Seizures and chronic kidney disease: An in-depth review
Seizures are not uncommon in patients with chronic kidney disease (CKD), with an approximate incidence of roughly 10%. There are two primary groups: Patients who develop acute provoked seizures in the setting of CKD and patients with pre-existing epilepsy who then develop CKD. The recognition of potential etiology and management of seizures in this patient population may be challenging for clinicians, particularly non-neurologists. Standard antiepileptic drug (AED) treatment is indicated for those with pre-existing epilepsy. The prescription of AED in CKD population requires careful consideration, due to potentially altered pharmacokinetics. Clinicians frequently encounter challenges in the selection, loading, titration, and maintenance of AEDs. There are few internationally recognized consensus recommendations for AED prescription in CKD and dialysis. Non-AED management aims at addressing factors that may have provoked the seizure. In this article, we provide an in-depth review of the potential etiologies and pathophysiological pathways of provoked seizures in CKD. We discuss strategies, including non-AED treatment options, which aim to prevent, and/or manage provoked seizures in the setting of CKD. We discuss the AEDs used in contemporary clinical practice and how their metabolism is affected by CKD, concurrent AED prescriptions, and dialysis.
Fisher RS, Acevedo C, Arzimanoglou A, et al., 2014, ILAE official report: A practical clinical definition of epilepsy. Epilepsia, 55: 475–482. https://doi.org/10.1111/epi.12550
Ben-Ari Y, Dudek FE, 2010, Primary and secondary mechanisms of epileptogenesis in the temporal lobe: There is a before and an after. Epilepsy Curr, 10: 118–125. https://doi.org/10.1111/j.1535–7511.2010.01376.x
McNamara JO, 1994, Cellular and molecular basis of epilepsy. J Neurosci, 14: 3413–3425.
Vezzani A, Fujinami RS, White HS, et al., 2016, Infections, inflammation and epilepsy. Acta Neuropathol, 131: 211–234. https://doi.org/10.1007/s00401–015–1481–5
Dalmau J, Gleichman AJ, Hughes EG, et al., 2008, Anti- NMDA-receptor encephalitis: Case series and analysis of the effects of antibodies. Lancet Neurol, 7: 1091–1098. https://doi.org/10.1016/S1474-4422(08)70224-2
Titulaer MJ, McCracken L, Gabilondo I, et al., 2013, Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: An observational cohort study. Lancet Neurol, 12: 157–165. https://doi.org/10.1016/S1474-4422(12)70310-1
Petit-Pedrol M, Armangue T, Peng X, et al., 2014, Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: A case series, characterization of the antigen, and analysis of the effects of antibodies. Lancet Neurol, 13: 276–286. https://doi.org/10.1016/S1474-4422(13)70299-0
Lancaster E, Dalmau J, 2012, Neuronal autoantigens-pathogenesis, associated disorders and antibody testing. Nat Rev Neurol, 8: 380–390. https://doi.org/10.1038/nrneurol.2012.99
Sazgar M, 2021, Kidney disease and epilepsy. J Stroke Cerebrovasc Dis, 30: 105651. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105651
Levin A, Stevens PE, Bilous RW, et al., 2012, Kidney disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl, 3: 1–50. https://doi.org/10.1038/kisup.2012.73
Anders HJ, Huber TB, Isermann B, et al., 2018, CKD in diabetes: Diabetic kidney disease versus nondiabetic kidney disease. Nat Rev Nephrol, 14: 361–377. https://doi.org/10.1038/s41581-018-0001-y
Foreman KJ, Marquez N, Dolgert A, et al., 2018, Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: Reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet, 392: 2052–2090. https://doi.org/10.1016/S0140-6736(18)31694-5
Kalantar-Zadeh K, Jafar TH, Nitsch D, et al., 2021, Chronic kidney disease. Lancet, 398: 786–802. https://doi.org/10.1016/S0140-6736(21)00519-5
Burn DJ, Bates D, 1998, Neurology and the kidney. J Neurol Neurosurg Psychiatry, 65: 810–821. http://dx.doi.org/10.1136/jnnp.65.6.810
Eknoyan G, Lameire N, Barsoum R, et al., 2004, The burden of kidney disease: Improving global outcomes. Kidney Int, 66: 1310–1314. https://doi.org/10.1111/j.1523-1755.2004.00894.x
Títoff V, Moury HN, Títoff IB, et al., 2019, Seizures, antiepileptic drugs, and CKD. Am J Kidney Dis, 73: 90–101. https://doi.org/10.1053/j.ajkd.2018.03.021
Barnett MW, Larkman PM, 2007, The action potential. Pract Neurol, 7: 192–197.
