AccScience Publishing / AN / Volume 3 / Issue 1 / DOI: 10.36922/an.2184
Cite this article
44
Download
469
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Bruton’s tyrosine kinase inhibitors in brain diseases

Hongying Hao1 Qiang Liu1 Han Jin2*
Show Less
1 Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, Tianjin Medical University General Hospital, Tianjin, China
2 Central Laboratory, Tianjin Medical University General Hospital, Tianjin, China
Advanced Neurology 2024, 3(1), 2184 https://doi.org/10.36922/an.2184
Submitted: 6 November 2023 | Accepted: 10 January 2024 | Published: 8 March 2024
© 2024 by the Author (s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Bruton’s tyrosine kinase (BTK) is a non-receptor-bound intracellular signaling protein. It is well known for its importance in the growth and malignancy of B cells, but recent studies suggested that the BTK is also associated with many other innate immune cells. As reported, a comparatively high level of BTK expression can be observed in monocytes, neutrophils, macrophages, and even central nervous system-resident immune cells like microglia. This suggests that BTK activation occurs in various acute and chronic inflammatory conditions. Here, we discuss how BTK inhibitors might be used to treat certain conditions, concentrating on ischemic stroke, multiple sclerosis, neuromyelitis optica spectrum disorders, and Alzheimer’s disease. We specifically show the significance of targeting B cells in controlling the inflammatory component of the disease in multiple sclerosis treatment. In addition, we draw attention to the role of BTK in the NLRP3 inflammasome activation, which is essential for brain damage and neuroinflammation. In summary, we conclude that therapeutic targeting of BTK in brain diseases is a potential strategy that can complement the existing therapies.

Keywords
Bruton’s tyrosine kinase
Brain
Inflammation
Central nervous system
Funding
None.
References
  1. Vetrie D, Vorechovsky I, Sideras P, et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature. 1993;361:226-33. doi: 10.1038/361226a0

 

  1. Satterthwaite AB, Witte ON. The role of Bruton’s tyrosine kinase in B-cell development and function: A genetic perspective. Immunolog Rev. 2000;1751:120-127. doi: 10.1111/j.1600-065X.2000.imr017504.x

 

  1. Lindvall JM, Blomberg KEM, Valiaho J, et al. Bruton’s tyrosine kinase: Cell biology, sequence conservation, mutation spectrum, siRNA modifications, and expression profiling. Immunol Rev. 2005;203:200-215. doi: 10.1111/j.0105-2896.2005.00225.x

 

  1. Khan WN. Regulation of B lymphocyte development and activation by Bruton’s tyrosine kinase. Immunol Res. 2001;23(2-3):147-156. doi: 10.1385/IR:23:2-3:147

 

  1. Woyach JA, Johnson AJ, Byrd JC. The B-cell receptor signaling pathway as a therapeutic target in CLL. Blood. 2012;120(6):1175-1184. doi: 10.1182/blood-2012-02-362624

 

  1. Frischer JM, Bramow S, Dal-Bianco A, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain. 2009;132(Pt 5):1175-1189. doi: 10.1093/brain/awp070

 

  1. Rolli V, Gallwitz M, Wossning T, et al. Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol Cell. 2002;10(5):1057-1069. doi: 10.1016/s1097-2765(02)00739-6

 

  1. Whang JA, Chang BY. Bruton’s tyrosine kinase inhibitors for the treatment of rheumatoid arthritis. Drug Discov Today. 2014;198:1200-1204. doi: 10.1016/j.drudis.2014.03.028

 

  1. Pal Singh S, Dammeijer F, Hendriks RW. Role of Bruton’s tyrosine kinase in B cells and malignancies. Mol Cancer. 2018;17(1):57. doi: 10.1186/s12943-018-0779-z

 

  1. Martin E, Aigrot MS, Grenningloh R, et al. Bruton’s tyrosine kinase inhibition promotes myelin repair. Brain Plast. 2020;5(2):123-133. doi: 10.3233/bpl-200100

 

  1. Keaney J, Gasser J, Gillet G, Scholz D, Kadiu I. Inhibition of Bruton’s tyrosine kinase modulates microglial phagocytosis: Therapeutic implications for Alzheimer’s disease. J Neuroimmune Pharmacol. 2019;143:448-461. doi: 10.1007/s11481-019-09839-0

 

  1. Geladaris A, Häusler D, Weber MS. Microglia: The missing link to decipher and therapeutically control MS progression? Int J Mol Sci. 2021;22(7):3461. doi: 10.3390/ijms22073461

