AccScience Publishing / ARNM / Online First / DOI: 10.36922/ARNM025070006
REVIEW ARTICLE

Bidirectional regulatory mechanisms of lipids and radiotherapy: Metabolic disorders, therapeutic interventions, and pan-cancer clinical insights

Jinxia Wu1 Jiahua Lyu2*
Show Less
1 School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
2 Department of Radiotherapy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
Submitted: 10 February 2025 | Revised: 28 March 2025 | Accepted: 2 April 2025 | Published: 15 April 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Malignant tumors continue to pose a significant threat to global health. Emerging evidence suggests that abnormal blood lipid levels may influence tumor incidence, and cancer patients frequently exhibit dysregulated lipid profiles. Radiotherapy, a cornerstone in cancer treatment, has been demonstrated to modulate blood lipid levels in patients. Conversely, blood lipid concentrations can significantly impact the efficacy of radiotherapy and the incidence of associated complications. This comprehensive review delves into cutting-edge research illuminating the intricate bidirectional interplay between blood lipid profiles and radiotherapy efficacy in malignant tumor patients. At the same time, it investigates the promising potential of tailored dietary modulation strategies and novel lipid-lowering therapeutics to enhance treatment efficacy and patient prognosis.

Keywords
Radiotherapy
Blood lipids
Cancer
Lipid metabolism
Therapeutic efficacy
Funding
This work was supported by the Natural Science Foundation of Sichuan Province (Grant No. 2023NSFSC0712).
Conflict of interest
Jiahua Lyu is an Editorial Board Member of this journal but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, the other author declares no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. De Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. Lancet Glob Health. 2020;8(2):e180-e190. doi: 10.1016/S2214-109X(19)30488-7

 

  1. Zhang X, Yang L, Liu S, et al. Interpretation on the report of global cancer statistics 2022. Zhonghua Zhong Liu Za Zhi. 2024;46(7):710-721. doi: 10.3760/cma.j.cn112152-20240416-00152

 

  1. Kumar V, Singh A, Sidhu DS, Panag KM. A comparitive study to evaluate the role of serum lipid levels in aetiology of carcinoma breast. J Clin Diagn Res. 2015;9:PC01-PC03. doi: 10.7860/JCDR/2015/12273.5563

 

  1. Yilin Yu, Yu J, Ge S, Su Y, Fan X. Novel insight into metabolic reprogrammming in cancer radioresistance: A promising therapeutic target in radiotherapy. Int J Biol Sci. 2023;19(3):811-828. doi: 10.7150/ijbs.79928

 

  1. Arboleda LP, De Carvalho GB, Santos-Silva AR, et al. Squamous cell carcinoma of the oral cavity, oropharynx, and larynx: A scoping review of treatment guidelines worldwide. Cancers (Basel). 2023;15(17):4405. doi: 10.3390/cancers15174405

 

  1. Matos LL, Kowalski LP, Chaves ALF, et al. Latin American consensus on the treatment of head and neck cancer. JCO Glob Oncol. 2024;10:e2300343. doi: 10.1200/GO.23.00343

 

  1. Jelonek K, Krzywon A, Jablonska P, et al. Systemic effects of radiotherapy and concurrent chemo-radiotherapy in head and neck cancer patients-comparison of serum metabolome profiles. Metabolites. 2020;10(2):60. doi: 10.3390/metabo10020060

 

  1. Jelonek K, Krzywon A, Papaj K, et al. Dose-dependence of radiotherapy-induced changes in serum levels of choline-containing phospholipids; The importance of lower doses delivered to large volumes of normal tissues. Strahlenther Onkol. 2021;197(10):926-934. doi: 10.1007/s00066-021-01802-4

 

  1. LePechoux C, Faivre-Finn C, Ramella S, et al. ESTRO ACROP guidelines for target volume definition in the thoracic radiation treatment of small cell lung cancer. Radiother Oncol. 2020;152:89-95. doi: 10.1016/j.radonc.2020.07.012

 

  1. Tang X, Chen H, Chen G, et al. Validated LC-MS/MS method of sphingosine 1-phosphate quantification in human serum for evaluation of response to radiotherapy in lung cancer. Thorac Cancer. 2020;11(6):1443-1452. doi: 10.1111/1759-7714.13409