Sokoloff L, 1999, Energetics of functional activation in neural tissues. Neurochem Res, 24: 321–329. https://doi.org/10.1023/a:1022534709672
Dietzel I, Heinemann U, Lux HD, 1989, Relations between slow extracellular potential changes, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain. Glia, 2: 25–44. https://doi.org/10.1002/glia.440020104
Kiernan MC, Walters RJ, Andersen KV, et al., 2002, Nerve excitability changes in chronic renal failure indicate membrane depolarization due to hyperkalaemia. Brain, 125: 1366–1378. https://doi.org/10.1093/brain/awf123
Lacerda G, Krummel T, Hirsch E, 2010, Neurologic presentations of renal diseases. Neurol Clin, 28: 45–59. https://doi.org/10.1016/j.ncl.2009.09.003
Rosner MH, Husain-Syed F, Reis T, et al., 2021, Uremic encephalopathy. Kidney Int, 101: 227–241. https://doi.org/10.1016/j.kint.2021.09.025
Abbott NJ, Patabendige AA, Dolman DE, et al., 2010, Structure and function of the blood-brain barrier. Neurobiol Dis, 37: 13–25. https://doi.org/10.1016/j.nbd.2009.07.030
Jing W, Jabbari B, Vaziri ND, 2018, Uremia induces upregulation of cerebral tissue oxidative/inflammatory cascade, down-regulation of Nrf2 pathway and disruption of blood brain barrier. Am J Transl Res, 10: 2137–2147.
Heidland A, Sebekova K, Klassen A, et al., 2010, Mechanisms of acute uremic encephalopathy: Early activation of Fos and Fra-2 gene products in different nuclei/areas of the rat brain. J Ren Nutr, 20: S44–S50. https://doi.org/10.1053/j.jrn.2010.05.011
Kim DM, Lee IH, Song CJ, 2016, Uremic encephalopathy: MR imaging findings and clinical correlation. Am J Neuroradiol, 37: 1604–1609. https://doi.org/10.3174/ajnr.A4776
Malek M, 2018, Brain consequences of acute kidney injury: Focusing on the hippocampus. Kidney Res Clin Pract, 37: 315–322. https://doi.org/10.23876/j.krcp.18.0056
Zhang XM, Zhu J, 2011, Kainic acid-induced neurotoxicity: Targeting glial responses and glia-derived cytokines. Curr Neuropharmacol, 9: 388–398. https://doi.org/10.2174/157015911795596540
Büttner S, Stadler A, Mayer C, et al., 2020, Incidence, risk factors, and outcome of acute kidney injury in neurocritical care. J Intensive Care Med, 35: 338–346. https://doi.org/10.1177/0885066617748596
Grams ME, Rabb H, 2012, The distant organ effects of acute kidney injury. Kidney Int, 81: 942–948. https://doi.org/10.1038/ki.2011.241
Brocker C, Thompson DC, Vasiliou V, 2012, The role of hyperosmotic stress in inflammation and disease. Biomol Concepts, 3: 345–364. https://doi.org/10.1515/bmc-2012-0001
Hamm LL, Nakhoul N, Hering-Smith KS, 2015, Acid-base homeostasis. Clin J Am Soc Nephrol, 10: 2232–2242. https://doi.org/10.2215/CJN.07400715
Liu M, Liang Y, Chigurupati S, et al., 2008, Acute kidney injury leads to inflammation and functional changes in the brain. J Am Soc Nephrol, 19: 1360–1370. https://doi.org/10.1681/ASN.2007080901
Bramham K, Seed PT, Lightstone L, et al., 2016, Diagnostic and predictive biomarkers for pre-eclampsia in patients with established hypertension and chronic kidney disease. Kidney Int, 89: 874–885. https://doi.org/10.1016/j.kint.2015.10.012
Wiles K, Bramham K, Seed PT, et al., 2021, Placental and endothelial biomarkers for the prediction of superimposed pre-eclampsia in chronic kidney disease. Pregnancy Hypertens, 24: 58–64. https://doi.org/10.1016/j.preghy.2021.02.010
Szpera-Gozdziewicz A, Breborowicz GH, 2014, Endothelial dysfunction in the pathogenesis of pre-eclampsia. Front Biosci, 19: 734–746. https://doi.org/10.2741/4240
Melchiorre K, Giorgione V, Thilaganathan B, 2021, The placenta and preeclampsia: Villain or victim? Am J Obstet Gynecol, 226: S954–S962. https://doi.org/10.1016/j.ajog.2020.10.024
Clausen P, Ekbom P, Damm P, et al., 2007, Signs of maternal vascular dysfunction precede preeclampsia in women with Type 1 diabetes. J Diabetes Complications, 21: 288–293. https://doi.org/10.1016/j.jdiacomp.2006.03.004
Dusse LM, Rios DR, Pinheiro MB, et al., 2011, Pre-eclampsia: Relationship between coagulation, fibrinolysis and inflammation. Clin Chim Acta, 412: 17–21. https://doi.org/10.1016/j.cca.2010.09.030
Duley L, 2009, The global impact of pre-eclampsia and eclampsia. Semin Perinatol, 33: 130–137. https://doi.org/10.1053/j.semperi.2009.02.010
Usala RL, Verbalis JG, 2018, Disorders of water and sodium homeostasis and bone. Curr Opin Endocr Metab Res, 3: 83–92. https://doi.org/10.1016/j.coemr.2018.06.001