 

  1. Neumann H, Kotter MR, Franklin RJM. Debris clearance by microglia: An essential link between degeneration and regeneration. Brain. 2008;132(Pt 2):288-295. doi: 10.1093/brain/awn109

 

  1. Elberg G, Liraz-Zaltsman S, Reichert F, Matozaki T, Tal M, Rotshenker S. Deletion of SIRPalpha (signal regulatory protein-alpha) promotes phagocytic clearance of myelin debris in Wallerian degeneration, axon regeneration, and recovery from nerve injury. J Neuroinflammation. 2019;16(1):277. doi: 10.1186/s12974-019-1679-x

 

  1. Kirkley KS, Popichak KA, Afzali MF, Legare ME, Tjalkens RB. Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity. J Neuroinflammation. 2017;14(1):99. doi: 10.1186/s12974-017-0871-0

 

  1. Dansokho C, Heneka MT. Neuroinflammatory responses in Alzheimer’s disease. J Neural Transm (Vienna). 2017;125(5):771-779. doi: 10.1007/s00702-017-1831-7

 

  1. Montalban X, Arnold DL, Weber MS, et al. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N Engl J Med. 2019;380(25):2406-2417. doi: 10.1056/NEJMoa1901981

 

  1. Dal Porto J. B cell antigen receptor signaling 101. Mol Immunol. 2004;41(6-7):599-613. doi: 10.1016/j.molimm.2004.04.008

 

  1. McDonald C, Xanthopoulos C, Kostareli E. The role of Bruton’s tyrosine kinase in the immune system and disease. Immunology. 2021;164(4):722-736. doi: 10.1111/imm.13416

 

  1. Gu D, Tang H, Wu J, Li J, Miao Y. Targeting Bruton tyrosine kinase using non-covalent inhibitors in B cell malignancies. J Hematol Oncol. 2021;14(1):40. doi: 10.1186/s13045-021-01049-7

 

  1. Zhang D, Gong H, Meng F. Recent advances in BTK inhibitors for the treatment of inflammatory and autoimmune diseases. Molecules. 2021;26(16):4907. doi: 10.3390/molecules26164907

 

  1. Weber ANR, Bittner Z, Liu X, Dang TM, Radsak MP, Brunner C. Bruton’s tyrosine kinase: An emerging key player in innate immunity. Front Immunol. 2017;8:1454. doi: 10.3389/fimmu.2017.01454

 

  1. Doyle SL, Jefferies CA, Feighery C, O’Neill LAJ. Signaling by toll-like receptors 8 and 9 requires Bruton’s tyrosine kinase. J Biol Chem. 2007;282(51):36953-36960. doi: 10.1074/jbc.M707682200

 

  1. Chang BY, Huang M, Francesco M, et al. The Bruton tyrosine kinase inhibitor PCI-32765 ameliorates autoimmune arthritis by inhibition of multiple effector cells. Arthritis Res Ther. 2011;13(4):R115. doi: 10.1186/ar3400

 

  1. Fiorcari S, Maffei R, Audrito V, et al. Ibrutinib modifies the function of monocyte/macrophage population in chronic lymphocytic leukemia. Oncotarget. 2016;7(40):65968-65981. doi: 10.18632/oncotarget.11782

 

  1. Bournazos S, Wang TT, Ravetch JV. The role and function of Fcγ receptors on myeloid cells. Microbiol Spectr. 2016;4(6):10. doi: 10.1128/microbiolspec.MCHD-0045-2016

 

  1. Bence K, Ma W, Kozasa T, Huang XY. Direct stimulation of Bruton’s tyrosine kinase by G(q)-protein alpha-subunit. Nature. 1997;389(6648):296-299. doi: 10.1038/38520

 

  1. Bournazos S, Ravetch JV. Fcγ receptor pathways during active and passive immunization. Immunol Rev. 2015;268(1):88-103. doi: 10.1111/imr.12343

 

  1. Di Paolo JA, Huang T, Balazs M, et al. Specific Btk inhibition suppresses B cell- and myeloid cell-mediated arthritis. Nat Chem Biol. 2011;7(1):41. doi: 10.1038/nchembio.481

 

  1. Zhang Y, Sloan Steven A, Clarke Laura E, et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron. 2016;89(1):37-53. doi: 10.1016/j.neuron.2015.11.013

 

