AccScience Publishing / AN / Volume 3 / Issue 2 / DOI: 10.36922/an.3359

Unraveling genetic contributions to neurodevelopmental disorders and epilepsy in a pediatric cohort from a Mexican state

Norma Elena de León-Ojeda1,2† Adonis Estévez-Perera2,3† Alioth Guerrero-Aranda2,4*
Show Less
1 Department of Genetic, CRIT-Occidente, Guadalajara, Jalisco, Mexico
2 Epilepsy Clinic, Hospital “Country 2000,” Guadalajara, Jalisco, Mexico
3 Department of Rehabilitation, Center for Health Studies, Guadalajara, Jalisco, Mexico
4 Department of Health Sciences, Los Valles University Center, University of Guadalajara, Ameca, Jalisco, Mexico
Advanced Neurology 2024, 3(2), 3359
Submitted: 4 April 2024 | Accepted: 27 May 2024 | Published: 13 June 2024
(This article belongs to the Special Issue Advances in the pathogenesis, diagnosis and treatment of epilepsy)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( )

Neurodevelopmental disorders (NDDs) encompass a broad spectrum of conditions that significantly impact personal, social, academic, or occupational functioning from an early age. Epilepsy emerges as a significant comorbid condition, featuring a complex interplay between neurodevelopmental processes and epileptogenesis, likely rooted in genetic abnormalities. This research is a descriptive observational study designed to assess the contribution of genetic variations to the clinical presentation of NDDs in a pediatric population from the Mexican state of Jalisco, aiming to enhance diagnostic and management strategies. The patients underwent comprehensive clinical evaluations and personalized genetic testing using next-generation sequencing techniques, and their relatives were studied only on a case-by-case basis if information regarding the mode of inheritance was needed. This study included 24 patients and 30 relatives. Diagnoses of Mendelian inheritance diseases were identified in 14 patients, including cases with mutations not previously associated with NDDs. Genetic testing revealed a variety of pathogenic and likely pathogenic mutations, as well as variants of uncertain significance, across a range of genes implicated in NDDs. Notable findings included new mutations related to low-prevalence genetic syndromes and the identification of both inherited and de novo mutations contributing to the neurodevelopmental phenotypes observed. Our findings underscore the complex genetic landscape of NDDs and epilepsy, highlighting the crucial role of genetic evaluation in elucidating the etiology of these disorders within the studied population. The integration of genetic testing into the diagnostic process for NDDs not only facilitates a more precise diagnosis but also informs prognostic outlooks and guides tailored intervention strategies. Moreover, this study advocates for the continued exploration of genetic underpinnings in NDDs to further refine diagnostic accuracy, improve therapeutic approaches, and support familial decision-making, and emphasizing the importance of genetics in advancing neurodevelopmental medicine.

Neurodevelopmental disorders
Genetic variations
Next-generation sequencing
  1. Gilissen C, Hehir-Kwa JY, Thung DT, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature. 2014;511(7509):344-347. doi: 10.1038/nature13394


  1. Baio J, Wiggins L, Christensen DL, et al. Prevalence of autism spectrum disorder among children aged 8 Years-Autism and developmental disabilities monitoring network, 11 Sites, United States, 2014. MMWR Surveill Summ. 2018;67(6):1-23. doi: 10.15585/mmwr.ss6706a1


  1. Polanczyk GV, Willcutt EG, Salum GA, Kieling C, Rohde LA. ADHD prevalence estimates across three decades: An updated systematic review and meta-regression analysis. Int J Epidemiol. 2014;43(2):434-442. doi: 10.1093/ije/dyt261


  1. Hermann B, Seidenberg M, Jones J. The neurobehavioural comorbidities of epilepsy: Can a natural history be developed? Lancet Neurol. 2008;7(2):151-160. doi: 10.1016/S1474-4422(08)70018-8


  1. Brunklaus A, Lal D. Sodium channel epilepsies and neurodevelopmental disorders: From disease mechanisms to clinical application. Dev Med Child Neurol. 2020;62(7):784-792. doi: 10.1111/dmcn.14519


  1. Lee EH, Choi YS, Yoon HS, Bahn GH. Clinical impact of epileptiform discharge in children with attention-deficit/hyperactivity disorder (ADHD). J Child Neurol. 2016;31:584-588. doi: 10.1177/0883073815604223


  1. Reilly C, Atkinson P, Memon A, et al. Autism, ADHD and parent-reported behavioural difficulties in young children with epilepsy. Seizure. 2019;71:233-239. doi: 10.1016/j.seizure.2019.08.003


  1. Morris-Rosendahl DJ, Crocq MA. Neurodevelopmental disorders-the history and future of a diagnostic concept. Dialogues Clin Neurosci. 2020;22(1):65-72. doi: 10.31887/DCNS.2020.22.1/macrocq


  1. Parenti I, Rabaneda LG, Schoen H, Novarino G. Neurodevelopmental disorders: From genetics to functional pathways. Trends Neurosci. 2020;43(8):608-621. doi: 10.1016/j.tins.2020.05.004


  1. Carlsson T, Molander F, Taylor MJ, Jonsson U, Bölte S. Early environmental risk factors for neurodevelopmental disorders-a systematic review of twin and sibling studies. Dev Psychopathol. 2021;33(4):1448-1495. doi: 10.1017/S0954579420000620


  1. Huang Y, Zhao Y, Ren Y, et al. Identifying genomic variations in monozygotic twins discordant for autism spectrum disorder using whole-genome sequencing. Mol Ther Nucleic Acids. 2019;14:204-211. doi: 10.1016/j.omtn.2018.11.015


