Targeting EZH2 to mitigate immune checkpoint resistance in ARID1A-deficient triple-negative breast cancer
Immune checkpoint inhibitors (ICIs) have shown promise in treating triple-negative breast cancer (TNBC), but resistance to these therapies remains a significant challenge. AT-rich interactive domain 1A (ARID1A), a component of the SWItch/Sucrose Non-Fermentable chromatin remodeling complex, is frequently mutated in TNBC and is associated with increased programmed cell death ligand 1 expression, which contributes to immune evasion. Paradoxically, this mutation may make TNBC potentially more responsive to ICIs. Chromatin-mediated gene expression requires a balance between ARID1A and enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, and ARID1A deficiency results in enhanced EZH2 activity, contributing to various oncologic processes. Epigenetic modulation through EZH2 inhibition could exploit the synthetic lethality between ARID1A deficiency and EZH2 activity, which may reduce the immunosuppressive tumor microenvironment and enhance infiltration and activity of cytotoxic T-cells within the tumor, thereby synergizing with immune checkpoint inhibition. This review explores the potential of EZH2 inhibition as a therapeutic strategy to overcome immune checkpoint resistance in ARID1A-deficient TNBC. In addition, the role of ARID1A deficiency as a radiosensitizer is also discussed in the context of combination therapy strategies.
- Lehmann BD, Colaprico A, Silva TC, et al. Multi-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes. Nat Commun. 2021;12(1):6276. doi: 10.1038/s41467-021-26502-6
- Loi S, Drubay D, Adams S, et al. Tumor-infiltrating lymphocytes and prognosis: A pooled individual patient analysis of early-stage triple-negative breast cancers. J Clin Oncol. 2019;37(7):559-569. doi: 10.1200/jco.18.01010
- Yoshihara K, Shahmoradgoli M, Martínez E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612. doi: 10.1038/ncomms3612
- Li K, Wang B, Hu H. Research progress of SWI/SNF complex in breast cancer. Epigenetics Chromatin. 2024;17(1):4. doi: 10.1186/s13072-024-00531-z
- Wu Q, Madany P, Akech J, et al. The Swi/SNF atpases are required for triple negative breast cancer cell proliferation. J Cell Physiol. 2015;230(11):2683-2694. doi: 10.1002/jcp.24991
- Shen J, Ju Z, Zhao W, et al. ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat Med. 2018;24(5):556-562. doi: 10.1038/s41591-018-0012-z
- Wang Y, Chen Z, Wu J, Yan H, Wang Y, He J. The mutation and low expression of arid1a are predictive of a poor prognosis and high immune infiltration in triple-negative breast cancer. Curr Cancer Drug Targets. 2023;59-68. doi: 10.2174/1568009623666230522115229
- Sun D, Tian L, Zhu Y, et al. Subunits of ARID1 serve as novel biomarkers for the sensitivity to immune checkpoint inhibitors and prognosis of advanced non-small cell lung cancer. Mol Med. 2020;26(1):78. doi: 10.1186/s10020-020-00208-9
- Kim YB, Ahn JM, Bae WJ, Sung CO, Lee D. Functional loss of ARID1A is tightly associated with high PD-L1 expression in gastric cancer. Int J Cancer. 2019;145(4):916-926. doi: 10.1002/ijc.32140