  1. de Gorter DJ, Beuling EA, Kersseboom R, et al. Bruton’s tyrosine kinase and phospholipase Cgamma2 mediate chemokine-controlled B cell migration and homing. Immunity. 2007;261:93-104. doi: 10.1016/j.immuni.2006.11.012

 

  1. Li N, Jiang P, Chen A, et al. CX3CR1 positively regulates BCR signaling coupled with cell metabolism via negatively controlling actin remodeling. Cell Mol Life Sci. 2020;77(21):4379-4395. doi: 10.1007/s00018-019-03416-7

 

  1. Wang M L, Rule S, Martin P, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013;369(6):507-516. doi: 10.1056/NEJMoa1306220

 

  1. Byrd JC, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32-42. doi: 10.1056/NEJMoa1215637

 

  1. Cetin A, Komai S, Eliava M, Seeburg PH, Osten P. Stereotaxic gene delivery in the rodent brain. Nat Protoc. 2006;1(6):3166-3173. doi: 10.1038/nprot.2006.450

 

  1. Honigberg LA, Smith AM, Sirisawad M, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci U S A. 2010;107(29):13075-13080. doi: 10.1073/pnas.1004594107

 

  1. Liu Y, Given KS, Owens GP, Macklin WB, Bennett JL. Distinct patterns of glia repair and remyelination in antibody-mediated demyelination models of multiple sclerosis and neuromyelitis optica. Glia. 2018;66(12):2575-2588. doi: 10.1002/glia.23512

 

  1. Hauser SL, Bar-Or A, Comi G, et al. Ocrelizumab versus interferon Beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376(3):221-234. doi: 10.1056/NEJMoa1601277

 

  1. Barf T, Covey T, Izumi R, et al. Acalabrutinib (ACP-196): A covalent Bruton tyrosine kinase (BTK) inhibitor with a differentiated selectivity and in vivo potency profile. J Pharmacol Exp Ther. 2017;363(2):240-252. doi: 10.1124/jpet.117.242909

 

  1. Rogers KA, Thompson PA, Allan JN, et al. Phase II study of acalabrutinib in ibrutinib-intolerant patients with relapsed/ refractory chronic lymphocytic leukemia. Haematologica. 2021;106(9):2364-2373. doi: 10.3324/haematol.2020.272500

 

  1. Ng PY, Chang IS, Koh RY, Chye SM. Recent advances in tau-directed immunotherapy against Alzheimer’s disease: An overview of pre-clinical and clinical development. Metab Brain Dis. 2020;35(7):1049-1066. doi: 10.1007/s11011-020-00591-6

 

  1. Reich D S, Arnold DL, Vermersch P, et al. Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: A phase 2b, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2021;20(9):729-738. doi: 10.1016/S1474-4422(21)00237-4

 

  1. Crawford JJ, Johnson AR, Misner DL, et al. Discovery of GDC-0853: A potent, selective, and noncovalent Bruton’s tyrosine kinase inhibitor in early clinical development. J Med Chem. 2018;61(6):2227-2245. doi: 10.1021/acs.jmedchem.7b01712

 

  1. Estupiñán HY, Berglöf A, Zain R Edvard Smith CI. Comparative analysis of BTK inhibitors and mechanisms underlying adverse effects. Front Cell Dev Biol. 2021;9:630942. doi: 10.3389/fcell.2021.630942

 

  1. Xu W, Zhou K, Wang T, et al. Orelabrutinib in relapsed or refractory chronic lymphocytic leukemia/small lymphocytic lymphoma patients: Multi‐center, single‐arm, open‐label, phase 2 study. Am J Hematol. 2023;98(4):571-579. doi: 10.1002/ajh.26826

 

  1. Benner B, Scarberry L, Stiff A, et al. Evidence for interaction of the NLRP3 inflammasome and Bruton’s tyrosine kinase in tumor-associated macrophages: Implications for myeloid cell production of interleukin-1beta. Oncoimmunology. 2019;8(11):1659704. doi: 10.1080/2162402x.2019.1659704

 

  1. Traub J, Traffehn S, Ochs J, et al. Dimethyl fumarate impairs differentiated B cells and fosters central nervous system integrity in treatment of multiple sclerosis. Brain Pathol. 2019;29(5):640-657. doi: 10.1111/bpa.12711

 

  1. Traub JW, Pellkofer HL, Grondey K, et al. Natalizumab promotes activation and pro-inflammatory differentiation of peripheral B cells in multiple sclerosis patients. J Neuroinflammation. 2019;16(1):228. doi: 10.1186/s12974-019-1593-2

