AccScience Publishing / AN / Online First / DOI: 10.36922/an.3005
REVIEW

Trimethylamine N-oxide: A new target for the prevention and treatment of ischemic stroke

Qi-Yang Yuan1 Yao-Wu Liu1 Bao-Xin Wu3 Shuo Li1 Jin-Jin Yang1 Fen Fang Gao1 Yu-Kun Wang1 Chu Zhou1 Shi-Guang Zhu1,2* De-Qin Geng1,2*
Show Less
1 Department of Neurology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
2 Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
3 Department of Neurology, Peixian People’s Hospital, Xuzhou, Jiangsu Province, China
Advanced Neurology 2024, 3(3), 3005 https://doi.org/10.36922/an.3005
Submitted: 24 February 2024 | Accepted: 19 June 2024 | Published: 23 August 2024
(This article belongs to the Special Issue Advances in stroke research and therapy)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

At present, ischemic stroke (IS) is the main contributor to mortality and disability. As a major chronic non-communicable disease, it poses a major threat to public health. Adding to the already substantial burden of stroke in China is the rapidly aging population and the rising incidence of diabetes mellitus, hypertension, and hyperlipidemia. As a Chinese proverb goes, “diseases invade the body through the mouth,” which is, coincidentally, consistent with a claim by Hippocrates, the father of modern medicine, that the source of all diseases begins in the intestines. These ancient wisdom underscore the importance of dissecting the relationship between IS and diet. Food is the primary source of trimethylamine N-oxide (TMAO), an intestinal metabolite, which has drawn a lot of attention because it plays a key role in a number of pathways linked to the development and progression of atherosclerosis. These pathways include lipid metabolism, vascular endothelial injury, and the induction of inflammation. Given its potential as a therapeutic target for IS, conducting in-depth research on TMAO has become particularly crucial. With varied involvement in atherosclerosis, TMAO stands out as a viable target for innovative treatment techniques targeted at decreasing the risk and severity of IS. It is evident that practicing a specific diet can reduce the risk for IS, underscoring the necessity to investigate the role of controlling dietary TMAO intake in mitigating the risk of IS. At present, a growing body of research has explored the role of TMAO in vascular diseases, uncovering numerous interventions to reduce TMAO levels, which serve dual benefits of addressing both atherosclerosis and the associated risk of IS. This paper reviews the relationship between TMAO and IS, along with the progress in research on the clinical value of TMAO, offering new perspectives on IS prevention and treatment.

Graphical abstract
Keywords
Trimethylamine N-oxide
Ischemic stroke
Atherosclerosis
Funding
The study was supported by the National Health Commission Brain Prevention Committee “Research and Promotion Project of Appropriate Technology Intervention for High-risk Groups of Stroke in China” (GN-2018R0009) and Xuzhou Promoting Science and Technology Innovation Project (KC22241).
Conflict of interest
De-Qin Geng serves as the Editorial Board Member of this journal, but did not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, others authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
  1. Bennett BJ, de Aguiar Vallim TQ, Wang Z, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 2013;17(1):49-60. doi: 10.1016/j.cmet.2012.12.011

 

  1. Hosseinkhani F, Heinken A, Thiele I, Lindenburg PW, Harms AC, Hankemeier T. The contribution of gut bacterial metabolites in the human immune signaling pathway of non-communicable diseases. Gut Microbes. 2021;13(1):1-22. doi: 10.1080/19490976.2021.1882927

 

  1. Li D, Lu Y, Yuan S, et al. Gut microbiota-derived metabolite trimethylamine-N-oxide and multiple health outcomes: An umbrella review and updated meta-analysis. Am J Clin Nutr. 2022;116(1):230-243. doi: 10.1093/ajcn/nqac074

 

  1. Fretts AM, Hazen SL, Jensen P, et al. Association of trimethylamine N-oxide and metabolites with mortality in older adults. JAMA Netw Open. 2022;5(5):e2213242. doi: 10.1001/jamanetworkopen.2022.13242

 

  1. Duttaroy AK. Role of gut microbiota and their metabolites on atherosclerosis, hypertension and human blood platelet function: A review. Nutrients. 2021;13(1):144. doi: 10.3390/nu13010144

 

  1. Han S, Cai L, Chen P, Kuang W. A study of the correlation between stroke and gut microbiota over the last 20 years: A bibliometric analysis. Front Microbiol. 2023;14:1191758. doi: 10.3389/fmicb.2023.1191758

 

