AccScience Publishing / ARNM / Online First / DOI: 10.36922/ARNM025040005
REVIEW ARTICLE

Exploring tumor heterogeneity: The role of PET/CT with various radiopharmaceuticals in diagnosis and treatment guidance

Anjali Jain1* Subhash Kheruka1 Sharjeel Usmani1 Khulood Al Riyami1 Asiya Al Busaidi1 Sumit Bichpuria1 Rashid Al Sukaiti1
Show Less
1 Department of Radiology and Nuclear Medicine, Sultan Qaboos Comprehensive Cancer Care and Research Center, University Medical City, Muscat, Oman
Submitted: 21 January 2025 | Revised: 19 February 2025 | Accepted: 5 March 2025 | Published: 20 March 2025
(This article belongs to the Special Issue Recent Developments in Radiopharmaceuticals)
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Cancer development is a multi-step process that undergoes multiple alterations over time. The tumor microenvironment (TME) contains tumor cells and stroma, including blood cells, fibroblasts, and immune cells, which undergo spatial and temporal changes. These changes contribute to tumor heterogeneity, leading to treatment failure and poor prognosis. As we move toward personalized medicine with the approval of targeted and other therapies, identifying tumor heterogeneity is becoming crucial to management. Positron emission tomography/computed tomography (PET/CT) with various radiopharmaceuticals plays an important role in diagnosing and highlighting heterogeneity non-invasively, guiding treatment decisions, and assessing treatment response. Variability in tracer distribution of 18F-fluorodeoxyglucose (FDG) and various radiopharmaceuticals when coupled together can target various tumor characteristics and, therefore, play an important role in diagnosing heterogeneity. Some of the commonly paired radiopharmaceuticals include 18F-FDG with 68Gallium DOTA (1,4,7,10-tetraazacyclododecane-tetraacetic acid) peptide for neuroendocrine tumors, 18F-FDG with 68Ga-prostate specific membrane antigen for prostate cancers, 18F-metafluorobenzylguanidine with 18F-FDG and 68Ga-DOTA peptide for neural crest tumors, and 18F-fluoroestradiol with 18F-FDG for breast cancers. Many other tracers, including 68Ga-fibroblast activation protein inhibitor and labeled integrins, attach to various components on tumor cells and TME and have displayed significantly positive effects in certain tumors. However, their potential role as a biomarker to evaluate tumor heterogeneity and its clinical relevance remains largely uninvestigated.

Keywords
Cancer
Heterogeneity
18F- FDG
PET/CT
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Cooper GM. The Cell: A Molecular Approach. The Development and Causes of Cancer. 2nd ed. Sunderland, MA: Sinauer Associates; 2000. Available from: https://www.ncbi.nlm.nih. gov/books/NBK9963 [Last accessed on 2024 Dec 24].

 

  1. Anderson NM, Simon MC. The tumor microenvironment. Curr Biol. 2020;30:921-925. doi: 10.1016/j.cub.2020.06.081

 

  1. Zhang A, Miao K, Sun H, Deng CX. Tumor heterogeneity reshapes the tumor microenvironment to influence drug resistance. Int J Biol Sci. 2022;18:3019-3033. doi: 10.7150/ijbs.72534

 

  1. Zhu L, Jiang M, Wang H, et al. A narrative review of tumor heterogeneity and challenges to tumor drug therapy. Ann Transl Med. 2021;9:16. doi: 10.21037/atm-21-1948

 

  1. Jönsson H, Ahlström H, Kullberg, J. Spatial mapping of tumor heterogeneity in whole-body PET-CT: A feasibility study. Biomed Eng Online. 2023;22:110. doi: 10.1186/s12938-023-01173-0

 

  1. Hughes NM, Mou T, O’Regan KN, et al. Tumor heterogeneity measurement using [18F] FDG PET/CT shows prognostic value in patients with non-small cell lung cancer. Eur J Hybrid Imaging. 2018;2:25. doi: 10.1186/s41824-018-0043-1

 