Halawa I, Andersson T, Tomson T, 2011, Hyponatremia and risk of seizures: A retrospective cross‐sectional study, Epilepsia, 52: 410–413. https://doi.org/10.1111/j.1528-1167.2010.02939.x
Kengne FG, Decaux G, 2018, Hyponatremia and the brain. Kidney Int Rep, 3: 24–35. https://doi.org/10.1016/j.ekir.2017.08.015
Ayus JC, Krothapalli RK, Arieff AI, 1987, Treatment of symptomatic hyponatremia and its relation to brain damage. New Engl J Med, 317: 1190–1195. https://doi.org/10.1056/NEJM198711053171905
George JC, Zafar W, Bucaloiu ID, et al., 2018, Risk factors and outcomes of rapid correction of severe hyponatremia. Clin J Am Soc Nephrol, 13: 984–992. https://doi.org/10.2215/CJN.13061117
DeLorenzo RJ, Sun DA, Deshpande LS, 2006, Erratum to “Cellular mechanisms underlying acquired epilepsy: The calcium hypothesis of the induction and maintenance of epilepsy”. [Pharmacol Ther, 105: (2005) 229–266]. Pharmacol Ther, 111: 288–325. https://doi.org/10.1016/j.pharmthera.2004.10.004
Isaev D, Ivanchick G, Khmyz V, et al., 2012, Surface charge impact in low-magnesium model of seizure in rat hippocampus. J Neurophysiol, 107: 417–423. https://doi.org/10.1152/jn.00574.2011
Sinert R, Zehtabchi S, Desai S, et al., 2007, Serum ionized magnesium and calcium levels in adult patients with seizures. Scand J Clin Lab Invest, 67: 317–326. https://doi.org/10.1080/00365510601051441
Yuen AW, Sander JW, 2012, Can magnesium supplementation reduce seizures in people with epilepsy? A hypothesis. Epilepsy Res, 100: 152–156. https://doi.org/10.1016/j.eplepsyres.2012.02.004
Tombini M, Palermo A, Assenza G, et al., 2018, Calcium metabolism serum markers in adult patients with epilepsy and the effect of vitamin D supplementation on seizure control. Seizure, 58: 75–81. https://doi.org/10.1016/j.seizure.2018.04.008
Ureña-Torres PA, Vervloet M, Mazzaferro S, et al., 2019, Novel insights into parathyroid hormone: Report of the
Bühler G, Balabanova S, Milowski S, et al., 1997, Detection of immunoreactive parathyroid hormone-related protein in human cerebrospinal fluid. Exp Clin Endocrinol Diabetes, 105: 336–340. https://doi.org/10.1055/s-0029-1211775
Weinstein R, 2001, Hypocalcemic toxicity and atypical reactions in therapeutic plasma exchange. J Clin Apher, 16: 210–211. https://doi.org/10.1002/jca.10000
Gibbs R, Macnaughton P, 2007, Electrolyte and metabolic disturbances in critically ill patients. Anaesth Intensive Care, 8: 529–533. https://doi.org/10.1016/j.mpaic.2007.09.015
Gungor O, Aydin Z, Inci A, et al., 2021, Seizures in patients with kidney diseases: A neglected problem? Nephrol Dial Transplant, 38: 291–299. https://doi.org/10.1093/ndt/gfab283
Abdelmalik PA, Shannon P, Yiu A, et al., 2007, Hypoglycemic seizures during transient hypoglycemia exacerbate hippocampal dysfunction. Neurobiol Dis, 26: 646–660. https://doi.org/10.1016/j.nbd.2007.03.002
Halawa I, Zelano J, Kumlien E, 2015, Hypoglycemia and risk of seizures: A retrospective cross-sectional study. Seizure, 25: 147–149. https://doi.org/10.1016/j.seizure.2014.10.005
Hahr AJ, Molitch ME, 2015, Management of diabetes mellitus in patients with chronic kidney disease. Clin Diabetes Endocrinol, 1: 2. https://doi.org/10.1186/s40842-015-0001-9
Brick JF, Gutrecht JA, Ringel RA, 1989, Reflex epilepsy and nonketotic hyperglycemia in the elderly: A specific neuroendocrine syndrome. Neurology, 39: 394. https://doi.org/10.1212/WNL.39.3.394
Santos PC, Krieger JE, Pereira AC, 2012, Renin-angiotensin system, hypertension, and chronic kidney disease: Pharmacogenetic implications. J Pharmacol Sci, 120: 77–88. https://doi.org/10.1254/jphs.12r03cr
Kopecky C, Lytvyn Y, Domenig O, et al., 2019, Molecular regulation of the renin-angiotensin system by sodium-glucose cotransporter 2 inhibition in Type 1 diabetes mellitus. Diabetologia, 62: 1090–1093. https://doi.org/10.1007/s00125-019-4871-8
Zhou L, Liu Y, 2016, Wnt/β-catenin signaling and renin-angiotensin system in chronic kidney disease. Curr Opin Nephrol Hypertens, 25: 100–106. https://doi.org/10.1097/MNH.0000000000000205
Petrea RE, O’Donnell A, Beiser AS, et al., 2020, Mid to late life hypertension trends and cerebral small vessel disease in the Framingham Heart Study. Hypertension, 76: 707–714. https://doi.org/10.1161/HYPERTENSIONAHA.120.15073
Biose IJ, Dewar D, Macrae IM, et al., 2020, Impact of stroke co-morbidities on cortical collateral flow following ischaemic stroke. J Cereb Blood Flow Metab, 40: 978–990. https://doi.org/10.1177/0271678X19858532