  1. Zhang W, Dong XY, Huang R. Gut microbiota in ischemic stroke: Role of gut bacteria-derived metabolites. Transl Stroke Res. 2023;14(6):811-828. doi: 10.1007/s12975-022-01096-3

 

  1. Lüscher TF. They eat what we eat, they digest what we ingest. Eur Heart J. 2023;44(18):1619-1621. doi: 10.1093/eurheartj/ehad104

 

  1. Ufnal M, Zadlo A, Ostaszewski R. TMAO: A small molecule of great expectations. Nutrition. 2015;31(11-12):1317-1323. doi: 10.1016/j.nut.2015.05.006

 

  1. Pham QD, Wolde-Kidan A, Gupta A, et al. Effects of urea and TMAO on lipid self-assembly under osmotic stress conditions. J Phys Chem B. 2018;122(25):6471-6482. doi: 10.1021/acs.jpcb.8b02159

 

  1. Tu WJ, Wang LD. China stroke surveillance report 2021. Mil Med Res. 2023;10(1):33. doi: 10.1186/s40779-023-00463-x

 

  1. Hu X, Ren H, Cao Y. The association between trimethylamine N-oxide levels and ischemic stroke occurrence: A meta-analysis and Mendelian randomization study. BMC Neurol. 2023;23(1):413. doi: 10.1186/s12883-023-03458-2

 

  1. Chen YY, Ye ZS, Xia NG, Xu Y. TMAO as a novel predictor of major adverse vascular events and recurrence in patients with large artery atherosclerotic ischemic stroke. Clin Appl Thromb Hemost. 2022;28:10760296221090503. doi: 10.1177/10760296221090503

 

  1. Farhangi MA, Vajdi M, Asghari-Jafarabadi M. Gut microbiota-associated metabolite trimethylamine N-Oxide and the risk of stroke: A systematic review and dose-response meta-analysis. Nutr J. 2020;19(1):76. doi: 10.1186/s12937-020-00592-2

 

  1. Pluta R, Januszewski S, Czuczwar SJ. The role of gut microbiota in an ischemic stroke. Int J Mol Sci. 2021;22(2):915. doi: 10.3390/ijms22020915

 

  1. Zhu W, Romano KA, Li L, et al. Gut microbes impact stroke severity via the trimethylamine N-oxide pathway. Cell Host Microbe. 2021;29(7):1199-1208.e5. doi: 10.1016/j.chom.2021.05.002

 

  1. Ding L, Chang M, Guo Y, et al. Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism. Lipids Health Dis. 2018;17(1):286. doi: 10.1186/s12944-018-0939-6

 

  1. Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576-585. doi: 10.1038/nm.3145

 

  1. Luqman A, Hassan A, Ullah M, et al. Role of the intestinal microbiome and its therapeutic intervention in cardiovascular disorder. Front Immunol. 2024;15:1321395. doi: 10.3389/fimmu.2024.1321395

 

  1. Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57-63. doi: 10.1038/nature09922

 

  1. Vourakis M, Mayer G, Rousseau G. The role of gut microbiota on cholesterol metabolism in atherosclerosis. Int J Mol Sci. 2021;22(15):8074. doi: 10.3390/ijms22158074

 

  1. Canyelles M, Tondo M, Cedó L, Farràs M, Escolà-Gil JC, Blanco-Vaca F. Trimethylamine N-oxide: A link among diet, gut microbiota, gene regulation of liver and intestine cholesterol homeostasis and HDL function. Int J Mol Sci. 2018;19(10):3228. doi: 10.3390/ijms19103228

 

  1. Luo J, Yang H, Song BL. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol. 2020;21(4):225-245. doi: 10.1038/s41580-019-0190-7

 

  1. Ma G, Pan B, Chen Y, et al. Trimethylamine N-oxide in atherogenesis: Impairing endothelial self-repair capacity and enhancing monocyte adhesion. Biosci Rep. 2017;37(2):BSR20160244. doi: 10.1042/BSR20160244

 

  1. Sun X, Jiao X, Ma Y, et al. Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome. Biochem Biophys Res Commun. 2016;481(1-2):63-70. doi: 10.1016/j.bbrc.2016.11.017

 

  1. Janoudi A, Shamoun FE, Kalavakunta JK, Abela GS. Cholesterol crystal induced arterial inflammation and destabilization of atherosclerotic plaque. Eur Heart J. 2016;37(25):1959-1967. doi: 10.1093/eurheartj/ehv653

 

