M, et al. Targeting brain renin-angiotensin system for the prevention and treatment of alzheimer’s disease: Past, present and future. Ageing Res Rev. 2022;77:101612. doi: 10.1016/j.arr.2022.101612
- Yusuf S, Sleight P, Pogue J, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med. 2000;342(3):145-153. doi: 10.1056/NEJM200001203420301
- PROGRESS Collaborative Group. Randomised trial of a perindopril-based blood-pressure-lowering regimen among 6,105 individuals with previous stroke or transient ischaemic attack. Lancet. 2001;358(9287):1033-1041. doi: 10.1016/S0140-6736(01)06178-5
- Ciobica A, Bild W, Hritcu L, Haulica I. Brain renin-angiotensin system in cognitive function: Pre-clinical findings and implications for prevention and treatment of dementia. Acta Neurol Belg. 2009;109(3):171-180.
- Kaur P, Muthuraman A, Kaur M. The implications of angiotensin-converting enzymes and their modulators in neurodegenerative disorders: Current and future perspectives. ACS Chem Neurosci. 2015;6(4):508-521. doi: 10.1021/cn500363g
- Ababei DC, Bild V, Macadan I, et al. Therapeutic implications of renin-angiotensin system modulators in alzheimer’s dementia. Pharmaceutics. 2023;15(9):2290. doi: 10.3390/pharmaceutics15092290
- Rouch L, Cestac P, Hanon O, et al. Antihypertensive drugs, prevention of cognitive decline and dementia: A systematic review of observational studies, randomized controlled trials and meta-analyses, with discussion of potential mechanisms. CNS Drugs. 2015;29(2):113-130. doi: 10.1007/s40263-015-0230-6
- Beaman EE, Bonde AN, Larsen SMU, et al. Blood-brain barrier permeable β-blockers linked to lower risk of alzheimer’s disease in hypertension. Brain. 2023;146(3):1141-1151. doi: 10.1093/brain/awac076
- Holm H, Ricci F, Di Martino G, et al. Beta-blocker therapy and risk of vascular dementia: A population-based prospective study. Vascul Pharmacol. 2020;125-126:106649. doi: 10.1016/j.vph.2020.106649
- Cherubini A, Lowenthal DT, Paran E, Mecocci P, Williams LS, Senin U. Hypertension and cognitive function in the elderly. Dis Mon. 2010;56(3):106-147. doi: 10.1016/j.disamonth.2009.12.007
- Richards SS, Emsley CL, Roberts J, et al. The association between vascular risk factor-mediating medications and cognition and dementia diagnosis in a community-based sample of African-Americans. J Am Geriatr Soc. 2000;48(9):1035-1041. doi: 10.1111/j.1532-5415.2000.tb04777.x
- Cojocariu SA, Maștaleru A, Sascău RA, Stătescu C, Mitu F, Leon-Constantin MM. Neuropsychiatric consequences of lipophilic beta-blockers. Medicina (Kaunas). 2021;57(2):155. doi: 10.3390/medicina57020155
- Liampas I, Hatzimanolis A, Siokas V, et al. Antihypertensive medication class and the risk of dementia and cognitive decline in older adults: A secondary analysis of the prospective HELIAD cohort. J Alzheimers Dis. 2022;89(2):709-719. doi: 10.3233/JAD-220439
- Carnovale C, Perrotta C, Baldelli S, et al. Antihypertensive drugs and brain function: Mechanisms underlying therapeutically beneficial and harmful neuropsychiatric effects. Cardiovasc Res. 2023;119(3):647-667. doi: 10.1093/cvr/cvac110
- Tsukuda K, Mogi M, Li JM, et al. Diabetes-associated cognitive impairment is improved by a calcium channelblocker, nifedipine. Hypertension. 2008;51(2):528-533. doi: 10.1161/HYPERTENSIONAHA.107.101634
