AccScience Publishing / AN / Online First / DOI: 10.36922/an.3213
REVIEW

Cerebral tau pathology in murine models of closed-head traumatic brain injury: A narrative review and comparison with human disease

Elif O. Dogan1* Aydan Kahriman2 Muhammed E. Gunduz1 Nils Henninger1,3
Show Less
1 Department of Neurology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
2 Department of Neurology, SUNY Upstate Medical University, Syracuse, New York, United States of America
3 Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
Advanced Neurology 2024, 3(3), 3213 https://doi.org/10.36922/an.3213
Submitted: 20 March 2024 | Accepted: 27 May 2024 | Published: 23 August 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Traumatic brain injury (TBI) constitutes a significant public health problem, as a leading cause of death and disability worldwide. Epidemiological evidence indicates that TBI is a major risk factor for several neurodegenerative disorders characterized by the pathological accumulation of the tubulin-associated unit (tau) protein. To delineate the underlying mechanisms promoting tau pathology following TBI, murine models are increasingly utilized as they provide the ability to conduct detailed histopathological analyses under well-controlled conditions. Closed-skull TBI models are frequently employed to mimic the most common type of TBI encountered in clinical settings; however, relatively few studies have examined tau pathology in these models. In this review, we aim to summarize the current data on tau pathologies observed in murine models of closed-head TBI and compare them with human disease. In summary, murine TBI models replicate many important aspects of tau pathology seen in human TBI. This includes phosphorylation of tau protein at similar sites as in human tau, accumulation of hyperphosphorylated tau (pTau) in both neurons and astrocytes, formation of tau oligomers, presence of pTau in similar cerebral locations as in human TBI, and the deregulation of similar tau-related kinases and phosphatases (e.g., glycogen synthase kinase-3, p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and protein phosphatase-2B). Nevertheless, the formation of paired helical filaments and neurofibrillary tangles appears to be limited to tau transgenic models.

Keywords
Axonal injury
Brain trauma
Chronic traumatic encephalopathy
Concussion
Tau oligomers
Neurodegeneration
Neurofibrillary tangles
Transgenic
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Dewan MC, Rattani A, Gupta S, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2019;130(4):1080-1097. doi: 10.3171/2017.10.JNS17352

 

  1. Fleminger S, Ponsford J. Long term outcome after traumatic brain injury. BMJ. 2005;331(7530):1419-1420. doi: 10.1136/bmj.331.7530.1419

 

  1. Thurman DJ, Alverson C, Dunn KA, Guerrero J, Sniezek JE. Traumatic brain injury in the United States: A public health perspective. J Head Trauma Rehabil. 1999;14(6):602-615. doi: 10.1097/00001199-199912000-00009

 

  1. Faul M, Wald MM, Xu L, Coronado VG. Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations, and Deaths, 2002-2006. Atlanta, GA: Centers for Disease Control and Prevention; 2010.

 

  1. Pugh MJ, Kennedy E, Prager EM, et al. Phenotyping the spectrum of traumatic brain injury: A review and pathway to standardization. J Neurotrauma. 2021;38(23):3222-3234. doi: 10.1089/neu.2021.0059

 

  1. LoBue C, Woon FL, Rossetti HC, Hynan LS, Hart J, Cullum CM. Traumatic brain injury history and progression from mild cognitive impairment to Alzheimer disease. Neuropsychology. 2018;32(4):401-409. doi: 10.1037/neu0000431

 

  1. Mielke MM, Ransom JE, Mandrekar J, Turcano P, Savica R, Brown AW. Traumatic brain injury and risk of Alzheimer’s disease and related dementias in the population. J Alzheimers Dis. 2022;88(3):1049-1059. doi: 10.3233/JAD-220159

 

  1. Graham A, Livingston G, Purnell L, Huntley J. Mild Traumatic brain injuries and future risk of developing Alzheimer’s disease: Systematic review and meta-analysis. J Alzheimers Dis. 2022;87(3):969-979. doi: 10.3233/JAD-220069

 

