AccScience Publishing / BH / Online First / DOI: 10.36922/bh.3503
ORIGINAL RESEARCH ARTICLE

Rapid assessment of cardiac autonomic modulation and adaptive stress responses: Automatic calculation of time-varying parasympathetic, sympathetic, and Baevsky stress indexes

Donatella Brisinda1,2,3†* Marco Picerni3 Peter Fenici1,3 Riccardo Fenici3†*
Show Less
1 Catholic University of Sacred Heart, Faculty of School of Medicine and Surgery, Rome, Italy
2 Department of Ageing, Neurosciences, Head-Neck, and Orthopaedics Sciences. Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
3 Biomagnetism and Clinical Physiology International Center, Associazione Biomagnetismo Sport Serenità e Salute, Rome, Italy
Brain & Heart 2024, 2(4), 3503 https://doi.org/10.36922/bh.3503
Submitted: 25 April 2024 | Accepted: 26 August 2024 | Published: 9 October 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Cardiac autonomic modulation (CAM), which is regulated by the balance between the sympathetic and parasympathetic nervous systems, is involved in various physiological and pathological conditions. Heart rate variability (HRV) analysis has been used to explore the complex relationship between the brain and heart, as described by Porges’ polyvagal theory and Thayer’s neurovisceral integration model. Recently, an automated calculation of new parasympathetic, sympathetic, and Baevsky stress indexes based on HRV parameters has been introduced for faster and more comprehensive CAM assessment, though their normal ranges remain undefined. This study aimed to determine the average values of these indexes in a healthy population of different ages during rest, daily activities, non-rapid eye movement sleep, graded physical effort, and acute psychophysiological stress. At rest, the parasympathetic and sympathetic indexes were consistently within the proposed normal range and inversely related. However, Baevsky stress index values from Kubios were higher than expected, conflicting with the assumption that they are simply the square root of those calculated using the original formula. Despite this, time-varying assessment of all indexes can provide valuable insights into CAM adaptation during physical effort and acute psychophysiological stress in real-world critical situations. Notably, our novel finding shows that the inverse correlation between parasympathetic and sympathetic/stress indexes under stress is better explained by non-linear functions, offering a potential new measure of brain–heart interaction during real-life critical events.

Keywords
Heart rate variability
Autonomic nervous system
Sympathetic nervous system
Parasympathetic nervous system
Baevsky stress index
Psychophysiological stress
Funding
None.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Levy MN. Autonomic interactions in cardiac control. Ann N Y Acad Sci. 1990;601:209-221. doi: 10.1111/j.1749-6632.1990.tb37302.x

 

  1. Kleiger RE, Miller JP, Bigger JT Jr., Moss AJ. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987;59(4):256-262. doi: 10.1016/0002-9149(87)90795-8

 

  1. Parin VV, Baevsky RM, Gazenko OG. Heart and circulation under space conditions. Cor Vasa. 1965;7:165-184.

 

  1. Malik M. Guidelines heart rate variability. Eur Heart J. 1996;17:354-381. doi: 10.1161/01.CIR.93.5.1043

 

  1. Ernst G. Heart-rate variability-more than heart beats? Front Public Heal. 2017;5:240. doi: 10.3389/fpubh.2017.00240

 

  1. Pagani M, Lombardi F, Guzzetti S, et al. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res. 1986;59(2):178-193.

 

  1. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991;84(2):482-492. doi: 10.1161/01.cir.84.2.482

 

  1. Eckberg DL. Sympathovagal balance: A critical appraisal. Circulation. 1997;96(9):3224-3232. doi: 10.1161/01.cir.96.9.3224

 

  1. Umetani K, Singer DH, McCraty R, Atkinson M. Twenty-four hour time domain heart rate variability and heart rate: Relations to age and gender over nine decades. J Am Coll Cardiol. 1998;31(3):593-601. doi: 10.1016/s0735-1097(97)00554-8

 

  1. Jäncke L, Mérillat S, Liem F, Hänggi J. Brain size, sex, and the aging brain. Hum Brain Mapp. 2015;36(1):150-169. doi: 10.1002/hbm.22619

