AccScience Publishing / ARNM / Volume 2 / Issue 2 / DOI: 10.36922/arnm.3523

Optimizing conventional radiotherapy: A synergistic approach with generative artificial intelligence and computational sustainability

João Melo e Castro1* José Neves1,2
Show Less
1 Artificial Intelligence and Health Research Unit, Polytechnic Health Higher Institute of the North/Advanced Polytechnic and University Cooperative, Famalicão, Portugal
2 Department of information and Technology, University of Minho, Braga, Minho & Artificial Intelligence and Health Research Unit, Polytechnic Health Higher Institute of the North/ Advanced Polytechnic and University Cooperative, Famalicão, Portugal
Submitted: 29 April 2024 | Accepted: 13 June 2024 | Published: 25 June 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( )

Conventional radiotherapy (CR) stands at a critical juncture, poised for transformation through the integration of cutting-edge technologies. This article explores the transformative potential of integrating generative artificial intelligence (GAI) and computational sustainability (CS) principles into CR. The convergence of GAI techniques, such as generative adversarial networks, with CS offers novel approaches for optimizing treatment planning, enhancing precision, and ensuring long-term sustainability in radiotherapy practices. We delve deeper into the personalized medicine strategy facilitated by generative models, taking into account patient-specific anatomical variations and dose optimization. The article highlights the role of GAI in adaptive radiotherapy, enabling real-time adjustments to treatment plans based on dynamic changes in patient anatomy. CS principles contribute to resource optimization and energy efficiency, addressing the environmental impact of CR practices. The synergy between GAI and CS fosters innovations in treatment techniques, data-driven decision-making, and ethical considerations, promoting equitable access and minimizing disparities. This article provides a comprehensive overview of the potential benefits and challenges associated with the integration of GAI and CS in CR, shaping the future of precision, efficiency, and sustainable radiotherapy practices.

Generative artificial intelligence
Computational sustainability
Conventional radiotherapy
Treatment planning optimization
Adaptive radiotherapy
  1. Ringborg U, Bergqvist D, Brorsson B, et al. The Swedish council on technology assessment in health care (SBU): Systematic overview of radiotherapy for cancer including a prospective survey of radiotherapy practice in Sweden 2001. Acta Oncol. 2003;42:357-365. doi: 10.1080/02841860310010826


  1. Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: Current advances and future directions. Int J Med Sci. 2012;9(3):193-199. doi: 10.7150/ijms.3635


  1. Chen X, Du J, Huang J, Zeng Y, Yuan K. Neoadjuvant and adjuvant therapy in intrahepatic cholangiocarcinoma. J Clin Transl Hepatol. 2022;10(3):553-563. doi: 10.14218/JCTH.2021.00250


  1. Koka K, Verma A, Dwarakanath BS, Papineni RVL. Technological advancements in external beam radiation therapy (EBRT): An indispensable tool for cancer treatment. Cancer Manag Res. 2022;14:1421-1429. doi: 10.2147/CMAR.S351744


  1. Chargari C, Deutsch E, Blanchard P, et al. Brachytherapy: An overview for clinicians. CA Cancer J Clin. 2019;69(5):386-401. doi: 10.3322/caac.21578.


  1. Bubeck S, Chandrasekaran V, Eldan R, et al. Sparks of Artificial General Intelligence: Early Experiments with GPT-4. ArXiv; 2023;5. doi: 10.48550/arXiv.2303.12712


  1. Lehmann F, Buschek D. Examining autocompletion as a basic concept for interaction with generative AI. I-Com. 2020;19(3):251-264. doi: 10.1515/icom-2020-0025


  1. Castelvecchi D. Can we open the black box of AI? Nature. 2016;538(7623):20-23. doi: 10.1038/538020a


  1. Brynjolfsson E, Mitchell T. What can machine learning do? Workforce implications. Science. 2017;358(6370):1530-1534. doi: 10.1126/science.aap8062


  1. Janiesch C, Zschech P, Heinrich K. Machine learning and deep learning. Electron Mark. 2021;31(3):685-695. doi: 10.1007/s12525-021-00475-2


  1. Kühl N, Schemmer M, Goutier M, Satzger G. Artificial intelligence and machine learning. Electron Mark. 2022;32(4):2235-2244. doi: 10.1007/s12525-022-00598-0


  1. Samtani S, Zhu H, Padmanabhan B, Chai Y, Chen H, Nunamaker F Jr. Deep learning for information systems research. J Manag Inf Sys. 2023;40(1):271-301. doi: 10.1080/07421222.2023.2172772


  1. Goodfellow I, Bengio Y, Courville A. Deep Learning. United States: The MIT Press; 2016.


  1. Tomczak JM. Deep Generative Modeling. New York: Springer International Publishing; 2022. doi: 10.1007/978-3-030-93158-2