  1. Schneider ALC, Selvin E, Latour L, et al. Head injury and 25-year risk of dementia. Alzheimers Dement. 2021;17(9):1432-1441. doi: 10.1002/alz.12315

 

  1. Brett BL, Gardner RC, Godbout J, Dams-O’Connor K, Keene CD. Traumatic brain injury and risk of neurodegenerative disorder. Biol Psychiatry. 2022;91(5): 498-507. doi: 10.1016/j.biopsych.2021.05.025

 

  1. Graham NS, Sharp DJ. Understanding neurodegeneration after traumatic brain injury: From mechanisms to clinical trials in dementia. J Neurol Neurosurg Psychiatry. 2019;90(11):1221-1233. doi: 10.1136/jnnp-2017-317557

 

  1. Maas AIR, Menon DK, Adelson PD, et al. Traumatic brain injury: Integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017;16(12): 987-1048. doi: 10.1016/S1474-4422(17)30371-X

 

  1. Dams-O’Connor K, Bellgowan PSF, Corriveau R, et al. Alzheimer’s disease-related dementias summit 2019: National research priorities for the investigation of traumatic brain injury as a risk factor for Alzheimer’s disease and related dementias. J Neurotrauma. 2021;38(23):3186-3194. doi: 10.1089/neu.2021.0216

 

  1. Rosenblath W. About a remarkable case of concussion. Dtsch Arch Klin Med. 1899;64:406-422.

 

  1. Graham NSN, Jolly A, Zimmerman K, et al. Diffuse axonal injury predicts neurodegeneration after moderate-severe traumatic brain injury. Brain. 2020;143(12):3685-3698. doi: 10.1093/brain/awaa316

 

  1. Ogino Y, Bernas T, Greer JE, Povlishock JT. Axonal injury following mild traumatic brain injury is exacerbated by repetitive insult and is linked to the delayed attenuation of NeuN expression without concomitant neuronal death in the mouse. Brain Pathol. 2022;32(2):e13034. doi: 10.1111/bpa.13034

 

  1. Gennarelli TA, Thibault LE, Adams JH, Graham DI, Thompson CJ, Marcincin RP. Diffuse axonal injury and traumatic coma in the primate. Ann Neurol. 1982;12(6): 564-574. doi: 10.1002/ana.410120611

 

  1. Adams JH, Doyle D, Graham DI, Lawrence AE, McLellan DR. Diffuse axonal injury in head injuries caused by a fall. Lancet. 1984;2(8417-8418):1420-1422. doi: 10.1016/s0140-6736(84)91620-9

 

  1. Arena JD, Smith DH, Lee EB, et al. Tau immunophenotypes in chronic traumatic encephalopathy recapitulate those of ageing and Alzheimer’s disease. Brain. 2020;143(5): 1572-1587. doi: 10.1093/brain/awaa071

 

  1. LoBue C, Wilmoth K, Cullum CM, et al. Traumatic brain injury history is associated with earlier age of onset of frontotemporal dementia. J Neurol Neurosurg Psychiatry. 2016;87(8):817-820. doi: 10.1136/jnnp-2015-311438

 

  1. Wang Y, Mandelkow E. Tau in physiology and pathology. Nat Rev Neurosci. 2015;17(1):22-35. doi: 10.1038/nrn.2015.1

 

  1. Arendt T, Stieler JT, Holzer M. Tau and tauopathies. Brain Res Bull. 2016;126(Pt 3):238-292. doi: 10.1016/j.brainresbull.2016.08.018

 

  1. Ferrari R. Writing narrative style literature reviews. Med Writing. 2015;24(4):230-235. doi: 10.1179/2047480615z.000000000329

 

  1. Holper S, Watson R, Yassi N. Tau as a biomarker of neurodegeneration. Int J Mol Sci. 2022;23(13):7307. doi: 10.3390/ijms23137307

 

  1. Zhang Y, Wu KM, Yang L, Dong Q, Yu JT. Tauopathies: New perspectives and challenges. Mol Neurodegene. 2022;17(1):28. doi: 10.1186/s13024-022-00533-z