  1. McQuerry JA, Chang JT, Bowtell DDL, Cohen A, Bild AH. Mechanisms and clinical implications of tumor heterogeneity and convergence on recurrent phenotypes. J Mol Med (Berl). 2017;95:1167-1178. doi: 10.1007/s00109-017-1587-4

 

  1. Li C, Wang S, Li C, Yin Y, et al. Improved risk stratification by PET-based intratumor heterogeneity in children with high-risk neuroblastoma. Front Oncol. 2022;12:896593. doi: 10.3389/fonc.2022.896593

 

  1. Marusyk A, Polyak K. Tumor heterogeneity: Causes and consequences. Biochim Biophys Acta. 2010;1805:105-117. doi: 10.1016/j.bbcan.2009.11.002

 

  1. Morrissy AS, Cavalli FMG, Remke M, et al. Spatial heterogeneity in medulloblastoma. Nat Genet. 2017;49: 780-788. doi: 10.1038/ng.3838

 

  1. Savas P, Teo ZL, Lefevre C, et al. The subclonal architecture of metastatic breast cancer: Results from a prospective community-based rapid autopsy program “CASCADE”. PLoS Med. 2016;13:e1002204. doi: 10.1371/journal.pmed.1002204. Erratum in: PLoS Med. 2017;14(4):e1002302. doi: 10.1371/journal.pmed.1002302

 

  1. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15:81-94. doi: 10.1038/nrclinonc.2017.166

 

  1. Bailly C, Bodet-Milin C, Bourgeois M, et al. Exploring tumor heterogeneity using PET imaging: The big picture. Cancers (Basel). 2019;11:1282. doi: 10.3390/cancers11091282

 

  1. Anan N, Zainon R, Tamal M. A review on advances in 18F-FDG PET/CT radiomics standardization and application in lung disease management. Insights Imaging. 2022;13:22. doi: 10.1186/s13244-021-01153-9. Erratum in: Insights Imaging. 2022;13(1):32. doi: 10.1186/s13244-022-01186-8

 

  1. Zhao S, Kuge Y, Mochizuki T, et al. Biologic correlates of intratumoral heterogeneity in 18 F-FDG distribution with regional expression of glucose transporters and hexokinase-II in the experimental tumor. J Nucl Med. 2005;46:675-682.

 

  1. Derlon JM, Chapon F, Noel MH, et al. Non-invasive grading of oligodendrogliomas: Correlation between in vivo metabolic pattern and histopathology. Eur J Nucl Med. 2000;27:778-787. doi: 10.1007/s002590000260

 

  1. Henriksson E, Kjellen E, Wahlberg P, et al. 2-Deoxy-2-[ 18 F] fluoro-D-glucose uptake and correlation to intratumoral heterogeneity. Anticancer Res. 2007;27:2155-2159.

 

  1. Van Baardwijk A, Bosmans G, Van Suylen RJ, et al. Correlation of intra-tumour heterogeneity on 18 F-FDG PET with pathologic features in nonsmall cell lung cancer: A feasibility study. Radiother Oncol. 2008;87:55-58. doi: 10.1016/j.radonc.2008.02.002

 

  1. Eary JF, O’Sullivan F, O’Sullivan J, Conrad EU. Spatial heterogeneity in sarcoma 18F-FDG uptake as a predictor of patient outcome. J Nucl Med. 2008;49:1973-1979. doi: 10.2967/jnumed.108.053397

 

  1. Kidd EA, Grigsby PW. Intratumoral metabolic heterogeneity of cervical cancer. Clin Cancer Res. 2008;14:5236-5241. doi: 10.1158/1078-0432.CCR-07-5252

 

  1. Tixier F, Le Rest CC, Hatt M, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52:369-378. doi: 10.2967/jnumed.110.082404

 

  1. Schinagl DA, Kaanders JH, Oyen WJ. From anatomical to biological target volumes: The role of PET in radiation treatment planning. Cancer Imaging. 2006;6:107-116. doi: 10.1102/1470-7330.2006.9017

 

  1. Newbold KL, Partridge M, Cook G, et al. Evaluation of the role of 18FDG-PET/CT in radiotherapy target definition in patients with head and neck cancer. Acta Oncol. 2008;47:1229-1236. doi: 10.1080/02841860802256483.