  1. Ruthotto L, Haber E. An introduction to deep generative modeling. GAMM Mitt. 2021;44(2):e202100008. doi: 10.1002/gamm.202100008


  1. Jebara T, editor. Generative versus discriminative learning. In: Machine Learning. United States: Springer; 2004. p. 17-60. doi: 10.1007/978-1-4419-9011-2_2


  1. Alankrita A, Mamta M, Gopi B. Generative adversarial network: An overview of theory and applications. Int J Inf Manage Data Insights. 2021;1(1):100004. doi: 10.1016/j.jjimei.2020.100004


  1. Wei R, Mahmood A. Recent advances in variational autoencoders with representation learning for biomedical informatics: A survey. IEEE Access. 2021;9:4939-4956. doi: 10.1109/ACCESS.2020.3048309


  1. Brown T, Mann B, Ryder N, et al. Language models are few-shot learners. In: Larochelle H, Ranzato M, Hadsell R, Balcan MF, Lin H, editors. Advances in Neural Information Processing Systems. Vol. 33. Glasgow: Curran Associates Inc.; 2020. p. 1877-1901.


  1. Schramowski P, Turan C, Andersen N, Rothkopf C, Kersting K. Large pre-trained language models contain human-like biases of what is right and wrong to do. Nat Mach Intell. 2022;4(3):258-268. doi: 10.1038/s42256-022-00458-8


  1. Rombach R, Blattmann A, Lorenz D, Esser P, Ommer B. High-Resolution Image Synthesis with Latent Diffusion Models. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022. p. 10674-10685. doi: 10.1109/CVPR52688.2022.01042


  1. Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models. In: Larochelle H, Ranzato M, Hadsell R, Balcan MF, Lin H, editors. Advances in Neural Information Processing Systems. vol. 33. Glasgow: Curran Associates Inc.; 2020. p. 6840-6851.


  1. Gomes C, Dietterich T, Barrett C, et al. Computational sustainability: Computing for a better world and a sustainable future. Commun ACM. 2019;62(9):56-65. doi: 10.1145/3339399


  1. Chatterjee D, Rao S. Computational sustainability: A socio-technical perspective. ACM Comput Surv. 2021;53(5):1-29. doi: 10.1145/3409797


  1. Van Wynsberghe A. Sustainable AI: AI for sustainability and the sustainability of AI. AI Ethics. 2021;1:213-221. doi: 10.1007/s43681-021-00043-6


  1. Sorin V, Barash Y, Konen E, Klang E. Creating artificial images for radiology applications using generative adversarial networks (GANs)-a systematic review. Acad Radiol. 2020;27(8):1175-1185. doi: 10.1016/j.acra.2019.12.024


  1. Liu Y, Lei Y, Wang Y, et al. Evaluation of a deep learning-based pelvic synthetic CT generation technique for MRI-based prostate proton treatment planning. Phys Med Biol. 2019;64(20):205022. doi: 10.1088/1361-6560/ab41af


  1. Edmund JM, Nyholm T. A review of substitute CT generation for MRI-only radiation therapy. Radiat Oncol. 2017;12(1):28. doi: 10.1186/s13014-016-0747-y


  1. Dougeni E, Faulkner K, Panayiotakis G. A review of patient dose and optimisation methods in adult and paediatric CT scanning. Eur J Radiol. 2012;81(4):e665-e683. doi: 10.1016/j.ejrad.2011.05.025


  1. Olberg S, Zhang H, Kennedy WR, et al. Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR-only breast radiotherapy. Med Phys. 2019;46(9):4135-4147. doi: 10.1002/mp.13716


  1. Bourbonne V, Jaouen V, Hognon C, et al. Dosimetric validation of a GAN-based pseudo-CT generation for MRI-only stereotactic brain radiotherapy. Cancers (Basel). 2021;13(5):1082. doi: 10.3390/cancers13051082


  1. Maspero M, Savenije MH, Dinkla AM, et al. Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy. Phys Med Biol. 2018;63(18):185001. doi: 10.1088/1361-6560/aada6d


  1. Liao W, Pu Y. Dose-conditioned synthesis of radiotherapy dose with auxiliary classifier generative adversarial network. IEEE Access. 2021;9:87972-87981. doi: 10.1109/ACCESS.2021.3089369


  1. Li X, Wang C, Sheng Y, et al. An artificial intelligence-driven agent for real-time head-and-neck IMRT plan generation using conditional generative adversarial network (cGAN). Med Phys. 2021;48(6):2714-2723. doi: 10.1002/mp.14770


  1. McIntosh C, Purdie TG. Voxel-based dose prediction with multi-patient atlas selection for automated radiotherapy treatment planning. Phys Med Biol. 2017;62(2):415-431. doi: 10.1088/1361-6560/62/2/415