- Sun M, Gu Y, Fang H, et al. Clinical outcome and molecular landscape of patients with ARID1A-loss gastric cancer. Cancer Sci. 2024;115(3):905-915. doi: 10.1111/cas.16057
- Jung US, Min KW, Kim DH, Kwon MJ, Park H, Jang HS. Suppression of ARID1A associated with decreased CD8 T cells improves cell survival of ovarian clear cell carcinoma. J Gynecol Oncol. 2021;32(1):e3. doi: 10.3802/jgo.2021.32.e3
- Tarantino P, Barroso-Sousa R, Garrido-Castro AC, et al. Understanding resistance to immune checkpoint inhibitors in advanced breast cancer. Expert Rev Anticancer Ther. 2022;22(2):141-153. doi: 10.1080/14737140.2022.2020650
- Chen XY, Li B, Wang Y, et al. Low level of arid1a contributes to adaptive immune resistance and sensitizes triple-negative breast cancer to immune checkpoint inhibitors. Cancer Commun (Lond). 2023;43(9):1003-1026. doi: 10.1002/cac2.12465
- Duan R, Du W, Guo W. EZH2: A novel target for cancer treatment. J Hematol Oncol. 2020;13(1):104. doi: 10.1186/s13045-020-00937-8
- Pasini D, Di Croce L. Emerging roles for polycomb proteins in cancer. Curr Opin Genet Dev. 2016;36:50-58. doi: 10.1016/j.gde.2016.03.013
- Zhou L, Yu CW. Epigenetic modulations in triple-negative breast cancer: Therapeutic Implications for tumor microenvironment. Pharmacol Res. 2024;204:107205. doi: 10.1016/j.phrs.2024.107205
- Wu F, Li N, Wu X, et al. EZH2 mutation is associated with the development of visceral metastasis by enhancing proliferation and invasion and inhibiting apoptosis in breast cancer cells. BMC Cancer. 2024;24(1):1166. doi: 10.1186/s12885-024-12950-y
- Glancy E, Wang C, Tuck E, et al. PRC2.1-and PRC2.2-specific accessory proteins drive recruitment of different forms of canonical PRC1. Mol Cell. 2023;83(9):1393-1411.e7. doi: 10.1016/j.molcel.2023.03.018
- Singh V, Nandi S, Ghosh A, et al. Epigenetic reprogramming of T cells: Unlocking new avenues for cancer immunotherapy. Cancer Metastasis Rev. 2024;43:175-195. doi: 10.1007/s10555-024-10167-w
- Alldredge JK, Eskander RN. EZH2 inhibition in ARID1A mutated clear cell and endometrioid ovarian and endometrioid endometrial cancers. Gynecol Oncol Res Pract. 2017;4:17. doi: 10.1186/s40661-017-0052-y
- Bitler BG, Aird KM, Garipov A, et al. Synthetic lethality by targeting EZH2 methyltransferase activity in arid1a-mutated cancers. Nat Med. 2015;21(3):231-238. doi: 10.1038/nm.3799
- Chien YC, Liu LC, Ye HY, Wu JY, Yu YL. EZH2 promotes migration and invasion of triple-negative breast cancer cells via regulating TIMP2-MMP-2/-9 pathway. Am J Cancer Res. 2018;8(3):422-434.
- Hussein YR, Sood AK, Bandyopadhyay S, et al. Clinical and biological relevance of enhancer of zeste homolog 2 in triple-negative breast cancer. Hum Pathol. 2012;43(10):1638-1644. doi: 10.1016/j.humpath.2011.12.004
- Gonzalez ME, Naimo GD, Anwar T, et al. EZH2 T367 phosphorylation activates P38 signaling through lysine methylation to promote breast cancer progression. iScience. 2022;25(8):104827. doi: 10.1016/j.isci.2022.104827