 

  1. Orr ME, Sullivan AC, Frost B. A brief overview of tauopathy: Causes, consequences, and therapeutic strategies. Trends Pharmacol Sci. 2017;38(7):637-648. doi: 10.1016/j.tips.2017.03.011

 

  1. Bieniek KF, Cairns NJ, Crary JF, et al. The second NINDS/ NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. J Neuropathol Exp Neurol. 2021;80(3): 210-219. doi: 10.1093/jnen/nlab001

 

  1. Goode BL, Feinstein SC. Identification of a novel microtubule binding and assembly domain in the developmentally regulated inter-repeat region of tau. J Cell Biol. 1994;124(5):769-782. doi: 10.1083/jcb.124.5.769

 

  1. Hernandez F, Merchan-Rubira J, Valles-Saiz L, Rodriguez- Matellan A, Avila J. Differences between human and murine tau at the N-terminal end. Front Aging Neurosci. 2020;12:11. doi: 10.3389/fnagi.2020.00011

 

  1. Martin L, Latypova X, Wilson CM, et al. Tau protein kinases: Involvement in Alzheimer’s disease. Ageing Res Rev. 2013;12(1):289-309. doi: 10.1016/j.arr.2012.06.003

 

  1. Basheer N, Smolek T, Hassan I, et al. Does modulation of tau hyperphosphorylation represent a reasonable therapeutic strategy for Alzheimer’s disease? From preclinical studies to the clinical trials. Mol Psychiatry. 2023;28(6):2197-2214. doi: 10.1038/s41380-023-02113-z

 

  1. Katsumoto A, Takeuchi H, Tanaka F. Tau pathology in chronic traumatic encephalopathy and Alzheimer’s disease: Similarities and differences. Front Neurol. 2019;10:980. doi: 10.3389/fneur.2019.00980

 

  1. Kahriman A, Bouley J, Smith TW, Bosco DA, Woerman AL, Henninger N. Mouse closed head traumatic brain injury replicates the histological tau pathology pattern of human disease: Characterization of a novel model and systematic review of the literature. Acta Neuropathol Commun. 2021;9(1):118. doi: 10.1186/s40478-021-01220-8

 

  1. Yang Z, Wang P, Morgan D, et al. Temporal MRI characterization, neurobiochemical and neurobehavioral changes in a mouse repetitive concussive head injury model. Sci Rep. 2015;5:11178. doi: 10.1038/srep11178

 

  1. Seo JS, Lee S, Shin JY, et al. Transcriptome analyses of chronic traumatic encephalopathy show alterations in protein phosphatase expression associated with tauopathy. Exp Mol Med. 2017;49(5):e333. doi: 10.1038/emm.2017.56

 

  1. Kondo A, Shahpasand K, Mannix R, et al. Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature. 2015;523(7561):431-436. doi: 10.1038/nature14658

 

  1. Niziolek GM, Hoehn RS, Seitz AP, et al. The role of acid sphingomyelinase inhibition in repetitive mild traumatic brain injury. J Surg Res. 2021;259:296-304. doi: 10.1016/j.jss.2020.09.034

 

  1. Niziolek GM, Boudreau RM, Baker J, et al. Acid sphingomyelinase inhibition mitigates histopathological and behavioral changes in a murine model of traumatic brain injury. J Neurotrauma. 2020;37(17):1902-1909. doi: 10.1089/neu.2019.6436

 

  1. Rehman SU, Ahmad A, Yoon GH, Khan M, Abid MN, Kim MO. Inhibition of c-Jun N-terminal kinase protects against brain damage and improves learning and memory after traumatic brain injury in adult mice. Cereb Cortex. 2018;28(8):2854-2872. doi: 10.1093/cercor/bhx164

 

  1. Arakhamia T, Lee CE, Carlomagno Y, et al. Posttranslational modifications mediate the structural diversity of tauopathy strains. Cell. 2020;180(4):633-644.e612. doi: 10.1016/j.cell.2020.01.027

 