 

  1. Gribbin B, Pickering TG, Sleight P, Peto R. Effect of age and high blood pressure on baroreflex sensitivity in man. Circ Res. 1971;29(4):424-431. doi: 10.1161/01.res.29.4.424

 

  1. Voss A, Schroeder R, Heitmann A, Peters A, Perz S. Short-term heart rate variability--influence of gender and age in healthy subjects. PLoS One. 2015;10(3):e0118308. doi: 10.1371/journal.pone.0118308

 

  1. Batchinsky AI, Cooke WH, Kuusela T, Cancio LC. Loss of complexity characterizes the heart rate response to experimental hemorrhagic shock in swine. Crit Care Med. 2007;35(2):519-525. doi: 10.1097/01.CCM.0000254065.44990.77

 

  1. Werdan K, Schmidt H, Ebelt H, et al. Impaired regulation of cardiac function in sepsis, SIRS, and MODS. Can J Physiol Pharmacol. 2009;87(4):266-274. doi: 10.1139/Y09-012

 

  1. Signorini MG, Ferrario M, Marchetti M, Marseglia A. Nonlinear analysis of heart rate variability signal for the characterization of cardiac heart failure patients. Conf Proc IEEE Eng Med Biol Soc. 2006;2006:3431-3434. doi: 10.1109/IEMBS.2006.259744

 

  1. Perkiömäki JS, Hämekoski S, Junttila MJ, Jokinen V, Tapanainen J, Huikuri HV. Predictors of long-term risk for heart failure hospitalization after acute myocardial infarction. Ann Noninvasive Electrocardiol. 2010;15(3):250-258. doi: 10.1111/j.1542-474X.2010.00372.x

 

  1. Morris JA Jr., Norris PR, Waitman LR, Ozdas A, Guillamondegui OD, Jenkins JM. Adrenal insufficiency, heart rate variability, and complex biologic systems: A study of 1,871 critically ill trauma patients. J Am Coll Surg. 2007;204(5):883-885. doi: 10.1016/j.jamcollsurg.2007.01.019

 

  1. Ryan ML, Ogilvie MP, Pereira BM, et al. Heart rate variability is an independent predictor of morbidity and mortality in hemodynamically stable trauma patients. J Trauma Acute Care Surg. 2011;70(6):1371-1380. doi: 10.1097/TA.0b013e31821858e6

 

  1. Taylor JA, Carr DL, Myers CW, Eckberg DL. Mechanisms underlying very-low-frequency RR-interval oscillations in humans. Circulation. 1998;98(6):547-555. doi: 10.1161/01.CIR.98.6.547

 

  1. Usui H, Nishida Y. The very low-frequency band of heart rate variability represents the slow recovery component after a mental stress task. PLoS One. 2017;12:e0182611. doi: 10.5061/dryad.7

 

  1. Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Front Psychol. 2014;5:1040. doi: 10.3389/fpsyg.2014.01040

 

  1. Goldberger AL. Fractal variability versus pathologic periodicity: Complexity loss and stereotypy in disease. Perspect Biol Med. 1997;40(4):543-561. doi: 10.1353/pbm.1997.0063

 

  1. Porges SW. The polyvagal theory: New insights into adaptive reactions of the autonomic nervous system. Cleve Clin J Med. 2009;76(Suppl 2):S86-S90. doi: 10.3949/ccjm.76.s2.17

 

  1. Porges SW. Orienting in a defensive world: Mammalian modifications of our evolutionary heritage. A polyvagal theory. Psychophysiology. 1995;32(4):301-318. doi: 10.1111/j.1469-8986.1995.tb01213.x

 

  1. Wacker J, Heldmann M, Stemmler G. Separating emotion and motivational direction in fear and anger: Effects on frontal asymmetry. Emotion. 2003;3(2):167-193. doi: 10.1037/1528-3542.3.2.167

 