- Saravanaraman P, Chinnadurai RK, Boopathy R. Why calcium channel blockers could be an elite choice in the treatment of alzheimer’s disease: A comprehensive review of evidences. Rev Neurosci. 2014;25(2):231-246. doi: 10.1515/revneuro-2013-0056
- Yang Z, Lange F, Xia Y, et al. Nimodipine protects vascular and cognitive function in an animal model of cerebral small vessel disease. Stroke. 2024;55(7):1914-1922. doi: 10.1161/STROKEAHA.124.047154
- Hu Z, Wang L, Ma S, et al. Synergism of antihypertensives and cholinesterase inhibitors in alzheimer’s disease. Alzheimers Dement (N Y). 2018;4:542-555. doi: 10.1016/j.trci.2018.09.001
- Zhang XL, Zheng SL, Dong FR, Wang ZM. Nimodipine improves regional cerebral blood flow and suppresses inflammatory factors in the hippocampus of rats with vascular dementia. J Int Med Res. 2012;40(3):1036-1045. doi: 10.1177/147323001204000322
- Jeong HT, Sung HH, Lee JH, Park KY, Youn YC. Relationship between calcium channel blockers therapy and cognitive function improvement in cognitive decline patients with cerebrovascular disease. High Blood Press Cardiovasc Prev. 2022;29(6):595-600. doi: 10.1007/s40292-022-00538-1
- Li J, Xu S, Wang L, Wang X. 2-(4-methylthiazol-5-yl) ethyl nitrate hydrochloride ameliorates cognitive impairment via modulation of oxidative stress and nuclear factor kappa B (NF-κB) signaling pathway in chronic cerebral hypoperfusion-associated spontaneously hypertensive rats. Antioxidants (Basel). 2024;13(5):585. doi: 10.3390/antiox13050585
- Goodison WV, Frisardi V, Kehoe PG. Calcium channel blockers and alzheimer’s disease: Potential relevance in treatment strategies of metabolic syndrome. J Alzheimers Dis. 2012;30 Suppl 2:S269-282. doi: 10.3233/JAD-2012-111664
- Yang W, Luo H, Ma Y, Si S, Zhao H. Effects of antihypertensive drugs on cognitive function in elderly patients with hypertension: A review. Aging Dis. 2021;12(3):841-851. doi: 10.14336/AD.2020.1111
- Chalmers J, MacMahon S. PROGRESS in blood pressure control for the prevention of secondary stroke. Cerebrovasc Dis. 2021;50(6):617-621. doi: 10.1159/000518181
- Fogari R, Mugellini A, Zoppi A, et al. Effect of telmisartan/ hydrochlorothiazide vs lisinopril/hydrochlorothiazide combination on ambulatory blood pressure and cognitive function in elderly hypertensive patients. J Hum Hypertens. 2006;20(3):177-185. doi: 10.1038/sj.jhh.1001964
- Tarumi T, Patel NR, Tomoto T, et al. Aerobic exercise training and neurocognitive function in cognitively normal older adults: A one-year randomized controlled trial. J Intern Med. 2022;292(5):788-803. doi: 10.1111/joim.13534
- Voelcker-Rehage C, Niemann C. Structural and functional brain changes related to different types of physical activity across the life span. Neurosci Biobehav Rev. 2013;37(9 Pt B):2268-2295. doi: 10.1016/j.neubiorev.2013.01.028
- Kelly ÁM. Exercise-induced modulation of neuroinflammation in models of alzheimer’s disease. Brain Plast. 2018;4(1):81-94. doi: 10.3233/BPL-180074
- Northey JM, Cherbuin N, Pumpa KL, Smee DJ, Rattray B. Exercise interventions for cognitive function in adults older than 50: A systematic review with meta-analysis. Br J Sports Med. 2018;52(3):154-160. doi: 10.1136/bjsports-2016-096587
- Toval A, Solis-Urra P, Bakker EA, et al. Exercise and brain health in patients with coronary artery disease: Study protocol for the HEART-BRAIN randomized controlled trial. Front Aging Neurosci. 2024;16:1437567. doi: 10.3389/fnagi.2024.1437567