 

  1. Minghe LV, Shao S, Du Y, Zhuang X, Wang X, Qiao T. Plasma lipidomics profiling to identify the biomarkers of diagnosis and radiotherapy response for advanced non-small-cell lung cancer patients. J Lipids. 2024;2024:6730504. doi: 10.1155/2024/6730504

 

  1. Han D, Dong J, Wang Q, et al. Neoadjuvant radiation target volume definition in esophageal squamous cell cancer: A multicenter recommendations from Chinese experts. BMC Cancer. 2024;24(1):1086. doi: 10.1186/s12885-024-12825-2

 

  1. Zemanova M, Vecka M, Petruželka L, Staňková B, Žák A, Zeman M. Plasma phosphatidylcholines fatty acids in men with squamous cell esophageal cancer: Chemoradiotherapy improves abnormal profile. Med Sci Monit. 2016;22:4092-4099. doi: 10.12659/MSM.896799

 

  1. Buskwofie A, David-West G, Clare CA. A review of cervical cancer: Incidence and disparities. J Natl Med Assoc. 2020;112:229-32. doi: 10.1016/j.jnma.2020.03.002

 

  1. Xu X, Ping P, Zhang Z, Zou L. Plasma free fatty acid levels in cervical cancer: Concurrent chemoradiotherapy improves abnormal profile. Front Pharmacol. 2024;15:1352101. doi: 10.3389/fphar.2024.1352101

 

  1. Ganesan P, Kulik LM. Hepatocellular carcinoma: New developments. Clin Liver Dis. 2023;27(1):85-102. doi: 10.1016/j.cld.2022.08.004

 

  1. Sylvia SW, Jang GH, Kurland IJ, Qiu Y, Guha C, Dawson LA. Plasma metabolomic profiles in liver cancer patients following stereotactic body radiotherapy. EBioMedicine. 2020;59:102973. doi: 10.1016/j.ebiom.2020.102973

 

  1. Wolny-Rokicka E, Tukiendorf A, Wydmański J, Brzezniakiewicz-Janus K, Zembroń-Łacny A. The effect of radiotherapy on the concentration of plasma lipids in elderly prostate cancer patients. Am J Mens Health. 2019;13(2):1557988319846328. doi: 10.1177/1557988319846328

 

  1. Shaikh S, Channa NA, Talpur FN, Younis M, Tabassum N. Radiotherapy improves serum fatty acids and lipid profile in breast cancer. Lipids Health Dis. 2017;16(1):92. doi: 10.1186/s12944-017-0481-y

 

  1. Giskeødegård GF, Madssen TS, Sangermani M, et al. Longitudinal changes in circulating metabolites and lipoproteins after breast cancer treatment. Front Oncol. 2022;12:919522. doi: 10.3389/fonc.2022.919522

 

  1. Huang F, Li S, Wang X, et al. Serum lipids concentration on prognosis of high-grade glioma. Cancer Causes Control. 2023;34(9):801-811. doi: 10.1007/s10552-023-01710-1

 

  1. Wang, CT, Chen MY, Guo X, et al. Association between pretreatment serum high-density lipoprotein cholesterol and treatment outcomes in patients with locoregionally advanced nasopharyngeal carcinoma treated with chemoradiotherapy: Findings from a randomised trial. J Cancer. 2019;10(16):3618-3623. doi: 10.7150/jca.32621

 

  1. Zhang J, Shang S, Wang F, et al. The baseline serum lipid levels and outcomes of NSCLC patients receiving immunotherapy combined or non-combined with radiotherapy: A single center retrospective study. Int J Radiat Oncol Biol Phys. 2023;117(2 Suppl):e11. doi: 10.1016/j.ijrobp.2023.06.670

 

  1. Harima Y, Ariga T, Kaneyasu Y, et al. Clinical value of serum biomarkers, squamous cell carcinoma antigen and apolipoprotein C-II in follow-up of patients with locally advanced cervical squamous cell carcinoma treated with radiation: A multicenter prospective cohort study. PLoS One. 2021;16(11):e0259235. doi: 10.1371/journal.pone.0259235

 