- Gonzalez-Crespo I, Gomez-Caamano A, Pouso OL, Fenwick JD, Pardo-Montero J. A biomathematical model of tumor response to radioimmunotherapy with αPDL1 and αCTLA4. IEEE/ACM Trans Comput Biol Bioinform. 2023;20(2):808-821. doi: 10.1109/tcbb.2022.3174454
- Fujii S, Ito K, Ito Y, Ochiai A. Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylation. J Biol Chem. 2008;283(25):17324-17332. doi: 10.1074/jbc.M800224200
- Hirukawa A, Smith HW, Zuo D, et al. Targeting EZH2 reactivates a breast cancer subtype-specific anti-metastatic transcriptional program. Nat Commun. 2018;9(1):2547. doi: 10.1038/s41467-018-04864-8
- Borkiewicz L. Histone 3 lysine 27 trimethylation signature in breast cancer. Int J Mol Sci. 2021;22(23):12853. doi: 10.3390/ijms222312853
- Gong C, Yao S, Gomes AR, et al. BRCA1 positively regulates FOXO3 expression by restricting FOXO3 gene methylation and epigenetic silencing through targeting EZH2 in breast cancer. Oncogenesis. 2016;5(4):e214. doi: 10.1038/oncsis.2016.23
- Yang X, Karuturi RK, Sun F, et al. CDKN1C (P57) is a direct target of EZH2 and suppressed by multiple epigenetic mechanisms in breast cancer cells. PLoS One. 2009;4(4):e5011. doi: 10.1371/journal.pone.0005011
- Ren G, Baritaki S, Marathe H, et al. Polycomb protein EZH2 regulates tumor invasion via the transcriptional repression of the metastasis suppressor RKIP in breast and prostate cancer. Cancer Res. 2012;72(12):3091-3104. doi: 10.1158/0008-5472.Can-11-3546
- Zhang R, Li X, Liu Z, Wang Y, Zhang H, Xu H. EZH2 inhibitors-mediated epigenetic reactivation of fosb inhibits triple-negative breast cancer progress. Cancer Cell Int. 2020;20:175. doi: 10.1186/s12935-020-01260-5
- Zheng XJ, Li W, Yi J, et al. EZH2 regulates expression of FOXC1 by mediating H3K27me3 in breast cancers. Acta Pharmacol Sin. 2021;42(7):1171-1179. doi: 10.1038/s41401-020-00543-x
- Lu Y, Gu F, Ma Y, et al. Simultaneous delivery of doxorubicin and EZH2-targeting sirna by vortex magnetic nanorods synergistically improved anti-tumor efficacy in triple-negative breast cancer. Small. 2023;19(43):e2301307. doi: 10.1002/smll.202301307
- Verma A, Singh A, Singh MP, et al. EZH2-H3K27me3 mediated KRT14 upregulation promotes tnbc peritoneal metastasis. Nat Commun. 2022;13(1):7344. doi: 10.1038/s41467-022-35059-x
- Lawrence CL, Baldwin AS. Non-canonical EZH2 transcriptionally activates relb in triple negative breast cancer. PLoS One. 2016;11(10):e0165005. doi: 10.1371/journal.pone.0165005
- Lee ST, Li Z, Wu Z, et al. Context-specific regulation of NF-ΚB target gene expression by EZH2 in breast cancers. Mol Cell. 2011;43(5):798-810. doi: 10.1016/j.molcel.2011.08.011
- Schade AE, Perurena N, Yang Y, et al. AKT and EZH2 inhibitors kill TNBCS by hijacking mechanisms of involution. Nature. 2024;635:755-763. doi: 10.1038/s41586-024-08031-6
- Huang R, Wu Y, Zou Z. Combining EZH2 inhibitors with other therapies for solid tumors: More choices for better effects. Epigenomics. 2022;14(22):1449-1464. doi: 10.2217/epi-2022-0320
- Hoy SM. Tazemetostat: First approval. Drugs. 2020;80(5):513-521. doi: 10.1007/s40265-020-01288-x