  1. Regalado-Reyes M, Furcila D, Hernandez F, Avila J, DeFelipe J, Leon-Espinosa G. Phospho-tau changes in the human CA1 during Alzheimer’s disease progression. J Alzheimers Dis. 2019;69(1):277-288. doi: 10.3233/JAD-181263

 

  1. Carroll T, Guha S, Nehrke K, Johnson GVW. Tau post-translational modifications: Potentiators of selective vulnerability in sporadic Alzheimer’s disease. Biology (Basel). 2021;10(10):1047. doi: 10.3390/biology10101047

 

  1. Kelley CM, Perez SE, Mufson EJ. Tau pathology in the medial temporal lobe of athletes with chronic traumatic encephalopathy: A chronic effects of neurotrauma consortium study. Acta Neuropathol Commun. 2019;7(1):207. doi: 10.1186/s40478-019-0861-9

 

  1. Mondragon-Rodriguez S, Perry G, Luna-Munoz J, Acevedo- Aquino MC, Williams S. Phosphorylation of tau protein at sites Ser(396-404) is one of the earliest events in Alzheimer’s disease and down syndrome. Neuropathol Appl Neurobiol. 2014;40(2):121-135. doi: 10.1111/nan.12084

 

  1. Biernat J, Mandelkow EM. The development of cell processes induced by tau protein requires phosphorylation of serine 262 and 356 in the repeat domain and is inhibited by phosphorylation in the proline-rich domains. Mol Biol Cell. 1999;10(3):727-740. doi: 10.1091/mbc.10.3.727

 

  1. Ksiezak-Reding H, Pyo HK, Feinstein B, Pasinetti GM. Akt/ PKB kinase phosphorylates separately Thr212 and Ser214 of tau protein in vitro. Biochim Biophys Acta. 2003;1639(3): 159-168. doi: 10.1016/j.bbadis.2003.09.001

 

  1. Strang KH, Goodwin MS, Riffe C, et al. Generation and characterization of new monoclonal antibodies targeting the PHF1 and AT8 epitopes on human tau. Acta Neuropathol Commun. 2017;5(1):58. doi: 10.1186/s40478-017-0458-0

 

  1. Garcia-Sierra F, Ghoshal N, Quinn B, Berry RW, BinderLI. Conformational changes and truncation of tau protein during tangle evolution in Alzheimer’s disease. J Alzheimers Dis. 2003;5(2):65-77. doi: 10.3233/jad-2003-5201

 

  1. Tagge CA, Fisher AM, Minaeva OV, et al. Concussion, microvascular injury, and early tauopathy in young athletes after impact head injury and an impact concussion mouse model. Brain. 2018;141(2):422-458. doi: 10.1093/brain/awx350

 

  1. Albayram O, Kondo A, Mannix R, et al. Cis P-tau is induced in clinical and preclinical brain injury and contributes to post-injury sequelae. Nat Commun. 2017;8(1):1000. doi: 10.1038/s41467-017-01068-4

 

  1. Nakamura K, Greenwood A, Binder L, et al. Proline isomer-specific antibodies reveal the early pathogenic tau conformation in Alzheimer’s disease. Cell. 2012;149(1): 232-244. doi: 10.1016/j.cell.2012.02.016

 

  1. Nakamura K, Zhen Zhou X, Ping Lu K. Cis phosphorylated tau as the earliest detectable pathogenic conformation in Alzheimer disease, offering novel diagnostic and therapeutic strategies. Prion. 2013;7(2):117-120. doi: 10.4161/pri.22849

 

  1. Ghag G, Bhatt N, Cantu DV, et al. Soluble tau aggregates, not large fibrils, are the toxic species that display seeding and cross-seeding behavior. Protein Sci. 2018;27(11):1901-1909. doi: 10.1002/pro.3499

 

  1. Petry FR, Pelletier J, Bretteville A, et al. Specificity of anti-tau antibodies when analyzing mice models of Alzheimer’s disease: Problems and solutions. PLoS One. 2014;9(5):e94251. doi: 10.1371/journal.pone.0094251