Sprick JD, Nocera JR, Hajjar I, et al., 2020, Cerebral blood flow regulation in end-stage kidney disease. Am J Physiol Ren Physiol, 319: F782–F791. https://doi.org/10.1152/ajprenal.00438.2020
Claassen JA, Thijssen DH, Panerai RB, et al., 2021, Regulation of cerebral blood flow in humans: Physiology and clinical implications of autoregulation. Physiol Rev, 101: 1487–1559. https://doi.org/10.1152/physrev.00022.2020
Mauritz M, Hirsch LJ, Camfield P, et al., 2022, Acute symptomatic seizures: An educational, evidence‐based review. Epileptic Disord, 24: 26–49. https://doi.org/10.1684/epd.2021.1376
Fugate JE, Rabinstein AA, 2015, Posterior reversible encephalopathy syndrome: Clinical and radiological manifestations, pathophysiology, and outstanding questions. Lancet Neurol, 14: 914–925. https://doi.org/10.1016/S1474-4422(15)00111-8
Fugate JE, Claassen DO, Cloft HJ, et al., 2010, Posterior reversible encephalopathy syndrome: Associated clinical and radiologic findings. Mayo Clin Proc, 85: 427–432. https://doi.org/10.4065/mcp.2009.0590
Fischer M, Schmutzhard E, 2017, Posterior reversible encephalopathy syndrome. J Neurol, 264: 1608–1616. https://doi.org/10.1007/s00415-016-8377-8
Agarwal R, 2018, Mechanisms and mediators of hypertension induced by erythropoietin and related molecules. Nephrol Dial Transplant, 33: 1690–1698. https://doi.org/10.1093/ndt/gfx324
Strippoli GF, Craig JC, Manno C, et al., 2004, Hemoglobin targets for the anemia of chronic kidney disease: A meta-analysis of randomized, controlled trials. J Am Soc Nephrol, 15: 3154–3165. https://doi.org/10.1097/01.ASN.0000145436.09176.A7
Mahmoud SH, Zhou XY, Ahmed SN, 2020, Managing the patient with epilepsy and renal impairment. Seizure, 76: 143–152. https://doi.org/10.1016/j.seizure.2020.02.006
Hitchings AW, 2016, Drugs that lower the seizure threshold. Adverse Drug React Bull, 298: 1151–1154. https://doi.org/10.1097/FAD.0000000000000016
Sahani MM, Daoud TM, Sam R, et al., 2001, Dialysis disequilibrium syndrome revisited. Hemodial Int, 5: 92–96. https://doi.org/10.1111/hdi.2001.5.1.92
Mistry K, 2019, Dialysis disequilibrium syndrome prevention and management. Int J Nephrol Renovasc Dis, 12: 69–77. https://doi.org/10.2147/IJNRD.S165925
Zepeda-Orozco D, Quigley R, 2012, Dialysis disequilibrium syndrome. Pediatr Nephrol, 27: 2205–2211. https://doi.org/10.1007/s00467-012-2199-4
Trinh-Trang-Tan MM, Cartron JP, Bankir L, 2005, Molecular basis for the dialysis disequilibrium syndrome: Altered aquaporin and urea transporter expression in the brain. Nephrol Dial Transplant, 20: 1984–1988. https://doi.org/10.1093/ndt/gfh877
Wong SS, Kwaan HC, Ing TS, 2017, Venous air embolism related to the use of central catheters revisited: With emphasis on dialysis catheters. Clin Kidney J, 10: 797–803. https://doi.org/10.1093/ckj/sfx064
Brull SJ, Prielipp RC, 2017, Vascular air embolism: A silent hazard to patient safety. J Crit Care, 42: 255–263. https://doi.org/10.1016/j.jcrc.2017.08.010
Sprague SM, Corwin HL, Wilson RS, et al., 1986, Encephalopathy in chronic renal failure responsive to deferoxamine therapy: Another manifestation of aluminum neurotoxicity. Arch Intern Med, 146: 2063–2064. https://doi.org/10.1001/archinte.1986.00360220245039
Coulson JM, Hughes BW, 2022, Dose-response relationships in aluminum toxicity in humans. Clin Toxicol, 60: 415–428. https://doi.org/10.1080/15563650.2022.2029879
Sadakane Y, Kawahara M, 2018, Implications of metal binding and asparagine deamidation for amyloid formation. Int J Mol Sci, 19: 2449. https://doi.org/10.3390/ijms19082449
Ahmed GA, Khalil SK, Abbas L, et al., 2020, ATR-IR and EPR spectroscopy for detecting the alterations in cortical synaptosomes induced by aluminium stress. Spectrochim Acta A Mol Biomol Spectrosc, 228: 117535. https://doi.org/10.1016/j.chemphyslip.2020.104931
Bechstein WO, 2000, Neurotoxicity of calcineurin inhibitors: Impact and clinical management. Transplant Int, 13: 313–326. https://doi.org/10.1007/s001470050708
Tan TC, Robinson PJ, 2006, Mechanisms of calcineurin inhibitor-induced neurotoxicity. Transplant Rev, 20: 49–60. https://doi.org/10.1016/j.trre.2006.02.005
Anghel D, Tanasescu R, Campeanu A, et al., 2013, Neurotoxicity of immunosuppressive therapies in organ transplantation. Maedica, 8: 170–175.