- Von Keudell G, Salles G. The role of tazemetostat in relapsed/ refractory follicular lymphoma. Ther Adv Hematol. 2021;12. doi: 10.1177/20406207211015882
- Wang C, Chen X, Liu X, et al. Discovery of precision targeting EZH2 degraders for triple-negative breast cancer. Eur J Med Chem. 2022;238:114462. doi: 10.1016/j.ejmech.2022.114462
- Ma A, Stratikopoulos E, Park KS, et al. Discovery of a first-in-class EZH2 selective degrader. Nat Chem Biol. 2020;16(2):214-222. doi: 10.1038/s41589-019-0421-4
- Mei H, Wu H, Yang J, et al. Discovery of IHMT-337 as a potent irreversible EZH2 inhibitor targeting CDK4 transcription for malignancies. Signal Transduct Target Ther. 2023;8(1):18. doi: 10.1038/s41392-022-01240-3
- Margueron R, Li G, Sarma K, et al. EZH1 and EZH2 maintain repressive chromatin through different mechanisms. Mol Cell. 2008;32(4):503-518. doi: 10.1016/j.molcel.2008.11.004
- Yoo KH, Oh S, Kang K, Hensel T, Robinson GW, Hennighausen L. Loss of EZH2 results in precocious mammary gland development and activation of STAT5- dependent genes. Nucleic Acids Res. 2015;43(18):8774-8789. doi: 10.1093/nar/gkv776
- Shen X, Liu Y, Hsu YJ, et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell. 2008;32(4):491-502. doi: 10.1016/j.molcel.2008.10.016
- Zhao E, Maj T, Kryczek I, et al. Cancer mediates effector T cell dysfunction by targeting micrornas and EZH2 via glycolysis restriction. Nat Immunol. 2016;17(1):95-103. doi: 10.1038/ni.3313
- Guillerey C, Smyth MJ. NK cells and cancer immunoediting. Curr Top Microbiol Immunol. 2016;395:115-145. doi: 10.1007/82_2015_446
- He S, Liu Y, Meng L, et al. EZH2 phosphorylation state determines its capacity to maintain CD8+ T memory precursors for antitumor immunity. Nat Commun. 2017;8(1):2125. doi: 10.1038/s41467-017-02187-8
- Huang S, Wang Z, Zhou J, et al. EZH2 Inhibitor GSK126 suppresses antitumor immunity by driving production of myeloid-derived suppressor cells. Cancer Res. 2019;79(8):2009-2020. doi: 10.1158/0008-5472.Can-18-2395
- Zheng Y, Li S, Tang H, Meng X, Zheng Q. Molecular mechanisms of immunotherapy resistance in triple-negative breast cancer. Front Immunol. 2023;14:1153990. doi: 10.3389/fimmu.2023.1153990
- Luo L, Wang Z, Hu T, et al. Multiomics characteristics and immunotherapeutic potential of EZH2 in pan-cancer. Biosci Rep. 2023;43(1). doi: 10.1042/bsr2022223054
- Nanda R, Chow LQ, Dees EC, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: Phase Ib KEYNOTE-012 study. J Clin Oncol. 2016;34(21):2460-2467. doi: 10.1200/jco.2015.64.8931
- Loi S, Salgado R, Schmid P, et al. Association between biomarkers and clinical outcomes of pembrolizumab monotherapy in patients with metastatic triple-negative breast cancer: KEYNOTE-086 exploratory analysis. JCO Precis Oncol. 2023;7:e2200317. doi: 10.1200/po.22.00317
- Rosenthal R, Cadieux EL, Salgado R, et al. Neoantigen-directed immune escape in lung cancer evolution. Nature. 2019;567(7749):479-485. doi: 10.1038/s41586-019-1032-7
- Garrido F, Aptsiauri N, Doorduijn EM, Garcia Lora AM, van Hall T. The urgent need to recover mhc class I in cancers for effective immunotherapy. Curr Opin Immunol. 2016;39:44-51. doi: 10.1016/j.coi.2015.12.007