 

  1. Li D, Cho YK. High specificity of widely used phospho-tau antibodies validated using a quantitative whole-cell based assay. J Neurochem. 2020;152(1):122-135. doi: 10.1111/jnc.14830

 

  1. Tran HT, Sanchez L, Brody DL. Inhibition of JNK by a peptide inhibitor reduces traumatic brain injury-induced tauopathy in transgenic mice. J Neuropathol Exp Neurol. 2012;71(2):116-129. doi: 10.1097/NEN.0b013e3182456aed

 

  1. Bales JW, Ma X, Yan HQ, Jenkins LW, Dixon CE. Regional calcineurin subunit B isoform expression in rat hippocampus following a traumatic brain injury. Brain Res. 2010;1358: 211-220. doi: 10.1016/j.brainres.2010.08.029

 

  1. Tan Z, Chen L, Ren Y, Jiang X, Gao W. Neuroprotective effects of FK866 against traumatic brain injury: Involvement of p38/ERK pathway. Ann Clin Transl Neurol. 2020;7(5): 742-756. doi: 10.1002/acn3.51044

 

  1. Otani N, Nawashiro H, Fukui S, Nomura N, Shima K. Temporal and spatial profile of phosphorylated mitogen-activated protein kinase pathways after lateral fluid percussion injury in the cortex of the rat brain. J Neurotrauma. 2002;19(12):1587-1596. doi: 10.1089/089771502762300247

 

  1. Huang S, Ge X, Yu J, et al. Increased miR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons. FASEB J. 2018;32(1):512-528. doi: 10.1096/fj.201700673R

 

  1. Zhao S, Fu J, Liu X, Wang T, Zhang J, Zhao Y. Activation of Akt/GSK-3beta/beta-catenin signaling pathway is involved in survival of neurons after traumatic brain injury in rats. Neurol Res. 2012;34(4):400-407. doi: 10.1179/1743132812Y.0000000025

 

  1. Folkerts MM, Parks EA, Dedman JR, Kaetzel MA, Lyeth BG, Berman RF. Phosphorylation of calcium calmodulin-dependent protein kinase II following lateral fluid percussion brain injury in rats. J Neurotrauma. 2007;24(4):638-650. doi: 10.1089/neu.2006.0188

 

  1. Farr SA, Niehoff ML, Kumar VB, Roby DA, Morley JE. Inhibition of glycogen synthase kinase 3β as a treatment for the prevention of cognitive deficits after a traumatic brain injury. J Neurotrauma. 2019;36(11):1869-1875. doi: 10.1089/neu.2018.5999

 

  1. Zhao ZA, Zhao Y, Ning YL, et al. Adenosine A(2A) receptor inactivation alleviates early-onset cognitive dysfunction after traumatic brain injury involving an inhibition of tau hyperphosphorylation. Transl Psychiatry. 2017;7(5):e1123. doi: 10.1038/tp.2017.98

 

  1. Wang Y, Hall RA, Lee M, Kamgar-Parsi A, Bi X, Baudry M. The tyrosine phosphatase PTPN13/FAP-1 links calpain-2, TBI and tau tyrosine phosphorylation. Sci Rep. 2017;7(1):11771. doi: 10.1038/s41598-017-12236-3

 

  1. Furman JL, Sompol P, Kraner SD, et al. Blockade of astrocytic calcineurin/NFAT signaling helps to normalize hippocampal synaptic function and plasticity in a rat model of traumatic brain injury. J Neurosci. 2016;36(5):1502-1515. doi: 10.1523/JNEUROSCI.1930-15.2016

 

  1. Tapella L, Dematteis G, Ruffinatti FA, et al. Deletion of calcineurin from astrocytes reproduces proteome signature of Alzheimer’s disease and epilepsy and predisposes to seizures. Cell Calcium. 2021;100:102480. doi: 10.1016/j.ceca.2021.102480

 