 

  1. Lopci E, Nanni C, Castellucci P, et al. Imaging with non- FDG PET tracers: Outlook for current clinical applications. Insights Imaging. 2010;1:373-385. doi: 10.1007/s13244-010-0040-9

 

  1. Jadvar H, Delgado-Bolton R, Nadel H, et al. Appropriate use criteria for 18F-FDG PET/CT in restaging and treatment response assessment of malignant disease. J Nucl Med. 2017;58:2026-3724. doi: 10.2967/jnumed.117.197988

 

  1. Binderup T, Knigge U, Loft A, et al. 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin Cancer Res. 2010; 16:978-985. doi: 10.1158/1078-0432.CCR-09-1759

 

  1. Sanli Y, Garg I, Kandathil A, et al. Neuroendocrine tumor diagnosis and management: 68Ga-DOTATATE PET/CT. AJR Am J Roentgenol. 2018;211:267-277. doi: 10.2214/AJR.18.19881

 

  1. Kaewput C, Vinjamuri S. Role of combined 68Ga DOTA-peptides and 18F FDG PET/CT in the evaluation of gastroenteropancreatic neuroendocrine neoplasms. Diagnostics. 2022;12:280. doi: 10.3390/diagnostics12020280

 

  1. Zhou Y, Li L, Wang H, et al. Heterogeneous uptake of 68Ga-DOTATATE and 18 F-FDG in initial diagnosed neuroendocrine tumors patients: Which patients are suitable for dual-tracer PET Imaging? Clin Nucl Med. 2024;49:516-520. doi: 10.1097/RLU.0000000000005231

 

  1. Nogareda Seoane Z, Mallón Araújo MC, Calatayud Cubes A, et al. Functional imaging in neuroendocrine tumors: Assessment of molecular heterogeneity using [68Ga] Ga-DOTA-TOC and [18F]FDG PET/CT. Rev Esp Med Nucl Imagen Mol (Engl Ed). 2024;43:500011. doi: 10.1016/j.remnie.2024.500011

 

  1. Zhang H, Huang R, Cheung NK, et al. Imaging the norepinephrine transporter in neuroblastoma: A comparison of [18F]-MFBG and 123I-MIBG. Clin Cancer Res. 2014;20:2182-2191. doi: 10.1158/1078-0432.CCR-13-1153

 

  1. Bian L, Xu J, Li P, Bai L, Song S. Comparison of 68Ga-DOTANOC and 18F-FDOPA PET/CT for detection of recurrent or metastatic paragangliomas. Radiol Imaging Cancer. 2024;7(1):e240059. doi: 10.1148/rycan.240059

 

  1. Chang CA, Pattison DA, Tothill RW, et al. (68) Ga-DOTATATE and (18)F-FDG PET/CT in paraganglioma and pheochromocytoma: Utility, patterns and heterogeneity. Cancer Imaging. 2016;16:22. doi: 10.1186/s40644-016-0084-2

 

  1. Wang B, Liu C, Wei Y, et al. A prospective trial of 68Ga-PSMA and 18F-FDG PET/CT in nonmetastatic prostate cancer patients with an early PSA progression during castration. Clin Cancer Res. 2020;26:4551-4558. doi: 10.1158/1078-0432.CCR-20-0587

 

  1. Gofrit ON, Frank S, Meirovitz A, Nechushtan H, Orevi M. PET/CT With 68Ga-DOTA-TATE for diagnosis of neuroendocrine: Differentiation in patients with castrate-resistant prostate cancer. Clin Nucl Med. 2017;42:1-6. doi: 10.1097/rlu.0000000000001424

 