- Burr ML, Sparbier CE, Chan KL, et al. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell. 2019;36(4):385-401.e8. doi: 10.1016/j.ccell.2019.08.008
- Bayerl F, Meiser P, Donakonda S, et al. Tumor-derived prostaglandin E2 programs CDC1 dysfunction to impair intratumoral orchestration of anti-cancer T cell responses. Immunity. 2023;56(6):1341-1358.e11. doi: 10.1016/j.immuni.2023.05.011
- Willingham SB, Volkmer JP, Gentles AJ, et al. The CD47- signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci U S A. 2012;109(17):6662-6667. doi: 10.1073/pnas.1121623109
- Sikic BI, Lakhani N, Patnaik A, et al. First-in-human, first-in-class phase I trial of the anti-CD47 antibody HU5F9-G4 in patients with advanced cancers. J Clin Oncol. 2019;37(12):946-953. doi: 10.1200/jco.18.02018
- Obeid M, Tesniere A, Ghiringhelli F, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007;13(1):54-61. doi: 10.1038/nm1523
- Song X, Zhou Z, Li H, et al. Pharmacologic suppression of B7-H4 glycosylation restores antitumor immunity in immune-cold breast cancers. Cancer Discov. 2020;10(12):1872-1893. doi: 10.1158/2159-8290.Cd-20-0402
- Zhang X, Chang A, Zou Y, et al. Aspirin attenuates cardiac allograft rejection by inhibiting the maturation of dendritic cells via the NF-κB signaling pathway. Front Pharmacol. 2021;12:706748. doi: 10.3389/fphar.2021.706748
- Li JG, Du YM, Yan ZD, et al. CD80 and CD86 knockdown in dendritic cells regulates Th1/Th2 cytokine production in asthmatic mice. Exp Ther Med. 2016;11(3):878-884. doi: 10.3892/etm.2016.2989
- Gaitonde P, Peng A, Straubinger RM, Bankert RB, Balu- Iyer SV. Phosphatidylserine reduces immune response against human recombinant factor VIII in hemophilia a mice by regulation of dendritic cell function. Clin Immunol. 2011;138(2):135-145. doi: 10.1016/j.clim.2010.10.006
- Wang L, Li Z, Ciric B, Safavi F, Zhang GX, Rostami A. Selective depletion of CD11C+ CD11b+ dendritic cells partially abrogates tolerogenic effects of intravenous mog in murine EAE. Eur J Immunol. 2016;46(10):2454-2466. doi: 10.1002/eji.201546274
- Zhou Y, Leng X, Luo X, et al. Regulatory dendritic cells induced by K313 display anti-inflammatory properties and ameliorate experimental autoimmune encephalitis in mice. Front Pharmacol. 2019;10:1579. doi: 10.3389/fphar.2019.01579
- Sim WJ, Malinarich F, Fairhurst AM, Connolly JE. Generation of immature, mature and tolerogenic dendritic cells with differing metabolic phenotypes. J Vis Exp. 2016;(112):54128. doi: 10.3791/54128
- Khramtsov AI, Khramtsova GF, Tretiakova M, Huo D, Olopade OI, Goss KH. Wnt/Beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am J Pathol. 2010;176(6):2911-2920. doi: 10.2353/ajpath.2010.091125
- Lee KM, Lin CC, Servetto A, et al. Epigenetic repression of sting by MYC promotes immune evasion and resistance to immune checkpoint inhibitors in triple-negative breast cancer. Cancer Immunol Res. 2022;10(7):829-843. doi: 10.1158/2326-6066.Cir-21-0826