  1. Chen Y, Holstein DM, Aime S, Bollo M, Lechleiter JD. Calcineurin beta protects brain after injury by activating the unfolded protein response. Neurobiol Dis. 2016;94:139-156. doi: 10.1016/j.nbd.2016.06.011

 

  1. Zhao ZA, Li P, Ye SY, et al. Perivascular AQP4 dysregulation in the hippocampal CA1 area after traumatic brain injury is alleviated by adenosine A(2A) receptor inactivation. Sci Rep. 2017;7(1):2254. doi: 10.1038/s41598-017-02505-6

 

  1. Pertwee RG. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol. 2008;153(2):199-215. doi: 10.1038/sj.bjp.0707442

 

  1. Yin Z, Han Z, Hu T, et al. Neuron-derived exosomes with high miR-21-5p expression promoted polarization of M1 microglia in culture. Brain Behav Immun. 2020;83:270-282. doi: 10.1016/j.bbi.2019.11.004

 

  1. Selvaraj P, Wen J, Tanaka M, Zhang Y. Therapeutic effect of a novel fatty acid amide hydrolase inhibitor PF04457845 in the repetitive closed head injury mouse model. J Neurotrauma. 2019;36(10):1655-1669. doi: 10.1089/neu.2018.6226

 

  1. Zhang J, Teng Z, Song Y, Hu M, Chen C. Inhibition of monoacylglycerol lipase prevents chronic traumatic encephalopathy-like neuropathology in a mouse model of repetitive mild closed head injury. J Cereb Blood Flow Metab. 2015;35(3):443-453. doi: 10.1038/jcbfm.2014.216

 

  1. Dogan EO, Bouley J, Zhong J, et al. Genetic ablation of Sarm1 attenuates expression and mislocalization of phosphorylated TDP-43 after mouse repetitive traumatic brain injury. Acta Neuropathol Commun. 2023;11(1):206. doi: 10.1186/s40478-023-01709-4

 

  1. Arendt T, Stieler J, Strijkstra AM, et al. Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals. J Neurosci. 2003;23(18):6972-6981. doi: 10.1523/JNEUROSCI.23-18-06972.2003

 

  1. Yanagisawa M, Planel E, Ishiguro K, Fujita SC. Starvation induces tau hyperphosphorylation in mouse brain: Implications for Alzheimer’s disease. FEBS Lett. 1999;461(3):329-333. doi: 10.1016/s0014-5793(99)01480-5

 

  1. Feng Q, Cheng B, Yang R, Sun FY, Zhu CQ. Dynamic changes of phosphorylated tau in mouse hippocampus after cold water stress. Neurosci Lett. 2005;388(1):13-16. doi: 10.1016/j.neulet.2005.06.022

 

  1. Filipcik P, Novak P, Mravec B, et al. Tau protein phosphorylation in diverse brain areas of normal and CRH deficient mice: Up-regulation by stress. Cell Mol Neurobiol. 2012;32(5):837-845. doi: 10.1007/s10571-011-9788-9

 

  1. Canet G, Zub E, Zussy C, et al. Seizure activity triggers tau hyperphosphorylation and amyloidogenic pathways. Epilepsia. 2022;63(4):919-935. doi: 10.1111/epi.17186

 

  1. Chen M, Song H, Cui J, et al. Proteomic profiling of mouse brains exposed to blast-induced mild traumatic brain injury reveals changes in axonal proteins and phosphorylated tau. J Alzheimers Dis. 2018;66(2):751-773. doi: 10.3233/JAD-180726

 

  1. Petraglia AL, Plog BA, Dayawansa S, et al. The pathophysiology underlying repetitive mild traumatic brain injury in a novel mouse model of chronic traumatic encephalopathy. Surg Neurol Int. 2014;5:184. doi: 10.4103/2152-7806.147566

 

  1. Sacramento CB, Sondhi D, Rosenberg JB, et al. Anti-phospho-tau gene therapy for chronic traumatic encephalopathy. Hum Gene Ther. 2020;31(1-2):57-69. doi: 10.1089/hum.2019.174

 