De Castro JT, Appenzeller S, Colella MP, et al., 2022, Neurological manifestations in thrombotic microangiopathy: Imaging features, risk factors and clinical course. PLoS One, 17: e0272290. https://doi.org/10.1371/journal.pone.0272290
Mohammadi MH, Salarzaei M, Parooie F, 2019, Neurological complications after renal transplantation: A systematic review and meta‐analysis. Ther Aph Dial, 23: 518–528. https://doi.org/10.1111/1744-9987.12838
Faravelli I, Velardo D, Podestà MA, et al., 2021, Immunosuppression-related neurological disorders in kidney transplantation. J Nephrol, 34: 539–555. https://doi.org/10.1007/s40620-020-00956-1
Bayer G, von Tokarski F, Thoreau B, et al., 2019, Etiology and outcomes of thrombotic microangiopathies. Clin J Am Soc Nephrol, 14: 557–566. https://doi.org/10.2215/CJN.11470918
Sakhuja V, Sud K, Kalra OP, et al., 2001, Central nervous system complications in renal transplant recipients in a tropical environment. J Neurol Sci, 183: 89–93. https://doi.org/10.1016/s0022-510x(00)00485-8
Mahale P, Shiels MS, Lynch CF, et al., 2018, Incidence and outcomes of primary central nervous system lymphoma in solid organ transplant recipients. Am J Transplant, 18: 453–461. https://doi.org/10.1111/ajt.14465
Snanoudj R, Durrbach A, Leblond V, et al., 2003, Primary brain lymphomas after kidney transplantation: Presentation and outcome. Transplantation, 76: 930–937. https://doi.org/10.1097/01.TP.0000079253.06061.52
DeAngelis LM, 1999, Primary central nervous system lymphoma. J Neurol Neurosurg Psychiatry, 66: 699–701. https://doi.org/10.1136/jnnp.66.6.699
Power A, Chan K, Singh SK, et al., 2012, Appraising stroke risk in maintenance hemodialysis patients: A large single-center cohort study. Am J Kidney Dis, 59: 249–257. https://doi.org/10.1053/j.ajkd.2011.07.016
Toyoda K, Ninomiya T, 2014, Stroke and cerebrovascular diseases in patients with chronic kidney disease. Lancet Neurol, 13: 823–833. https://doi.org/10.1016/S1474-4422(14)70026-2
Conrad J, Pawlowski M, Dogan M, et al., 2013, Seizures after cerebrovascular events: Risk factors and clinical features. Seizure, 22: 275–282. https://doi.org/10.1016/j.seizure.2013.01.014
Tietjen DP, Moore J Jr., Gouge SF, 1987, Hemodialysis-associated acute subdural hematoma. Am J Nephrol, 7: 478–481. https://doi.org/10.1159/000167526
Kumar A, Cage A, Dhar R, 2015, Dialysis-induced worsening of cerebral edema in intracranial hemorrhage: A case series and clinical perspective. Neurocrit Care, 22: 283–287. https://doi.org/10.1007/s12028-014-0063-z
Chen J, Ye H, Zhang J, et al., 2022, Pathogenesis of seizures and epilepsy after stroke. Acta Epileptologica, 4: 2. https://doi.org/10.1186/s42494-021-00068-8
Baumgaertel MW, Kraemer M, Berlit P, 2014, Neurologic complications of acute and chronic renal disease. Handb Clin Neurol, 119: 383–393. https://doi.org/10.1016/B978-0-7020-4086-3.00024-2
Hart LA, Sibai BM, 2013, Seizures in pregnancy: Epilepsy, eclampsia, and stroke. Semin Perinatol, 37: 207–224. https://doi.org/10.1053/j.semperi.2013.04.001
Sterns RH, 2015, Disorders of plasma sodium-causes, consequences, and correction. N Engl J Med, 372: 55–65. https://doi.org/10.1056/NEJMra1404489
Nardonea R, Brigoc F, Trinkaa E, 2016, Acute symptomatic seizures caused by electrolyte disturbances. J Clin Neurol, 12: 21–33. https://doi.org/10.3988/jcn.2016.12.1.21
Chen BB, Prasad C, Kobrzynski M, et al., 2016, Seizures related to hypomagnesemia: A case series and review of the literature. Child Neurol Open, 3: 2329048X16674834. https://doi.org/10.1177/2329048X1667483
Gasparini S, Ferlazzo E, Sueri C, et al., 2019, Hypertension, seizures, and epilepsy: A review on pathophysiology and management. Neurol Sci, 40: 1775–1783. https://doi.org/10.1007/s10072-019-03913-4
Miller JB, Suchdev K, Jayaprakash N, et al., 2018, New developments in hypertensive encephalopathy. Curr Hypertens Rep, 20(2): 13. https://doi.org/10.1007/s11906-018-0813-y
Unger T, Borghi C, Charchar F, et al., 2020, 2020 International Society of Hypertension global hypertension practice guidelines. Hypertension, 75: 1334–1357. https://doi.org/10.1161/HYPERTENSIONAHA.120.15026
Alhilali LM, Reynolds AR, Fakhran S, 2014, A multidisciplinary model of risk factors for fatal outcome in posterior reversible encephalopathy syndrome. J Neurol Sci, 347: 59–65. https://doi.org/10.1016/j.jns.2014.09.019
Li R, Mitchell P, Dowling R, et al., 2013, Is hypertension predictive of clinical recurrence in posterior reversible encephalopathy syndrome? J Clin Neurosci, 20: 248–252. https://doi.org/10.1016/j.jocn.2012.02.023
Winkelmayer WC, Mehta J, Wang PS, 2007, Benzodiazepine use and mortality of incident dialysis patients in the United States. Kidney Int, 72: 1388–1393. https://doi.org/10.1038/sj.ki.5002548