- Lee JV, Housley F, Yau C, et al. Combinatorial immunotherapies overcome MYC-driven immune evasion in triple negative breast cancer. Nat Commun. 2022;13(1):3671. doi: 10.1038/s41467-022-31238-y
- Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61-70. doi: 10.1038/nature11412
- Torrejon DY, Abril-Rodriguez G, Champhekar AS, et al. Overcoming genetically based resistance mechanisms to PD-1 blockade. Cancer Discov. 2020;10(8):1140-1157. doi: 10.1158/2159-8290.Cd-19-1409
- Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic Β-catenin signalling prevents anti-tumour immunity. Nature. 2015;523(7559):231-235. doi: 10.1038/nature14404
- Vu SH, Vetrivel P, Kim J, Lee MS. Cancer resistance to immunotherapy: Molecular mechanisms and tackling strategies. Int J Mol Sci. 2022;23(18):10906. doi: 10.3390/ijms231810906
- Liang X, Fu C, Cui W, et al. Β-catenin mediates tumor-induced immunosuppression by inhibiting cross-priming of CD8+ T cells. J Leukoc Biol. 2014;95(1):179-190. doi: 10.1189/jlb.0613330
- Platanias LC. Mechanisms of type-I-and type-II-interferon-mediated signalling. Nat Rev Immunol. 2005;5(5):375-386. doi: 10.1038/nri1604
- Gao J, Shi LZ, Zhao H, et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell. 2016;167(2):397-404.e9. doi: 10.1016/j.cell.2016.08.069
- Peng W, Chen JQ, Liu C, et al. Loss of pten promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 2016;6(2):202-216. doi: 10.1158/2159-8290.Cd-15-0283
- Papa A, Pandolfi PP. The PTEN-PI3K axis in cancer. Biomolecules. 2019;9(4):153. doi: 10.3390/biom9040153
- Lin Z, Huang L, Li SL, Gu J, Cui X, Zhou Y. PTEN loss correlates with T cell exclusion across human cancers. BMC Cancer. 2021;21(1):429. doi: 10.1186/s12885-021-08114-x
- Garcia-Diaz A, Shin DS, Moreno BH, et al. Interferon receptor signaling pathways regulating PD-L1 and Pd-L2 expression. Cell Rep. 2017;19(6):1189-1201. doi: 10.1016/j.celrep.2017.04.031
- Wang X, Yang L, Huang F, et al. Inflammatory cytokines IL-17 and TNF-Α up-regulate PD-L1 expression in human prostate and colon cancer cells. Immunol Lett. 2017;184:7-14. doi: 10.1016/j.imlet.2017.02.006
- Zhao Y, Wang XX, Wu W, et al. EZH2 Regulates PD-L1 expression via HIF-1α in non-small cell lung cancer cells. Biochem Biophys Res Commun. 2019;517(2):201-209. doi: 10.1016/j.bbrc.2019.07.039
- Zhou L, Mudianto T, Ma X, Riley R, Uppaluri R. Targeting EZH2 enhances antigen presentation, antitumor immunity, and circumvents anti-PD-1 resistance in head and neck cancer. Clin Cancer Res. 2020;26(1):290-300. doi: 10.1158/1078-0432.Ccr-19-1351
- Xiao G, Jin LL, Liu CQ, et al. EZH2 negatively regulates PD-L1 expression in hepatocellular carcinoma. J Immunother Cancer. 2019;7(1):300. doi: 10.1186/s40425-019-0784-9
- Qiu F, Yang Q, Sun W, Ruan K, Jiang N, Zhou J. EZH2 inhibition activates dsrna-interferon axis stress and promotes response to PD-1 checkpoint blockade in NSCLC. J Cancer. 2022;13(9):2893-2904. doi: 10.7150/jca.73291
- Li C, Wang Y, Gong Y, et al. Finding an easy way to harmonize: A review of advances in clinical research and combination strategies of EZH2 inhibitors. Clin Epigenetics. 2021;13(1):62. doi: 10.1186/s13148-021-01045-1