  1. Murray HC, Osterman C, Bell P, Vinnell L, Curtis MA. Neuropathology in chronic traumatic encephalopathy: A systematic review of comparative post-mortem histology literature. Acta Neuropathol Commun. 2022;10(1):108. doi: 10.1186/s40478-022-01413-9

 

  1. Collins-Praino LE, Corrigan F. Does neuroinflammation drive the relationship between tau hyperphosphorylation and dementia development following traumatic brain injury? Brain Behav Immun. 2017;60:369-382. doi: 10.1016/j.bbi.2016.09.027

 

  1. Luo J, Nguyen A, Villeda S, et al. Long-term cognitive impairments and pathological alterations in a mouse model of repetitive mild traumatic brain injury. Front Neurol. 2014;5:12. doi: 10.3389/fneur.2014.00012

 

  1. Ghajari M, Hellyer PJ, Sharp DJ. Computational modelling of traumatic brain injury predicts the location of chronic traumatic encephalopathy pathology. Brain. 2017;140(2):333-343. doi: 10.1093/brain/aww317

 

  1. Kornyei BS, Szabo V, Perlaki G, et al. Cerebral microbleeds may be less detectable by susceptibility weighted imaging MRI from 24 to 72 hours after traumatic brain injury. Front Neurosci. 2021;15:711074. doi: 10.3389/fnins.2021.711074

 

  1. Suzuki K, Yamada K, Nakada K, et al. MRI characteristics of the glia limitans externa: A 7T study. Magn Reson Imaging. 2017;44:140-145. doi: 10.1016/j.mri.2017.08.012

 

  1. Yamada K. Extracellular tau and its potential role in the propagation of tau pathology. Front Neurosci. 2017;11:667. doi: 10.3389/fnins.2017.00667

 

  1. Perea JR, Lopez E, Diez-Ballesteros JC, Avila J, Hernandez F, Bolos M. Extracellular monomeric tau is internalized by astrocytes. Front Neurosci. 2019;13:442. doi: 10.3389/fnins.2019.00442

 

  1. Stopschinski BE, Holmes BB, Miller GM, et al. Specific glycosaminoglycan chain length and sulfation patterns are required for cell uptake of tau versus alpha-synuclein and beta-amyloid aggregates. J Biol Chem. 2018;293(27):10826- 10840. doi: 10.1074/jbc.RA117.000378

 

  1. Marklund N, Vedung F, Lubberink M, et al. Tau aggregation and increased neuroinflammation in athletes after sports-related concussions and in traumatic brain injury patients - A PET/MR study. Neuroimage Clin. 2021;30:102665. doi: 10.1016/j.nicl.2021.102665

 

  1. Zanier ER, Bertani I, Sammali E, et al. Induction of a transmissible tau pathology by traumatic brain injury. Brain. 2018;141(9):2685-2699. doi: 10.1093/brain/awy193

 

  1. Bittar A, Bhatt N, Hasan TF, et al. Neurotoxic tau oligomers after single versus repetitive mild traumatic brain injury. Brain Commun. 2019;1(1):fcz004. doi: 10.1093/braincomms/fcz004

 

  1. Ojo JO, Mouzon B, Algamal M, et al. Chronic repetitive mild traumatic brain injury results in reduced cerebral blood flow, axonal injury, gliosis, and increased T-Tau and tau oligomers. J Neuropathol Exp Neurol. 2016;75(7): 636-655. doi: 10.1093/jnen/nlw035

 

  1. Puangmalai N, Bhatt N, Bittar A, Jerez C, Shchankin N, Kayed R. Traumatic brain injury derived pathological tau polymorphs induce the distinct propagation pattern and neuroinflammatory response in wild type mice. Prog Neurobiol. 2024;232:102562. doi: 10.1016/j.pneurobio.2023.102562

 

  1. Cherry JD, Esnault CD, Baucom ZH, et al. Tau isoforms are differentially expressed across the hippocampus in chronic traumatic encephalopathy and Alzheimer’s disease. Acta Neuropathol Commun. 2021;9(1):86. doi: 10.1186/s40478-021-01189-4