Canavese C, Morellini V, Lazzarich E, et al., 2005, Seizures and renal failure: Is there a link? Nephrol Dial Transplant, 20: 2855–2857. https://doi.org/10.1093/ndt/gfi140
Barbour T, Johnson S, Cohney S, et al., 2012, Thrombotic microangiopathy and associated renal disorders. Nephrol Dial Transplant, 27: 2673–2685. https://doi.org/10.1093/ndt/gfs279
Hodzic E, Brcic M, Atic M, et al., 2014, Posterior reversible encephalopathy syndrome (PRES) as a complication of immunosuppressive therapy in renal transplantation in children. Med Arch, 68: 218–220. https://doi.org/10.5455/medarh.2014.68.218-220
Piotrowski PC, Lutkowska A, Tsibulski A, et al., 2017, Neurologic complications in kidney transplant recipients. Folia Neuropathol, 55: 86–109. https://doi.org/10.5114/fn.2017.68577
Delanty N, Vaughan CJ, French JA, 1998, Medical causes of seizures. Lancet, 352: 383–390. https://doi.org/10.1016/S0140-6736(98)02158-8
Fugate JE, Kalimullah EA, Hocker SE, et al., 2013, Cefepime neurotoxicity in the intensive care unit: A cause of severe, underappreciated encephalopathy. Crit Care, 17: R264. https://doi.org/10.1186/cc13094
Nalesnik MA, 2001, The diverse pathology of post-transplant lymphoproliferative disorders: The importance of a standardized approach. Transpl Infect Dis, 3: 88–96. https://doi.org/10.1034/j.1399-3062.2001.003002088.x
Cavaliere R, Petroni G, Lopes MB, et al., 2010, Primary central nervous system post‐transplantation lymphoproliferative disorder: An international primary central nervous system lymphoma collaborative group report. Cancer, 116: 863–870. https://doi.org/10.1002/cncr.24834
Hughes S, Szeki I, Nash MJ, et al., 2014, Anticoagulation in chronic kidney disease patients-the practical aspects. Clin Kidney J, 7: 442–449. https://doi.org/10.1093/ckj/sfu080
Malhotra K, Ishfaq MF, Goyal N, et al., 2019, Oral anticoagulation in patients with chronic kidney disease: A systematic review and meta-analysis. Neurology, 92: e2421–e2431. https://doi.org/10.1212/WNL.0000000000007534
Vinters HV, Magaki SD, Williams CK, 2021, Neuropathologic findings in chronic kidney disease (CKD). J Stroke Cerebrovasc Dis, 30: 105657. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105657
Lionaki S, Hogan SL, Jennette CE, et al., 2009, The clinical course of ANCA small-vessel vasculitis on chronic dialysis. Kidney Int, 76: 644–651. https://doi.org/10.1038/ki.2009.218
Nayak-Rao S, Shenoy MP, 2017, Stroke in patients with chronic kidney disease: How do we approach and manage it? Indian J Nephrol, 27: 167–171. https://doi.org/10.4103/0971-4065.202405
Kerr PG, Toussaint ND, 2013, KHA‐CARI guideline: Dialysis adequacy (haemodialysis): Dialysis membranes. Nephrology, 18: 485–488. https://doi.org/10.1111/nep.12096
Jin DC, Yun SR, Lee SW, et al., 2018, Current characteristics of dialysis therapy in Korea: 2016 registry data focusing on diabetic patients. Kidney Res Clin Pract, 37: 20–29. https://doi.org/10.23876/j.krcp.2018.37.1.20
Peixoto AJ, 2019, Acute severe hypertension. New Engl J Med, 381: 1843–1852. https://doi.org/10.1056/NEJMcp1901117
Diaz A, Deliz B, Benbadis SR, 2012, The use of newer antiepileptic drugs in patients with renal failure. Expert Rev Neurother, 12: 99–105. https://doi.org/10.1586/ern.11.181
Ashley C, Dunleavy A. 2018. The Renal Drug Handbook: The Ultimate Prescribing Guide for Renal Practitioners. 5th ed. Boca Raton, Florida, United States: CRC Press. p1–1108.
Asconapé JJ, 2014, Use of antiepileptic drugs in hepatic and renal disease. Handb Clin Neurol, 119: 417–432. https://doi.org/10.1016/B978-0-7020-4086-3.00027-8
Mintzer S, Skidmore CT, Abidin CJ, et al., 2009, Effects of antiepileptic drugs on lipids, homocysteine, and C‐reactive protein. Ann Neurol, 65: 448–456. https://doi.org/10.1002/ana.21615
Vyas MV, Davidson BA, Escalaya L, et al., 2015, Antiepileptic drug use for treatment of epilepsy and dyslipidemia: Systematic review. Epilepsy Res, 113: 44–67. https://doi.org/10.1016/j.eplepsyres.2015.03.002
Hesselink JM, Kopsky DJ, 2017, Phenytoin: 80 years young, from epilepsy to breast cancer, a remarkable molecule with multiple modes of action. J Neurol, 264: 1617–1621. https://doi.org/10.1007/s00415-017-8391-5
Bansal AD, Hill CE, Berns JS, 2015, Use of antiepileptic drugs in patients with chronic kidney disease and end stage renal disease. Semin Dial, 28: 404–412. https://doi.org/10.1111/sdi.12385
Roberts WL, De BK, Coleman JP, et al., 1999, Falsely increased immunoassay measurements of total and unbound phenytoin in critically ill uremic patients receiving fosphenytoin. Clin Chem, 45: 829–837.