- Erickson KI, Gildengers AG, Butters MA. Physical activity and brain plasticity in late adulthood. Dialogues Clin Neurosci. 2013;15(1):99-108. doi: 10.31887/DCNS.2013.15.1/kerickson
- Treble-Barna A, Petersen BA, Stec Z, Conley YP, Fink EL, Kochanek PM. Brain-derived neurotrophic factor in pediatric acquired brain injury and recovery. Biomolecules. 2024;14(2):191. doi: 10.3390/biom14020191
- Codd LN, Blackmore DG, Vukovic J, Bartlett PF. Exercise reverses learning deficits induced by hippocampal injury by promoting neurogenesis. Sci Rep. 2020;10(1):19269. doi: 10.1038/s41598-020-76176-1
- Kuznetsova E, Schliebs R. β-amyloid, cholinergic transmission, and cerebrovascular system -- a developmental study in a mouse model of alzheimer’s disease. Curr Pharm Des. 2013;19(38):6749-6765. doi: 10.2174/13816128113199990711
- Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends Neurosci. 2007;30(9):464-472. doi: 10.1016/j.tins.2007.06.011
- Chapman SB, Aslan S, Spence JS, et al. Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging. Front Aging Neurosci. 2013;5:75. doi: 10.3389/fnagi.2013.00075
- Thomas AG, Dennis A, Rawlings NB, et al. Multi-modal characterization of rapid anterior hippocampal volume increase associated with aerobic exercise. Neuroimage. 2016;131:162-170. doi: 10.1016/j.neuroimage.2015.10.090
- Da Scheffer DL, Latini A. Exercise-induced immune system response: Anti-inflammatory status on peripheral and central organs. Biochim Biophys Acta Mol Basis Dis. 2020;1866(10):165823. doi: 10.1016/j.bbadis.2020.165823
- Ribarič S. Physical exercise, a potential non-pharmacological intervention for attenuating neuroinflammation and cognitive decline in alzheimer’s disease patients. Int J Mol Sci. 2022;23(6):3245. doi: 10.3390/ijms23063245
- Cagigas ML, De Ciutiis I, Masedunskas A, Fontana L. Dietary and pharmacological energy restriction and exercise for healthspan extension. Trends Endocrinol Metab. 2025;36(6):521-545. doi: 10.1016/j.tem.2025.04.001
- Wen H, Wang L. Reducing effect of aerobic exercise on blood pressure of essential hypertensive patients: A meta-analysis. Medicine (Baltimore). 2017;96(11):e6150. doi: 10.1097/MD.0000000000006150
- Saco-Ledo G, Valenzuela PL, Ruiz-Hurtado G, Ruilope LM, Lucia A. Exercise reduces ambulatory blood pressure in patients with hypertension: A systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2020;9(24):e018487. doi: 10.1161/JAHA.120.018487
- Gayda M, Gremeaux V, Bherer L, et al. Cognitive function in patients with stable coronary heart disease: Related cerebrovascular and cardiovascular responses. PLoS One. 2017;12(9):e0183791. doi: 10.1371/journal.pone.0183791
- Lefferts WK, DeBlois JP, White CN, Heffernan KS. Effects of acute aerobic exercise on cognition and constructs of decision-making in adults with and without hypertension. Front Aging Neurosci. 2019;11:41. doi: 10.3389/fnagi.2019.00041
- Enette L, Vogel T, Merle S, et al. Effect of 9 weeks continuous vs. interval aerobic training on plasma BDNF levels, aerobic fitness, cognitive capacity and quality of life among seniors with mild to moderate alzheimer’s disease: A randomized controlled trial. Eur Rev Aging Phys Act. 2020;17:2. doi: 10.1186/s11556-019-0234-1
- Arboix A. Lacunar infarct and cognitive decline. Expert Rev Neurother. 2011;11(9):1251-1254. doi: 10.1586/ern.11.118
- Arboix A. Arterial hypertension, cerebrovascular diseases and dementia. World J Hypertens. 2011;1(1):7-9. doi: 10.5494/wjh.v1.i1.7