  1. Pabst KM, Mei R, Lückerath K, et al. Detection of tumour heterogeneity in patients with advanced, metastatic castration-resistant prostate cancer on [68Ga]Ga-/[18F] F-PSMA-11/-1007, [68Ga]Ga-FAPI-46 and 2-[18F]FDG PET/ CT: A pilot study. Eur J Nucl Med Mol Imaging. 2024;52:342-353. doi: 10.1007/s00259-024-06891-8

 

  1. Mori Y, Dendl K, Cardinale J, Kratochwil C, Giesel FL, Haberkorn U. FAPI PET: Fibroblast activation protein inhibitor use in oncologic and nononcologic disease. Radiology. 2023;306:e220749. doi: 10.1148/radiol.220749

 

  1. Liu X, Liu H, Gao C, Zeng W. Comparison of 68Ga-FAPI and 18F-FDG PET/CT for the diagnosis of primary and metastatic lesions in abdominal and pelvic malignancies: A systematic review and meta-analysis. Front Oncol. 2023;13:1093861. doi: 10.3389/fonc.2023.1093861

 

  1. Xi Y, Sun Y, Gu B, Bian L, Song S. Evaluation of 68Ga-FAPI PET/CT and 18F-FDG PET/CT for the diagnosis of recurrent colorectal cancers. Clin Transl Radiat Oncol. 2024;49:100848. doi: 10.1016/j.ctro.2024.100848

 

  1. Matushita CS, Coelho FARFB, Stasiak CES, et al. 18F-fluoroestradiol positron emission tomography in patients with breast cancer: A systematic review and meta-analysis. Rev Assoc Med Bras (1992). 2023;69:e2023S116. doi: 10.1590/1806-9282.2023S116

 

  1. Liu C, Gong C, Liu S, et al. 18F-FES PET/CT influences the staging and management of patients with newly diagnosed estrogen receptor-positive breast cancer: A retrospective comparative study with 18F-FDG PET/CT. Oncologist. 2019;24:e1277-e12785. doi: 10.1634/theoncologist.2019-0096

 

  1. Kurland BF, Peterson LM, Lee JH, et al. Estrogen receptor binding (FES PET) and glycolytic activity (FDG PET) predict progression-free survival on endocrine therapy in patients with ER+ breast cancer. Clin Cancer Res. 2017;23:407-415. doi: 10.1158/1078-0432.CCR-16-0362

 

  1. Mortimer JE, Dehdashti F, Siegel BA, Katzenellenbogen JA, Fracasso P, Welch MJ. Positron emission tomography with 2-[18F] Fluoro-2-deoxy-D-glucose and 16alpha-[18F] fluoro-17 beta-estradiol in breast cancer: Correlation with estrogen receptor status and response to systemic therapy. Clin Cancer Res. 1996;2:933-9.

 

  1. Gebhart G, Lamberts LE, Wimana Z, et al. Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine (T-DM1): The ZEPHIR trial. Ann Oncol. 2016;27:619-624. doi: 10.1093/annonc/mdv577

 

  1. Clark AS, DeMichele A, Mankoff D. HER2 imaging in the ZEPHIR study. Ann Oncol. 2016;27:555-557. doi: 10.1093/annonc/mdw033

 

  1. Chen H, Niu G, Wu H, Chen X. Clinical application of radiolabeled RGD peptides for PET imaging of integrin αvβ3. Theranostics. 2016;6:78-92. doi: 10.7150/thno.13242

 

  1. Das SS, Ahlawat S, Thakral P, et al. Potential efficacy of 68 Ga-trivehexin PET/CT and immunohistochemical validation of αvβ6 integrin expression in patients with head and neck squamous cell carcinoma and pancreatic ductal adenocarcinoma. Clin Nucl Med. 2024;49:733-740. doi: 10.1097/RLU.0000000000005278

 

  1. Poschenrieder A, Osl T, Schottelius M, et al. First 18F-labeled pentixafor-based imaging agent for PET imaging of CXCR4 expression in vivo. Tomography. 2016;2:85-93. doi: 10.18383/j.tom.2016.00130

 