  1. Song Y, Hu J, Liu Y, et al. Dose prediction using a deep neural network for accelerated planning of rectal cancer radiotherapy. Radiother Oncol. 2020;149:111-116. doi: 10.1016/j.radonc.2020.05.005


  1. Ranjith CP, Puzhakkal N, Arunkrishnan MP, et al. Mean parotid dose prediction model using machine learning regression method for intensity-modulated radiotherapy in head and neck cancer. Med Dosim. 2021;46(3):283-288. doi: 10.1016/j.meddos.2021.02.003


  1. Appenzoller LM, Michalski JM, Thorstad WL, et al. Predicting dose-volume histograms for organs-at-risk in IMRT planning. Med Phys. 2012;39(12):7446-7461. doi: 10.1118/1.4761864


  1. Mahmood R, Babier A, McNiven A, et al. Automated Treatment Planning in Radiation Therapy using Generative Adversarial Networks. ArXiv; 2018. Available from: https:// [Last accessed on 2024 Apr 02].


  1. Kearney V, Chan JW, Wang T, et al. DoseGAN: A generative adversarial network for synthetic dose prediction using attention-gated discrimination and generation. Sci Rep. 2020;10(1):11073. doi: 10.1038/s41598-020-68062-7


  1. Harms J, Lei Y, Wang T, et al. Cone-beam CT-derived relative stopping power map generation via deep learning for proton radiotherapy. Med Phys. 2020;47(9):4416-4427. doi: 10.1002/mp.14347


  1. Yan D, Vicini F, Wong J, Martinez A. Adaptive radiation therapy. Phys Med Biol. 1997;42(1):123-132. doi: 10.1088/0031-9155/42/1/008


  1. Lichter KE, Charbonneau K, Sabbagh A, et al. Evaluating the environmental impact of radiation therapy using life cycle assessments: A critical review. Int J Radiat Oncol Biol Phys. 2023;117(3):554-567. doi: 10.1016/j.ijrobp.2023.04.036


  1. Khan S, Syed A, Ahmad R, Rather TA, Ajaz M, Jan F. Radioactive waste management in a hospital. Int J Health Sci (Qassim). 2010;4(1):39-46.


  1. Lichter K, Charbonneau K, Sabbagh A, et al. The environmental impact of radiation oncology: The “footprint” of external beam radiation therapy. Int J Radiat Oncol Biol Phys. 2023;117(2):e597-e598. doi: 10.1016/j.ijrobp.2023.06.1956


  1. Dona Lemus OM, Cao M, Cai B, Cummings M, Zheng D. Adaptive radiotherapy: Next-generation radiotherapy. Cancers (Basel). 2024;16(6):1206. doi: 10.3390/cancers16061206


  1. Xie L, Xu D, He K, Tian X. Machine learning-based radiotherapy time prediction and treatment scheduling management. J Appl Clin Med Phys. 2023;24(9):e14076. doi: 10.1002/acm2.14076


  1. Kokkinos K, Lakioti E, Moustakas K, et al. Sustainable medical waste management using an intuitionistic fuzzy-based decision support system. Sustainability. 2024;16(1):298. doi: 10.3390/su16010298


  1. Bekbolatova M, Mayer J, Ong CW, Toma M. Transformative potential of AI in healthcare: Definitions, applications, and navigating the ethical landscape and public perspectives. Healthcare (Basel). 2024;12(2):125. doi: 10.3390/healthcare12020125


  1. Vora LK, Gholap AD, Jetha K, et al. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics. 2023;15(7):1916. doi: 10.3390/pharmaceutics15071916


  1. Amann J, Vetter D, Blomberg SN, et al. To explain or not to explain?-Artificial intelligence explainability in clinical decision support systems. PLOS Digit Health. 2022;1:e0000016. doi: 10.1371/journal.pdig.0000016


  1. Tsopra R, Fernandez X, Luchinat C, et al. A framework for validating AI in precision medicine: Considerations from the European ITFoC consortium. BMC Med Inform Decis Mak. 2021;21(1):274. doi: 10.1186/s12911-021-01634-3


  1. Farasati Far B. Artificial intelligence ethics in precision oncology: Balancing advancements in technology with patient privacy and autonomy. Explor Target Antitumor Ther. 2023;4(4):685-689. doi: 10.37349/etat.2023.00160


  1. Kehayias CE, Yan Y, Bontempi D, et al. Prospective deployment of an automated implementation solution for artificial intelligence translation to clinical radiation oncology. Front Oncol. 2024;13:1305511. doi: 10.3389/fonc.2023.1305511


  1. Elhaddad M, Hamam S. AI-Driven clinical decision support systems: An ongoing pursuit of potential. Cureus. 2024;16(4):e57728. doi: 10.7759/cureus.57728
Conflict of interest
The authors declare that they have no competing interests.
Back to top
Advances in Radiotherapy & Nuclear Medicine, Electronic ISSN: 2972-4392 Published by AccScience Publishing