Czapinski P, Blaszczyk B, Czuczwar SJ, 2005, Mechanisms of action of antiepileptic drugs. Curr Top Med Chem, 5: 3–14. https://doi.org/10.2174/1568026053386962
Patsalos PN, Berry DJ, Bourgeois BF, et al., 2008, Antiepileptic drugs--best practice guidelines for therapeutic drug monitoring: A position paper by the subcommission on therapeutic drug monitoring, ILAE Commission on Therapeutic Strategies. Epilepsia, 49: 1239–1276. https://doi.org/10.1111/j.1528-1167.2008.01561.x
Israni RK, Kasbekar N, Haynes K, et al., 2006, Use of antiepileptic drugs in patients with kidney disease. Semin Dial, 19: 408–416. https://doi.org/10.1111/j.1525-139X.2006.00195.x
Lee CS, Marbury TC, Perchalski RT, et al., 1982, Pharmacokinetics of primidone elimination by uremic patients. J Clin Pharmacol, 22: 301–308. https://doi.org/10.1002/j.1552-4604.1982.tb02679.x
Streete JM, Berry DJ, Jones JA, et al., 1990, Clearance of phenylethylmalonamide during haemodialysis of a patient with renal failure. Ther Drug Monit, 12: 281–283. https://doi.org/10.1097/00007691-199005000-00012
Dichter MA, Brodie MJ, 1996, New antiepileptic drugs. New Engl J Med, 334: 1583–1590. https://doi.org/10.1056/NEJM199606133342407
Ambrósio AF, Soares-da-Silva P, Carvalho CM, et al., 2002, Mechanisms of action of carbamazepine and its derivatives, oxcarbazepine, BIA 2-093, and BIA 2-024. Neurochem Res, 27: 121–130. https://doi.org/10.1023/a:1014814924965
Guerreiro CA, Guerreiro MM, Mintzer S, 2015, Carbamazepine, oxcarbazepine, and eslicarbazepine. In: The Treatment of Epilepsy: Principles and Practice. 6th ed. Philadelphia, PA: Wolters Kluwer. p615–625.
Almeida L, Soares-da-Silva P, 2007, Eslicarbazepine acetate (BIA 2-093). Neurotherapeutics, 4: 88–96. https://doi.org/10.1016/j.nurt.2006.10.005
Kandrotas RJ, Love JM, Gal P, et al., 1990, The effect of hemodialysis and hemoperfusion on serum valproic acid concentration. Neurology, 40: 1456. https://doi.org/10.1212/wnl.40.9.1456
Gillard M, Chatelain P, Fuks B, 2006, Binding characteristics of levetiracetam to synaptic vesicle protein 2A (SV2A) in human brain and in CHO cells expressing the human recombinant protein. Eur J Pharmacol, 536: 102–108. https://doi.org/10.1016/j.ejphar.2006.02.022
Lynch BA, Lambeng N, Nocka K, et al., 2004, The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc Natl Acad Sci, 101: 9861–9866. https://doi.org/10.1073/pnas.0308208101
Chang WP, Südhof TC, 2009, SV2 renders primed synaptic vesicles competent for Ca2+-induced exocytosis. J Neurosci, 29: 883–897. https://doi.org/10.1523/JNEUROSCI.4521-08.2009
Deshpande LS, DeLorenzo RJ, 2014, Mechanisms of levetiracetam in the control of status epilepticus and epilepsy. Front Neurol, 5: 11. https://doi.org/10.3389/fneur.2014.00011
Carunchio I, Pieri M, Ciotti MT, et al., 2007, Modulation of AMPA receptors in cultured cortical neurons induced by the antiepileptic drug levetiracetam. Epilepsia, 48: 654–662. https://doi.org/10.1111/j.1528-1167.2006.00973.x
Zona C, Pieri M, Carunchio I, et al., 2010, Brivaracetam (ucb 34714) inhibits Na+current in rat cortical neurons in culture. Epilepsy Res, 88: 46–54. https://doi.org/10.1016/j.eplepsyres.2009.09.024
Klitgaard H, Matagne A, Nicolas JM, et al., 2016, Brivaracetam: Rationale for discovery and preclinical profile of a selective SV 2A ligand for epilepsy treatment. Epilepsia, 57: 538–548. https://doi.org/10.1111/epi.13340
Nicolas JM, Hannestad J, Holden D, et al., 2016, Brivaracetam, a selective high‐affinity synaptic vesicle protein 2A (SV 2A) ligand with preclinical evidence of high brain permeability and fast onset of action. Epilepsia, 57: 201–209. https://doi.org/10.1111/epi.13267
Rolan P, Sargentini‐Maier ML, Pigeolet E, et al., 2008, The pharmacokinetics, CNS pharmacodynamics and adverse event profile of brivaracetam after multiple increasing oral doses in healthy men. Br J Clin Pharmacol, 66: 71–75. https://doi.org/10.1111/j.1365-2125.2008.03158.x
Rosenfeld WE, 1997, Topiramate: A review of preclinical, pharmacokinetic, and clinical data. Clin Ther, 19: 1294–1308. https://doi.org/10.1016/s0149-2918(97)80006-9
Lamb EJ, Stevens PE, Nashef L, 2004, Topiramate increases biochemical risk of nephrolithiasis. Ann Clin Biochem, 41: 166–169. https://doi.org/10.1258/000456304322880104