  1. Koay YC, Chen YC, Wali JA, et al. Plasma levels of trimethylamine-N-oxide can be increased with ‘healthy’ and ‘unhealthy’ diets and do not correlate with the extent of atherosclerosis but with plaque instability. Cardiovasc Res. 2021;117(2):435-449. doi: 10.1093/cvr/cvaa094

 

  1. Maida CD, Norrito RL, Daidone M, Tuttolomondo A, Pinto A. Neuroinflammatory mechanisms in ischemic stroke: Focus on cardioembolic stroke, background, and therapeutic approaches. Int J Mol Sci. 2020;21(18):6454. doi: 10.3390/ijms21186454

 

  1. Nam HS. Gut microbiota and ischemic stroke: The role of trimethylamine N-oxide. J Stroke. 2019;21(2):151-159. doi: 10.5853/jos.2019.00472

 

  1. Janeiro MH, Solas M, Orbe J, et al. Trimethylamine N-oxide as a mediator linking peripheral to central inflammation: An in vitro study. Int J Mol Sci. 2023;24(24):17557. doi: 10.3390/ijms242417557

 

  1. Seldin MM, Meng Y, Qi H, et al. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB. J Am Heart Assoc. 2016;5(2):e002767. doi: 10.1161/JAHA.115.002767

 

  1. Dolkar P, Deyang T, Anand N, et al. Trimethylamine-N-oxide and cerebral stroke risk: A review. Neurobiol Dis. 2024;192:106423. doi: 10.1016/j.nbd.2024.106423

 

  1. Constantino-Jonapa LA, Espinoza-Palacios Y, Escalona- Montaño AR, et al. Contribution of trimethylamine N-oxide (TMAO) to chronic inflammatory and degenerative diseases. Biomedicines. 2023;11(2):431. doi: 10.3390/biomedicines11020431

 

  1. Jenny NS, Callas PW, Judd SE, et al. Inflammatory cytokines and ischemic stroke risk: The REGARDS cohort. Neurology. 2019;92(20):e2375-e2384. doi: 10.1212/WNL.0000000000007416

 

  1. Alsbrook DL, Di Napoli M, Bhatia K, et al. Neuroinflammation in acute ischemic and hemorrhagic stroke. Curr Neurol Neurosci Rep. 2023;23(8):407-431. doi: 10.1007/s11910-023-01282-2

 

  1. Farhangi MA, Vajdi M. Novel findings of the association between gut microbiota-derived metabolite trimethylamine N-oxide and inflammation: Results from a systematic review and dose-response meta-analysis. Crit Rev Food Sci Nutr. 2020;60(16):2801-2823. doi: 10.1080/10408398.2020.1770199

 

  1. Zhu W, Gregory JC, Org E, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165(1):111-124. doi: 10.1016/j.cell.2016.02.011

 

  1. Cheng X, Qiu X, Liu Y, Yuan C, Yang X. Trimethylamine N-oxide promotes tissue factor expression and activity in vascular endothelial cells: A new link between trimethylamine N-oxide and atherosclerotic thrombosis. Thromb Res. 2019;177:110-116. doi: 10.1016/j.thromres.2019.02.028

 

  1. Witkowski M, Witkowski M, Friebel J, et al. Vascular endothelial tissue factor contributes to trimethylamine N-oxide-enhanced arterial thrombosis. Cardiovasc Res. 2022;118(10):2367-2384. doi: 10.1093/cvr/cvab263

 

  1. Jomard A, Liberale L, Doytcheva P, et al. Effects of acute administration of trimethylamine N-oxide on endothelial function: A translational study. Sci Rep. 2022;12(1):8664. doi: 10.1038/s41598-022-12720-5

 

  1. Zhang WQ, Wang YJ, Zhang A, et al. TMA/TMAO in hypertension: Novel horizons and potential therapies. J Cardiovasc Transl Res. 2021;14(6):1117-1124. doi: 10.1007/s12265-021-10115-x

 

  1. Ge X, Zheng L, Zhuang R, et al. The gut microbial metabolite trimethylamine N-oxide and hypertension risk: A systematic review and dose-response meta-analysis. Adv Nutr. 2020;11(1):66-76. doi: 10.1093/advances/nmz064

 

  1. Jiang S, Shui Y, Cui Y, et al. Gut microbiota dependent trimethylamine N-oxide aggravates angiotensin II-induced hypertension. Redox Biol. 2021;46:102115. doi: 10.1016/j.redox.2021.102115

 