  1. Guo SP, Chen C, Zeng ZF, et al. Serum apolipoprotein a-I predicts response of rectal cancer to neoadjuvant chemoradiotherapy. Cancer Manag Res. 2021;13:2623-2631. doi: 10.2147/CMAR.S302677

 

  1. Jung E, Kong SY, Ro YS, Ryu HH, Shin SD. Serum cholesterol levels and risk of cardiovascular death: A systematic review and a dose-response meta-analysis of prospective cohort studies. Int J Environ Res Public Health. 2022;19(14):8272. doi: 10.3390/ijerph19148272

 

  1. Goldberg JF, Hyun G, Ness KK, et al. Dyslipidemia and cardiovascular disease among childhood cancer survivors: A St. Jude lifetime cohort report. J Natl Cancer Inst. 2024;116(3):408-420. doi: 10.1093/jnci/djad222

 

  1. Cheng YW, Chen CH, Yeh SJ, et al. Association between modifiable vascular risk factors and rapid progression of postradiation carotid artery stenosis. J Chin Med Assoc. 2023;86(7):627-632. doi: 10.1097/JCMA.0000000000000936

 

  1. Wang X, Palaskas NL, Hobbs BP, et al. The impact of radiation dose to heart substructures on major coronary events and patient survival after chemoradiation therapy for esophageal cancer. Cancers (Basel). 2022;14(5):1304. doi: 10.3390/cancers14051304

 

  1. He Y, Qi S, Chen L, et al. The roles and mechanisms of SREBP1 in cancer development and drug response. Genes Dis. 2024;11(4):100987. doi: 10.1016/j.gendis.2023.04.022

 

  1. Mousavikia SN, Darvish L, Firouzjaei AA, Toossi MTB, Azimian H. PI3K/AKT/mTOR targeting in colorectal cancer radiotherapy: A systematic review. J Gastrointest Cancer. 2025;56(1):52. doi: 10.1007/s12029-024-01160-1

 

  1. Li P, Cui Y, Hu K, Wang X, Yu Y. Silencing APLNR enhances the radiosensitivity of prostate cancer by modulating the PI3K/AKT/mTOR signaling pathway. Clin Transl Oncol. 2024. doi: 10.1007/s12094-024-03692-1

 

  1. Jin Y, Chen Z, Dong J, et al. SREBP1/FASN/cholesterol axis facilitates radioresistance in colorectal cancer. FEBS Open Bio. 2021;11(5):1343-1352. doi: 10.1002/2211-5463.13137

 

  1. Lei G, Mao C, Yan Y, Zhuang L, Gan B. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell. 2021;12(11):836-857. doi: 10.1007/s13238-021-00841-y

 

  1. Tao X, Zhou Q, Rao Z. Efficacy of ω-3 polyunsaturated fatty acids in patients with lung cancer undergoing radiotherapy and chemotherapy: A meta-analysis. Int J Clin Pract. 2022;2022:6564466. doi: 10.1155/2022/6564466

 

  1. Polański J, Świątoniowska-Lonc N, Kołaczyńska S, Chabowski M. Diet as a factor supporting lung cancer treatment-a systematic review. Nutrients. 2023;15(6):1477. doi: 10.3390/nu15061477

 

  1. Lin CY, Chang CL, Lin KC, et al. Statin use reduces radiation-induced stroke risk in advanced nasopharyngeal carcinoma patients. Radiother Oncol. 2024;191:110067. doi: 10.1016/j.radonc.2023.110067

 

  1. Addison D, Lawler PR, Emami H, et al. Incidental statin use and the risk of stroke or transient ischemic attack after radiotherapy for head and neck cancer. J Stroke. 2018;20(1):71-79. doi: 10.5853/jos.2017.01802

 

  1. Boulet J, Peña J, Hulten EA, et al. Statin use and risk of vascular events among cancer patients after radiotherapy to the thorax, head, and neck. J Am Heart Assoc. 2019;8(13):e005996. doi: 10.1161/JAHA.117.005996

 

Share
Back to top
Advances in Radiotherapy & Nuclear Medicine, Electronic ISSN: 2972-4392 Print ISSN: 3060-8554, Published by AccScience Publishing