- Goswami S, Apostolou I, Zhang J, et al. Modulation of EZH2 expression in T cells improves efficacy of anti-CTLA-4 therapy. J Clin Invest. 2018;128(9):3813-3818. doi: 10.1172/jci99760
- Guo R, Li J, Hu J, et al. Combination of epidrugs with immune checkpoint inhibitors in cancer immunotherapy: From theory to therapy. Int Immunopharmacol. 2023;120:110417. doi: 10.1016/j.intimp.2023.110417
- Zingg D, Arenas-Ramirez N, Sahin D, et al. The histone methyltransferase EZH2 controls mechanisms of adaptive resistance to tumor immunotherapy. Cell Rep. 2017;20(4):854-867. doi: 10.1016/j.celrep.2017.07.007
- Vejmelkova K, Pokorna P, Noskova K, et al. Tazemetostat in the therapy of pediatric INI1-negative malignant rhabdoid tumors. Sci Rep. 2023;13(1):21623. doi: 10.1038/s41598-023-48774-2
- Chen X, Wu J, Pang G, Wei S, Wang P. Integrase interactor 1 (INI1) deficiency in a lung cancer patient presents nonresponse to immunotherapy and tazemetostat: A Case report. Cureus. 2023;15(8):e42934. doi: 10.7759/cureus.42934
- Narvaez D, Nadal J, Nervo A, et al. The emerging role of tertiary lymphoid structures in breast cancer: A narrative review. Cancers (Basel). 2024;16(2):396. doi: 10.3390/cancers16020396
- Grapin M, Richard C, Limagne E, et al. Optimized fractionated radiotherapy with anti-PD-L1 and anti-tigit: A promising new combination. J Immunother Cancer. 2019;7(1):160. doi: 10.1186/s40425-019-0634-9
- Smits KM, Melotte V, Niessen HE, et al. Epigenetics in radiotherapy: Where are we heading? Radiother Oncol. 2014;111(2):168-177. doi: 10.1016/j.radonc.2014.05.001
- Johnson AB, Denko N, Barton MC. Hypoxia induces a novel signature of chromatin modifications and global repression of transcription. Mutat Res. 2008;640(1-2):174-179. doi: 10.1016/j.mrfmmm.2008.01.001
- Trappetti V, Fazzari JM, Fernandez-Palomo C, et al. Microbeam radiotherapy-a novel therapeutic approach to overcome radioresistance and enhance anti-tumour response in melanoma. Int J Mol Sci. 2021;22(14):7755. doi: 10.3390/ijms22147755
- Andrade D, Mehta M, Griffith J, et al. HuR reduces radiation-induced DNA damage by enhancing expression of arid1a. Cancers (Basel). 2019;11(12):2014. doi: 10.3390/cancers11122014
- Bakr A, Della Corte G, Veselinov O, et al. ARID1A regulates DNA repair through chromatin organization and its deficiency triggers DNA damage-mediated anti-tumor immune response. Nucleic Acids Res. 2024;52(10):5698-5719. doi: 10.1093/nar/gkae233
- Sak A, Kübler D, Bannik K, et al. Epigenetic silencing and activation of transcription: Influence on the radiation sensitivity of glioma cell lines. Int J Radiat Biol. 2017;93(5):494-506. doi: 10.1080/09553002.2017.1270472
- Alimova I, Birks DK, Harris PS, et al. Inhibition of EZH2 suppresses self-renewal and induces radiation sensitivity in atypical rhabdoid teratoid tumor cells. Neuro Oncol. 2013;15(2):149-160. doi: 10.1093/neuonc/nos285
- Agrawal R, Chen M, Bukhari Z, Ogunwobi OO, Haseeb MA, Martello LA. EZH2 Downregulation augments the effect of irradiation in reducing pancreatic cancer cell proliferation in vitro. Ann Clin Lab Sci. 2020;50(1):45-56.
