AccScience Publishing / BH / Online First / DOI: 10.36922/BH025150019
COMMENTARY

Map3k3I441M knock-in mouse model of cerebral cavernous malformations

Cheng Lv1 Ruofei Li1 Liang Yu1 Yibo Wang1*
Show Less
1 State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
Brain & Heart, 025150019 https://doi.org/10.36922/BH025150019
Received: 11 April 2025 | Revised: 22 June 2025 | Accepted: 8 July 2025 | Published online: 13 August 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The Map3k3I441M knock-in mouse model reveals an age-dependent mechanism in cerebral cavernous malformation (CCM) pathogenesis, wherein PI3K pathway activation is required for lesion formation in adults but not juveniles. Notably, rapamycin treatment effectively inhibited lesions across age groups, underscoring mammalian target of rapamycin (mTOR) inhibition as a potential therapy. This commentary highlights mechanistic insights from the Map3k3I441M knock-in mouse model, emphasizing the age-dependent role of PI3K signaling in CCM formation. It discusses the potential synergy between MAP3K3 and PIK3CA mutations, explores the therapeutic potential of mTOR inhibition, and considers the potential influence of pre-conceptional environmental exposures on CCM susceptibility.

Keywords
Cerebral cavernous malformations
Map3k3 mutation
Mouse model
Funding
This study was supported by the Chinese Academy of Medical Sciences, Innovation Fund for Medical Sciences (grants no.: 2023-CXGC-SYS01-2 and 2021-I2M-1-016), National Natural Science Foundation of China (grant no.:82470450), the National High Level Hospital Clinical Research Funding Grant (grant no.:2025-GSP-GG-29), and the State Key Laboratory of Cardiovascular Disease.
Conflict of interest
Yibo Wang is an Editorial Board Member of this journal, but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Morris Z, Whiteley WN, Longstreth WT. Jr., et al. Incidental findings on brain magnetic resonance imaging: Systematic review and meta-analysis. BMJ. 2009;339:b3016. doi: 10.1136/bmj.b3016

 

  1. Al-Holou WN, O’Lynnger TM, Pandey AS, et al. Natural history and imaging prevalence of cavernous malformations in children and young adults. J Neurosurg Pediatr. 2012;9(2):198-205. doi: 10.3171/2011.11.peds11390

 

  1. Hong T, Xiao X, Ren J, et al. Somatic MAP3K3 and PIK3CA mutations in sporadic cerebral and spinal cord cavernous malformations. Brain. 2021;144(9):2648-2658. doi: 10.1093/brain/awab117

 

  1. Smith ER. Cavernous malformations of the central nervous system. N Engl J Med. 2024;390(11):1022-1028. doi: 10.1056/NEJMra2305116

 

  1. Xu H, Yang Y, Zhou Q, et al. Map3k3 I441M knock-in mouse model of cerebral cavernous malformations. Stroke. 2025;56(4):1010-1025. doi: 10.1161/STROKEAHA.124.049935

 

  1. Weng J, Yang Y, Song D, et al. Somatic MAP3K3 mutation defines a subclass of cerebral cavernous malformation. Am J Hum Genet. 2021;108(5):942-950. doi: 10.1016/j.ajhg.2021.04.005

 

  1. Ren J, Xiao X, Li R, et al. Single-cell sequencing reveals that endothelial cells, EndMT cells and mural cells contribute to the pathogenesis of cavernous malformations. Exp Mol Med. 2023;55(3):628-642. doi: 10.1038/s12276-023-00962-w

 

  1. Huo R, Yang Y, Sun Y, et al. Endothelial hyperactivation of mutant MAP3K3 induces cerebral cavernous malformation enhanced by PIK3CA GOF mutation. Angiogenesis. 2023;26(2):295-312. doi: 10.1007/s10456-023-09866-9

 

  1. Ren J, Huang Y, Ren Y, et al. Somatic variants of MAP3K3 are sufficient to cause cerebral and spinal cord cavernous malformations. Brain. 2023;146(9):3634-3647. doi: 10.1093/brain/awad104

 

  1. Singh R, Lucke-Wold B, Gyure K, Boo S. A review of vascular abnormalities of the spine. Ann Vasc Med Res. 2016;3(4):1045.

 

  1. Turner RC, Lucke-Wold BP, Josiah D, et al. Stereotactic radiosurgery planning based on time-resolved CTA for arteriovenous malformation: A case report and review of the literature. Acta Neurochir (Wien). 2016;158(8): 1555-1562. doi: 10.1007/s00701-016-2874-5

 

  1. Zhou Z, Tang AT, Wong WY, et al. Cerebral cavernous malformations arise from endothelial gain of MEKK3- KLF2/4 signalling. Nature. 2016;532(7597):122-126. doi: 10.1038/nature17178

 

  1. Ren AA, Snellings DA, Su YS, et al. PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism. Nature. 2021;594(7862):271-276. doi: 10.1038/s41586-021-03562-8

 

  1. Li R, Tang Y, Wang H, et al. Local DIO2 Elevation is an adaption in malformed cerebrovasculature. Circ Res. 2025;136:1010-1027. doi: 10.1161/CIRCRESAHA.124.325857

 

  1. Choi JP, Wang R, Yang X, et al. Ponatinib (AP24534) inhibits MEKK3-KLF signaling and prevents formation and progression of cerebral cavernous malformations. Sci Adv. 2018;4(11):eaau0731. doi: 10.1126/sciadv.aau0731

 

  1. Giannubilo SR, Marzioni D, Tossetta G, Montironi R, Meccariello ML, Ciavattini A. The “Bad Father”: Paternal role in biology of pregnancy and in birth outcome. Biology (Basel). 2024;13(3):165. doi: 10.3390/biology13030165
Share
Back to top
Brain & Heart, Electronic ISSN: 2972-4139 Published by AccScience Publishing