  1. Stemmler G, Aue T, Wacker J. Anger and fear: Separable effects of emotion and motivational direction on somatovisceral responses. Int J Psychophysiol. 2007;66(2):141-153. doi: 10.1016/j.ijpsycho.2007.03.019

 

  1. Thayer JF, Lane RD. A model of neurovisceral integration in emotion regulation and dysregulation. J Affect Disord. 2000;61(3):201-216. doi: 10.1016/S0165-0327(00)00338-4

 

  1. Thayer JF, Åhs F, Fredrikson M, Sollers JJ 3rd, Wager TD. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev. 2012;36(2):747-756. doi: 10.1016/j.neubiorev.2011.11.009

 

  1. Smith R, Thayer JF, Khalsa SS, Lane RD. The hierarchical basis of neurovisceral integration. Neurosci Biobehav Rev. 2017;75:274-296. doi: 10.1016/j.neubiorev.2017.02.003

 

  1. Kim HG, Cheon EJ, Bai DS, Lee YH, Koo BH. Stress and heart rate variability: A meta-analysis and review of the literature. Psychiatry Investig. 2018;15(3):235-245. doi: 10.30773/pi.2017.08.17

 

  1. Richman JS, Moorman JR. Physiological time-series analysis using approximate and sample entropy. Am J Physiol Hear Circ Physiol. 2000;278(6 47-6):2039-2049. doi: 10.1152/ajpheart.2000.278.6.h2039

 

  1. Eckmann JP, Oliffson Kamphorst S, Ruelle D. Recurrence plots of dynamical systems. Europhys Lett. 1987;4:973-977. doi: 10.1209/0295-5075/4/9/004

 

  1. Melillo P, Bracale M, Pecchia L. Nonlinear heart rate variability features for real-life stress detection. Case study: Students under stress due to university examination. Biomed Eng Online. 2011;10(1):96. doi: 10.1186/1475-925X-10-96

 

  1. Brisinda D, Di Florio E, Savorgnan C, et al. Clinical validation of a novel wearable system for real-time telemetric transmission of transient changes of cardiac autonomic modulation induced by psychophysiological and physical stress. Eur Heart J. 2020;41(Suppl 2):ehaa946.3476. doi: 10.1093/ehjci/ehaa946.3476

 

  1. Fenici R, Brisinda D, Sorbo AR. Methods for real-time assessment of operational stress during realistic police tactical training. In: Kitaeff J, editor. Handbook of Police Psychology. England: Routledge/Taylor and Francis Group; 2011. p. 295-319. doi: 10.4324/9780203836170

 

  1. Brisinda D, Venuti A, Cataldi C, Efremov K, Intorno E, Fenici R. Real-time imaging of stress-induced cardiac autonomic adaptation during realistic force-on-force police scenarios. J Police Crim Psychol. 2015;30(2):71-86. doi: 10.1007/s11896-014-9142-5

 

  1. Brisinda D, Fioravanti F, Sorbo AR, Venuti A, Fenici R. Psychophysiological assessment of acute stress induced by high-pressure law-enforcement driving : A pilot study. Psychol Soc Behav Res. 2015;2(3):36-50. doi: 10.12966/psbr.06.03.2015

 

  1. Affani A, Zontone P, Fenici R, et al. Assisted/Autonomous vs. Human Driving Assessment on the DiM driving Simulator using Objective/Subjective Characterization. In: Pfeffer PE, editor. 10th International Munich Chassis Symposium 2019. Wiesbaden: Springer Fachmedien; 2020. p. 307-321. doi: 10.1007/978-3-658-26435-2_23

 

  1. Bateni P, Sigal L. Real-Time Monitoring of User Stress, Heart Rate and Heart rATE Variability on Mobile Devices [Preprint]; 2022. doi: 10.48550/arXiv.2210.01791

 

  1. Tarvainen MP, Lipponen J, Niskanen JP, Ranta-aho PO. Kubios HRV Software USER’S GUIDE; 2021. p. 4-39. Available from: https://www.kubios.com/downloads/ kubios_hrv_users_guide.pdf [Last accessed on 2024 Oct 07].