- Cai MY, Tong ZT, Zhu W, et al. H3K27me3 protein is a promising predictive biomarker of patients’ survival and chemoradioresistance in human nasopharyngeal carcinoma. Mol Med. 2011;17(11-12):1137-1145. doi: 10.2119/molmed.2011.00054
- Kuser-Abali G, Gong L, Yan J, et al. An EZH2-mediated epigenetic mechanism behind P53-dependent tissue sensitivity to DNA damage. Proc Natl Acad Sci U S A. 2018;115(13):3452-3457. doi: 10.1073/pnas.1719532115
- Brenneman RJ, Sharifai N, Fischer-Valuck B, et al. Abscopal effect following proton beam radiotherapy in a patient with inoperable metastatic retroperitoneal sarcoma. Front Oncol. 2019;9:922. doi: 10.3389/fonc.2019.00922
- Wu C, Jin X, Yang J, et al. Inhibition of EZH2 by chemo- and radiotherapy agents and small molecule inhibitors induces cell death in castration-resistant prostate cancer. Oncotarget. 2016;7(3):3440-3452. doi: 10.18632/oncotarget.6497
- Klaus CR, Keats JA, Smith JJ, et al. Tazemetostat displays synergistic antiproliferative activity with backbone therapies in preclinical models of AT/RT and MRT. Cancer Res. 2017;77(13):1944. doi: 10.1158/1538-7445.AM2017-1944
- Gounder MM, Zhu G, Roshal L, et al. Immunologic correlates of the abscopal effect in a SMARCB1/INI1-negative poorly differentiated chordoma after EZH2 inhibition and radiotherapy. Clin Cancer Res. 2019;25(7):2064-2071. doi: 10.1158/1078-0432.Ccr-18-3133
- Johnsrud AJ, Jenkins SV, Jamshidi-Parsian A, et al. Evidence for early stage anti-tumor immunity elicited by spatially fractionated radiotherapy-immunotherapy combinations. Radiat Res. 2020;194(6):688-697. doi: 10.1667/rade-20-00065.1
- Lukas L, Zhang H, Cheng K, Epstein A. Immune priming with spatially fractionated radiation therapy. Curr Oncol Rep. 2023;25(12):1483-1496. doi: 10.1007/s11912-023-01473-7
- Qi L, Lindsay H, Kogiso M, et al. Evaluation of an EZH2 inhibitor in patient-derived orthotopic xenograft models of pediatric brain tumors alone and in combination with chemo- and radiation therapies. Lab Invest. 2022;102(2):185-193. doi: 10.1038/s41374-021-00700-8
- Park Y, Chui MH, Suryo Rahmanto Y, et al. Loss of ARID1A in tumor cells renders selective vulnerability to combined ionizing radiation and PARP inhibitor therapy. Clin Cancer Res. 2019;25(18):5584-5594. doi: 10.1158/1078-0432.Ccr-18-4222
- Neagu AN, Bruno P, Johnson KR, Ballestas G, Darie CC. Biological basis of breast cancer-related disparities in precision oncology era. Int J Mol Sci. 2024;25(7):4113. doi: 10.3390/ijms25074113
- Werner RJ, Kelly AD, Issa JJ. Epigenetics and precision oncology. Cancer J. 2017;23(5):262-269. doi: 10.1097/ppo.0000000000000281
- Durán M, Faull I, Lastra E, Laes JF, Rodrigo AB, Sánchez- Escribano R. ARID1A genomic alterations driving microsatellite instability through somatic MLH1 methylation with response to immunotherapy in metastatic lung adenocarcinoma: A case report. J Med Case Rep. 2021;15(1):89. doi: 10.1186/s13256-020-02589-1
- Goswami S, Chen Y, Anandhan S, et al. ARID1A mutation plus CXCL13 expression act as combinatorial biomarkers to predict responses to immune checkpoint therapy in mUCC. Sci Transl Med. 2020;12(548):eabc4220. doi: 10.1126/scitranslmed.abc4220
- Li L, Li M, Jiang Z, Wang X. ARID1A mutations are associated with increased immune activity in gastrointestinal cancer. Cells. 2019;8(7):678. doi: 10.3390/cells8070678
- Pignata S, Califano D, Lorusso D, et al. MITO END- 3: Efficacy of avelumab immunotherapy according to molecular profiling in first-line endometrial cancer therapy. Ann Oncol. 2024;35(7):667-676. doi: 10.1016/j.annonc.2024.04.007
- Zhou H, Sun D, Song S, et al. Efficacy of immunotherapy in arid1a-mutant solid tumors: A single-center retrospective study. Discov Oncol. 2024;15(1):213. doi: 10.1007/s12672-024-01074-1
- Nutt SL, Keenan C, Chopin M, Allan RS. EZH2 function in immune cell development. Biol Chem. 2020;401(8):933-943 doi: 10.1515/hsz-2019-0436
- Kim HJ, Cantor H, Cosmopoulos K. Overcoming immune checkpoint blockade resistance via EZH2 inhibition. Trends Immunol. 2020;41(10):948-963. doi: 10.1016/j.it.2020.08.010