  1. Nie J, Xie L, Zhao BX, et al. Serum trimethylamine N-oxide concentration is positively associated with first stroke in hypertensive patients. Stroke. 2018;49(9):2021-2028. doi: 10.1161/STROKEAHA.118.021997

 

  1. Kamel H, Healey JS. Cardioembolic stroke. Circ Res. 2017;120(3):514-526. doi: 10.1161/CIRCRESAHA.116.308407

 

  1. Liu Y, Qu J, Xu J, et al. Trimethylamine-N-oxide: A potential biomarker and therapeutic target in ischemic stroke. Front Neurol. 2023;14:1156879. doi: 10.3389/fneur.2023.1156879

 

  1. Cryan JF, Dinan TG. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701-712. doi: 10.1038/nrn3346

 

  1. Spence JD. Diet for stroke prevention. Stroke Vasc Neurol. 2018;3(2):44-50. doi: 10.1136/svn-2017-000130

 

  1. Wang Z, Bergeron N, Levison BS, et al. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Eur Heart J. 2019;40(7):583-594. doi: 10.1093/eurheartj/ehy799

 

  1. Coutinho-Wolino KS, de F Cardozo L, de Oliveira Leal V, Mafra D, Stockler-Pinto MB. Can diet modulate trimethylamine N-oxide (TMAO) production? What do we know so far. Eur J Nutr. 2021;60(7):3567-3584. doi: 10.1007/s00394-021-02491-6

 

  1. Tenore GC, Caruso D, Buonomo G, et al. Lactofermented Annurca apple puree as a functional food indicated for the control of plasma lipid and oxidative amine levels: Results from a randomised clinical trial. Nutrients. 2019; 11(1):122. doi: 10.3390/nu11010122

 

  1. Brunt VE, Greenberg NT, Sapinsley ZJ, et al. Suppression of trimethylamine N-oxide with DMB mitigates vascular dysfunction, exercise intolerance, and frailty associated with a Western-style diet in mice. J Appl Physiol (1985). 2022;133(4):798-813. doi: 10.1152/japplphysiol.00350.2022

 

  1. Oktaviono YH, Dyah Lamara A, Saputra P, et al. The roles of trimethylamine-N-oxide in atherosclerosis and its potential therapeutic aspect: A literature review. Biomol Biomed. 2023;23(6):936-948. doi: 10.17305/bb.2023.8893

 

  1. Chen ML, Yi L, Zhang Y, et al. Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. mBio. 2016;7(2):e02210-15. doi: 10.1128/mBio.02210-15

 

  1. Sharma V, Sharma V, Shahjouei S, et al. At the intersection of gut microbiome and stroke: A systematic review of the literature. Front Neurol. 2021;12:729399. doi: 10.3389/fneur.2021.729399

 

  1. Tang WH, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575-1584. doi: 10.1056/NEJMoa1109400

 

  1. Gupta N, Buffa JA, Roberts AB, et al. Targeted inhibition of gut microbial trimethylamine N-oxide production reduces renal tubulointerstitial fibrosis and functional impairment in a murine model of chronic kidney disease. Arterioscler Thromb Vasc Biol. 2020;40(5):1239-1255. doi: 10.1161/ATVBAHA.120.314139

 

  1. Rexidamu M, Li H, Jin H, Huang J. Serum levels of trimethylamine-N-oxide in patients with ischemic stroke. Biosci Rep. 2019;39(6):BSR20190515. doi: 10.1042/BSR20190515

 

  1. Wu C, Li C, Zhao W, et al. Elevated trimethylamine N-oxide related to ischemic brain lesions after carotid artery stenting. Neurology. 2018;90(15):e1283-e1290. doi: 10.1212/WNL.0000000000005298

 

  1. Liu D, Gu S, Zhou Z, Ma Z, Zuo H. Associations of plasma TMAO and its precursors with stroke risk in the general population: A nested case-control study. J Intern Med. 2023;293(1):110-120. doi: 10.1111/joim.13572

 

  1. Wu C, Xue F, Lian Y, et al. Relationship between elevated plasma trimethylamine N-oxide levels and increased stroke injury. Neurology. 2020;94(7):e667-e677. doi: 10.1212/WNL.0000000000008862

 

  1. Ma R, Fu W, Zhang J, Hu X, Yang J, Jiang H. TMAO: A potential mediator of clopidogrel resistance. Sci Rep. 2021;11(1):6580. doi: 10.1038/s41598-021-85950-8
Share
Back to top
Advanced Neurology, Electronic ISSN: 2810-9619 Print ISSN: 3060-8589, Published by AccScience Publishing