  1. Hicks RJ. Beyond FDG: Novel PET tracers for cancer imaging. Cancer Imaging. 2003;4:22-24. doi: 10.1102/1470-7330.2003.0032

 

  1. Li Z, Mo C, Li C, Wang Q, et al. Gallium-68 labeled positron emission computed tomography tracer targeting glypican-3 with high contrast for hepatocellular carcinoma imaging. ACS Pharmacol Transl Sci. 2024;7:4021-4031. doi: 10.1021/acsptsci.4c00504

 

  1. Kinahan PE, Fletcher JW. Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin Ultrasound CT MR. 2010;31(6):496-505. doi: 10.1053/j.sult.2010.10.001

 

  1. Zhou J, Li Q, Cao Y. Spatiotemporal heterogeneity across metastases and organ-specific response informs drug efficacy and patient survival in colorectal cancer. Cancer Res. 2021;81:2522-2533. doi: 10.1158/0008-5472.CAN-20-3665

 

  1. Schmid S, Diem S, Li Q, et al. Organ-specific response to nivolumab in patients with non-small cell lung cancer (NSCLC). Cancer Immunol Immunother. 2018;67:1825-1832. doi: 10.1007/s00262-018-2239-4

 

  1. Dong ZY, Zhai HR, Hou QY, et al. Mixed responses to systemic therapy revealed potential genetic heterogeneity and poor survival in patients with non‐small cell lung cancer. Oncologist. 2017;22:61-69. doi: 10.1634/theoncologist.2016-0150

 

  1. Janku F. Tumor heterogeneity in the clinic: Is it a real problem? Ther Adv Med Oncol. 2014;6:43-51. doi: 10.1177/1758834013517414

 

  1. Safri F, Nguyen R, Zerehpooshnesfchi S, George J, Qiao L. Heterogeneity of hepatocellular carcinoma: From mechanisms to clinical implications. Cancer Gene Ther. 2024;31:1105-1112. doi: 10.1038/s41417-024-00764-w

 

  1. Morinaga T, Inozume T, Kawazu M, et al. Mixed response to cancer immunotherapy is driven by intratumor heterogeneity and differential interlesion immune infiltration. Cancer Res Commun. 2022;2:739-753. doi: 10.1158/2767-9764.CRC-22-0050

 

  1. Sanli Y, Leake J, Odu A, Xi Y, Subramaniam RM. Tumor heterogeneity on FDG PET/CT and immunotherapy: An imaging biomarker for predicting treatment response in patients with metastatic melanoma. AJR Am J Roentgenol. 2019;212:1318-1326. doi: 10.2214/AJR.18.19796

 

  1. Mayerhoefer ME, Materka A, Langs G, et al. Introduction to radiomics. J Nucl Med. 2020;61:488-495. doi: 10.2967/jnumed.118.222893

 

  1. Kashyap A, Rapsomaniki MA, Barros V, et al. Quantification of tumor heterogeneity: From data acquisition to metric generation. Trends Biotechnol. 2022;40:647-676. doi: 10.1016/j.tibtech.2021.11.006

 

  1. Kocak B, Durmaz ES, Ates E, Kılıckesmez O. Radiomics with artificial intelligence: A practical guide for beginners. Diagn Interv Radiol. 2019;25:485-495. doi: 10.5152/dir.2019.19321

 

  1. Mirshahvalad SA, Eisazadeh R, Shahbazi-Akbari M, Pirich C, Beheshti M. Application of artificial intelligence in oncologic molecular PET-imaging: A narrative review on beyond [18F] F-FDG tracers - Part I. PSMA, choline, and DOTA radiotracers. Semin Nucl Med. 2024;54:171-180. doi: 10.1053/j.semnuclmed.2023.08.004

 

  1. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures, they are data. Radiology. 2016;278:563-77. doi: 10.1148/radiol.2015151169

 

Share
Back to top
Advances in Radiotherapy & Nuclear Medicine, Electronic ISSN: 2972-4392 Print ISSN: 3060-8554, Published by AccScience Publishing