 

  1. Nunan D, Sandercock GR, Brodie DA. A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. Pacing Clin Electrophysiol. 2010;33(11):1407-1417. doi: 10.1111/j.1540-8159.2010.02841.x

 

  1. Brennan M, Palaniswami M, Kamen P. Do existing measures of Poincaré plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Biomed Eng. 2001;48(11):1342-1347. doi: 10.1109/10.959330

 

  1. Baevsky RM, Berseneva AP. Methodical Recommendations- Use Kardivar System for Determination of the Stress Level and Estimation of the Body Adaptability-Standards of Measurements and Physiological Interpretation; Moscow; 2008. Available online: https://www.academia. edu/35296847/methodical_recommendations_use_ kardivar_system_for_determination_of_the_stress_level_ and_estimation_of_the_body_adaptability_standards_ of_measurements_and_physiological_interpretation_ moscow_prague_2008?auto=download [Last accessed on 2024 Oct 07].

 

  1. Baevsky RМ, Chernikova AG. Heart rate variability analysis: Physiological foundations and main methods. Cardiometry. 2017;(10):66-76. doi: 10.12710/cardiometry.2017.10.6676

 

  1. Sahoo TK, Mahapatra A, Ruban N. Stress Index Calculation and Analysis Based on Heart Rate Variability of ECG Signal with Arrhythmia. 2019 Innovations in Power and Advanced Computing Technologies (i-PACT); 2019. p. 1-7.

 

  1. Ali MK, Liu L, Chen JH, Huizinga JD. Optimizing autonomic function analysis via heart rate variability associated with motor activity of the human colon. Front Physiol. 2021;12:619722. doi: 10.3389/fphys.2021.619722

 

  1. World Medical Association. World medical association declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 1974;353(1):1418-1419. doi: 10.1001/jama.2013.281053

 

  1. Lee SG, Song Y Do, Lee EC. Experimental verification of the possibility of reducing photoplethysmography measurement time for stress index calculation. Sensors (Basel). 2023;23(12):5511. doi: 10.3390/s23125511

 

  1. Grasso R, Schena F, Gulli G, Cevese A. Does low-frequency variability of heart period reflect a specific parasympathetic mechanism? J Auton Nerv Syst. 1997;63(1-2):30-38. doi: 10.1016/s0165-1838(96)00128-2

 

  1. Perlitz V, Lambertz M, Cotuk B, et al. Cardiovascular rhythms in the 0.15-Hz band: Common origin of identical phenomena in man and dog in the reticular formation of the brain stem? Pflugers Arch. 2004;448(6):579-591. doi: 10.1007/s00424-004-1291-4

 

  1. Brisinda D, Fenici P, Fenici R. Police Realistic tactical training is not risk-free: Stress-induced wide-QRS paroxysmal tachyarrhythmia in a healthy police officer and professional athlete. J Police Crim Psychol. 2024;39(1):93-103. doi: 10.1007/s11896-023-09616-z

 

  1. Armour JA. Potential clinical relevance of the “little brain” on the mammalian heart. Exp Physiol. 2008;93(2):165-176. doi: 10.1113/expphysiol.2007.041178

 

  1. Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Heal. 2017;5:258. doi: 10.3389/fpubh.2017.00258

 

  1. Porges SW. Polyvagal theory: A science of safety. Front Integr Neurosci. 2022;16:871227. doi: 10.3389/fnint.2022.871227

 

  1. Laborde S, Mosley E, Thayer JF. Heart rate variability and cardiac vagal tone in psychophysiological research-recommendations for experiment planning, data analysis, and data reporting. Front Psychol. 2017;8:213. doi: 10.3389/fpsyg.2017.00213

 

  1. Amira T, Dan I, Atta B, Said G, Azeddine B, Katarzyna WW. Stress level classification using heart rate variability. Adv Sci Technol Eng Syst. 2019;4(3):38-46. doi: 10.25046/aj040306
Share
Back to top
Brain & Heart, Electronic ISSN: 2972-4139 Published by AccScience Publishing