 

  1. Woerman AL, Aoyagi A, Patel S, et al. Tau prions from Alzheimer’s disease and chronic traumatic encephalopathy patients propagate in cultured cells. Proc Natl Acad Sci U S A. 2016;113(50):E8187-E8196. doi: 10.1073/pnas.1616344113

 

  1. Andreadis A. Tau gene alternative splicing: Expression patterns, regulation and modulation of function in normal brain and neurodegenerative diseases. Biochim Biophys Acta. 2005;1739(2-3):91-103. doi: 10.1016/j.bbadis.2004.08.010

 

  1. Gerson J, Castillo-Carranza DL, Sengupta U, et al. Tau oligomers derived from traumatic brain injury cause cognitive impairment and accelerate onset of pathology in Htau mice. J Neurotrauma. 2016;33(22):2034-2043. doi: 10.1089/neu.2015.4262

 

  1. Mouzon B, Bachmeier C, Ojo J, et al. Chronic white matter degeneration, but no tau pathology at one-year post-repetitive mild traumatic brain injury in a tau transgenic model. J Neurotrauma. 2019;36(4):576-588. doi: 10.1089/neu.2018.5720

 

  1. Ojo JO, Crynen G, Algamal M, et al. Unbiased proteomic approach identifies pathobiological profiles in the brains of preclinical models of repetitive mild traumatic brain injury, tauopathy, and amyloidosis. ASN Neuro. 2020;12:1759091420914768. doi: 10.1177/1759091420914768

 

  1. DeVos SL, Miller RL, Schoch KM, et al. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci Transl Med. 2017;9(374):eaag0481. doi: 10.1126/scitranslmed.aag0481

 

  1. Izzy S, Brown-Whalen A, Yahya T, et al. Repetitive traumatic brain injury causes neuroinflammation before tau pathology in adolescent P301S mice. Int J Mol Sci. 2021;22(2):907. doi: 10.3390/ijms22020907

 

  1. Yu F, Iacono D, Perl DP, et al. Neuronal tau pathology worsens late-phase white matter degeneration after traumatic brain injury in transgenic mice. Acta Neuropathol. 2023;146(4):585-610. doi: 10.1007/s00401-023-02622-9

 

  1. Belfiore R, Rodin A, Ferreira E, et al. Temporal and regional progression of Alzheimer’s disease-like pathology in 3xTg-AD mice. Aging Cell. 2019;18(1):e12873. doi: 10.1111/acel.12873

 

  1. Hu W, Tung YC, Zhang Y, Liu F, Iqbal K. Involvement of activation of asparaginyl endopeptidase in tau hyperphosphorylation in repetitive mild traumatic brain injury. J Alzheimers Dis. 2018;64(3):709-722. doi: 10.3233/JAD-180177

 

  1. Davis SA, Gan KA, Dowell JA, Cairns NJ, Gitcho MA. TDP- 43 expression influences amyloidbeta plaque deposition and tau aggregation. Neurobiol Dis. 2017;103:154-162. doi: 10.1016/j.nbd.2017.04.012

 

  1. Gao F, Hu M, Zhang J, Hashem J, Chen C. TDP-43 drives synaptic and cognitive deterioration following traumatic brain injury. Acta Neuropathol. 2022;144(2):187-210. doi: 10.1007/s00401-022-02449-w

 

  1. Tome SO, Tsaka G, Ronisz A, et al. TDP-43 pathology is associated with increased tau burdens and seeding. Mol Neurodegener. 2023;18(1):71. doi: 10.1186/s13024-023-00653-0

 

  1. Jadhav VS, Stair JG, Eck RJ, et al. Transcriptomic evaluation of tau and TDP-43 synergism shows tauopathy predominance and reveals potential modulating targets. Neurobiol Dis. 2024;193:106441. doi: 10.1016/j.nbd.2024.106441
Share
Back to top
Advanced Neurology, Electronic ISSN: 2810-9619 Print ISSN: 3060-8589, Published by AccScience Publishing