  1. Li Y, Jia X, Wu H, et al. Genotype and phenotype correlations for SHANK3 de novo mutations in neurodevelopmental disorders. Am J Med Genet A. 2018;176(12):2668-2676. doi: 10.1002/ajmg.a.40666


  1. Rehder C, Bean LJ, Bick D, et al. Next-generation sequencing for constitutional variants in the clinical laboratory, 2021 revision: A technical standard of the American college of medical genetics and genomics (ACMG). Genet Med. 2021;23(8):1399-1415. doi: 10.1038/S41436-021-01139-4


  1. Buers I, Persico I, Schöning L, et al. Crisponi/cold-induced sweating syndrome: Differential diagnosis, pathogenesis and treatment concepts. Clin Genet. 2020;97(1):209-221. doi: 10.1111/cge.13639


  1. Margolis SS, Sell GL, Zbinden MA, Bird LM. Angelman syndrome. Neurotherapeutics. 2015;12(3):641-650. doi: 10.1007/s13311-015-0361-y


  1. Phelan MC, Stapleton GA, Rogers RC. Deletion 22q13 syndrome: Phelan-McDermid syndrome. In: Management of Genetic Syndromes. 3rd ed. United States: Wiley; 2010. doi: 10.1002/9780470893159.ch21


  1. Kuht HJ, Thomas KA, Hisaund M, MacOnachie GD, Thomas MG. Ocular manifestations of PNPT1-related neuropathy. J Neuroophthalmol. 2021;41(3):e293-e296. doi: 10.1097/WNO.0000000000001012


  1. Vlaskamp DR, Shaw BJ, Burgess R, et al. SYNGAP1 encephalopathy: A distinctive generalized developmental and epileptic encephalopathy. Neurology. 2019;92(2):e96-e107. doi: 10.1212/WNL.0000000000006729


  1. Zhou J, Hamdan H, Yalamanchili HK, et al. Disruption of MeCP2-TCF20 complex underlies distinct neurodevelopmental disorders. Proc Natl Acad Sci U S A. 2022;119(4):e2119078119. doi: 10.1073/pnas.2119078119


  1. Jakimiec M, Paprocka J, Śmigiel R. CDKL5 deficiency disorder-a complex epileptic encephalopathy. Brain Sci. 2020;10(2):107. doi: 10.3390/brainsci10020107


  1. Reijnders MR, Janowski R, Alvi M, et al. PURA syndrome: Clinical delineation and genotype-phenotype study in 32 individuals with review of published literature. J Med Genet. 2018;55(2):104-113. doi: 10.1136/jmedgenet-2017-104946


  1. Mihaylova V, Müller JS, Vilchez JJ, et al. Clinical and molecular genetic findings in COLQ-mutant congenital myasthenic syndromes. Brain. 2008;131(3):747-759. doi: 10.1093/brain/awm325


  1. Schreiner F, Hoppenz M, Klaeren R, Reimann J, Woelfle J. Novel COLQ mutation 950delC in synaptic congenital myasthenic syndrome and symptomatic heterozygous relatives. Neuromuscul Disord. 2007;17(3):262-265. doi: 10.1016/j.nmd.2006.11.010


  1. Torres C. Matrimonio entre parientes. Causas y causales de dispensa en la parroquia de La Encarnación, 1778-1822. In: Letras Históricas. Sacramento, CA: Creative Media Partners, LLC; 2015.


  1. Dumois-Petersen S, Gallegos-Arreola MP, Magaña- Torres MT, Perea-Díaz FJ, Ringman JM, Figuera LE. Autosomal dominant early onset Alzheimer’s disease in the Mexican state of Jalisco: High frequency of the mutation PSEN1 c.1292C>A and phenotypic profile of patients. Am J Med Genet C Semin Med Genet. 2020;184(4)1023-1029. doi: 10.1002/ajmg.c.31865


  1. Murrell J, Ghetti B, Cochran E, et al. The A431E mutation in PSEN1 causing familial Alzheimer’s disease originating in Jalisco State, Mexico: An additional fifteen families. Neurogenetics. 2006;7(4):277-279. doi: 10.1007/s10048-006-0053-1


  1. Hurtado-Jiménez R, Gardea-Torresdey J. Evaluation of the exposure to selenium in the Highlands of Jalisco, Mexico. Salud Publica Mex. 2007;49(4):312-315. doi: 10.1590/S0036-36342007000400011


  1. Hurtado-Jiménez R, Gardea-Torresdey JL. Arsenic in drinking water in the Los Altos de Jalisco region of Mexico. Rev Panam Salud Publica. 2006;20(4):236-247. doi: 10.1590/S1020-49892006000900004


  1. Tata BK, Harbulot C, Csaba Z, Peineau S, Jacquier S, De Roux N. Rabconnectin-3α is required for the morphological maturation of GnRH neurons and kisspeptin responsiveness. Sci Rep. 2017;7:42463. doi: 10.1038/srep42463


  1. Stefanski A, Calle-López Y, Leu C, Pérez-Palma E, Pestana- Knight E, Lal D. Clinical sequencing yield in epilepsy, autism spectrum disorder, and intellectual disability: A systematic review and meta-analysis. Epilepsia. 2021;62(1):14. doi: 10.1111/epi.16755


  1. Fatkin D, Johnson R. Variants of uncertain significance and “Missing Pathogenicity.” J Am Heart Assoc. 2020;9(3):e015588. doi: 10.1161/JAHA.119.015588
Conflict of interest
The authors declare that they have no competing interests.
Back to top
Advanced Neurology, Electronic ISSN: 2810-9619 Published by AccScience Publishing