Leppik IE, 2004, Zonisamide: Chemistry, mechanism of action, and pharmacokinetics. Seizure, 13: S5-S9. https://doi.org/10.1016/j.seizure.2004.04.016
Ijiri Y, Inoue T, Fukuda F, et al., 2004, of the antiepileptic drug zonisamide in patients undergoing hemodialysis. Epilepsia, 45: 924–927. https://doi.org/10.1111/j.0013-9580.2004.30603.x
Rogawski MA, Tofighy A, White HS, et al., 2015, Current understanding of the mechanism of action of the antiepileptic drug lacosamide. Epilepsy Res, 110: 189–205. https://doi.org/10.1016/j.eplepsyres.2014.11.021
Jo S, Bean BP, 2017, Lacosamide inhibition of Nav1. 7 voltage-gated sodium channels: Slow binding to fast-inactivated states. Mol Pharmacol, 91: 277–286. https://doi.org/10.1124/mol.116.106401
Cawello W, Fuhr U, Hering U, et al., 2013, Impact of impaired renal function on the pharmacokinetics of the antiepileptic drug lacosamide. Clin Pharmacokinet, 52: 897–906. https://doi.org/10.1007/s40262-013-0080-7
Goa KL, Ross SR, Chrisp P, 1993, Lamotrigine. Drugs, 46: 152–176. https://doi.org/10.2165/00003495-199346010-00009
Wootton R, Soul‐Lawton J, Rolan PE, et al., 1997, Comparison of the pharmacokinetics of lamotrigine in patients with chronic renal failure and healthy volunteers. Br J Pharmacol, 43: 23–27. https://doi.org/10.1111/j.1365-2125.1997.tb00028.x
Smetana KS, Cook AM, Bastin ML, et al., 2016, Antiepileptic dosing for critically ill adult patients receiving renal replacement therapy. J Crit Care, 36: 116–124. https://doi.org/10.1016/j.jcrc.2016.06.023
Perucca P, Dopp JM, editors. 2015, Gabapentin and pregabalin. In: Wyllie’s Treatment of Epilepsy: Principles and Practice. Philadelphia, PA: Lippincott Williams and Wilkins. p647–657.
Ochs HR, Greenblatt DJ, Kaschell HJ, et al., 1981, Diazepam kinetics in patients with renal insufficiency or hyperthyroidism. Br J Pharmacol, 12: 829–832. https://doi.org/10.1111/j.1365-2125.1981.tb01315.x
Sankar R, 2012, GABAA receptor physiology and its relationship to the mechanism of action of the 1, 5-benzodiazepine clobazam. CNS Drugs, 26: 229–244. https://doi.org/10.2165/11599020-000000000-00000
Kuo CC, Lin BJ, Chang HR, et al., 2004, Use-dependent inhibition of the N-methyl-D-aspartate currents by felbamate: A gating modifier with selective binding to the desensitized channels. Mol Pharmacol, 65: 370–380. https://doi.org/10.1124/mol.65.2.370
McCabe RT, Wasterlain CG, Kucharczyk NO, et al., 1993, Evidence for anticonvulsant and neuroprotectant action of felbamate mediated by strychnine-insensitive glycine receptors. J Pharmacol Exp Ther, 264: 1248–1252.
Sparagana SP, Strand WR, Adams RC, 2001, Felbamate urolithiasis. Epilepsia, 42: 682–685. https://doi.org/10.1046/j.1528-1157.2001.32500.x
White HS, 1999, Comparative anticonvulsant and mechanistic profile of the established and newer antiepileptic drugs. Epilepsia, 40: S2–S10. https://doi.org/10.1111/j.1528-1157.1999.tb00913.x
Marbury TC, Lee CS, Perchalski RJ, et al., 1981, Hemodialysis clearance of ethosuximide in patients with chronic renal disease. Am J Hosp Pharm, 38: 1757–1760.
Marquardt ED, Ishisaka DY, Batra KK, et al., 1992, Removal of ethosuximide and phenobarbital by peritoneal dialysis in a child. Clin Pharm, 11: 1030–1031.
Adkins JC, Noble S, 1998, Tiagabine. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the management of epilepsy. Drugs, 55: 437–460. https://doi.org/10.2165/00003495-199855030-00013
Grant SM, Heel RC, 1991, Vigabatrin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in epilepsy and disorders of motor control. Drugs, 41: 889–926. https://doi.org/10.2165/00003495-199141060-00007
McLean MJ, Schmutz M, Pozza M, et al., 2005, The influence of rufinamide on sodium currents and action potential firing in rodent neurons. Epilepsia, 46: 296.
Rogawski MA, Hanada T, 2013, Preclinical pharmacology of perampanel, a selective non‐competitive AMPA receptor antagonist. Acta Neurol Scand Suppl, 127: 19–24. https://doi.org/10.1111/ane.12100
Hanada T, Hashizume Y, Tokuhara N, et al., 2011, Perampanel: A novel, orally active, noncompetitive AMPA‐receptor antagonist that reduces seizure activity in rodent models of epilepsy. Epilepsia, 52: 1331–1340. https://doi.org/10.1111/j.1528-1167.2011.03109.x