 

  1. Hauser SL, Waubant E, Arnold DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358(7):676-688. doi: 10.1056/NEJMoa0706383

 

  1. Avouac A, Maarouf A, Stellmann JP, et al. Rituximab-induced hypogammaglobulinemia and infections in AQP4 and MOG antibody-associated diseases. Neurol Neuroimmunol Neuroinflamm. 2021;8(3):e977. doi: 10.1212/NXI.0000000000000977

 

  1. Calderón-Parra J, Múñez-Rubio E, Fernández-Cruz A, et al. Incidence, clinical presentation, relapses and outcome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in patients treated with anti-CD20 monoclonal antibodies. Clin Infect Dis. 2022;74(10):1786-1794. doi: 10.1093/cid/ciab700

 

  1. Gaitzsch E, Passerini V, Khatamzas E, et al. COVID-19 in patients receiving CD20-depleting immunochemotherapy for B-cell lymphoma. Hemasphere. 2021;5(7):e603. doi: 10.1097/HS9.0000000000000603

 

  1. Luna G, Alping P, Burman J, et al. Infection risks among patients with multiple sclerosis treated with fingolimod, natalizumab, rituximab, and injectable therapies. JAMA Neurol. 2020;77(2):184-191. doi: 10.1001/jamaneurol.2019.3365

 

  1. Zecca C, Gobbi C. Long-term treatment with anti-CD20 monoclonal antibodies is untenable because of risk: YES. Mult Scler. 2022;28(8):1173-1175. doi: 10.1177/13524585221088734

 

  1. Bar-Or A, Herman A, Stokmaier D. Author response: Effect of ocrelizumab on vaccine responses in patients with multiple sclerosis: The VELOCE study. Neurology. 2021;96(18):870-872. doi: 10.1212/WNL.0000000000011868

 

  1. Torke S, Pretzsch R, Häusler D, et al. Inhibition of Bruton’s tyrosine kinase interferes with pathogenic B-cell development in inflammatory CNS demyelinating disease. Acta Neuropathol. 2020;140(4):535-548. doi: 10.1007/s00401-020-02204-z

 

  1. Bame E, Tang H, Burns JC, et al. Next‐generation Bruton’s tyrosine kinase inhibitor BIIB091 selectively and potently inhibits B cell and Fc receptor signaling and downstream functions in B cells and myeloid cells. Clin Transl Immunol. 2021;10(6):e1295. doi: 10.1002/cti2.1295

 

  1. Hopkins BT, Bame E, Bajrami B, et al. Discovery and preclinical characterization of BIIB091, a reversible, selective BTK inhibitor for the treatment of multiple sclerosis. J Med Chem. 2021;65(2):1206-1224. doi: 10.1021/acs.jmedchem.1c00926

 

  1. Rijvers L, van Langelaar J, Bogers L, et al. Human T-bet+ B cell development is associated with BTK activity and suppressed by evobrutinib. JCI Insight. 2022;7(16):e160909. doi: 10.1172/jci.insight.160909

 

  1. Bhargava P, Sol K, Reyes AA, et al. Imaging meningeal inflammation in CNS autoimmunity identifies a therapeutic role for BTK inhibition. Brain. 2021;144(5):1396-1408. doi: 10.1093/brain/awab045

 

  1. Wang X, Jiao W, Lin M, et al. Resolution of inflammation in neuromyelitis optica spectrum disorders. Mult Scler Relat Disord. 2019;27:34-41. doi: 10.1016/j.msard.2018.09.040

 

  1. Jarius S, Paul F, Fechner K, et al. Aquaporin-4 antibody testing: Direct comparison of M1-AQP4-DNA-transfected cells with leaky scanning versus M23-AQP4-DNA-transfected cells as antigenic substrate. J Neuroinflammation. 2014;11:129. doi: 10.1186/1742-2094-11-129

 

  1. Wu Y, Zhong L, Geng J. Neuromyelitis optica spectrum disorder: Pathogenesis, treatment, and experimental models. Mult Scler Relat Disord. 2019;27:412-418. doi: 10.1016/j.msard.2018.12.002

 

  1. Qiao H, Mao Z, Wang W, et al. Changes in the BTK/NF-κB signaling pathway and related cytokines in different stages of neuromyelitis optica spectrum disorders. Eur J Med Res. 2022;27(1):96. doi: 10.1186/s40001-022-00723-x

 

  1. O’Donnell JS, Massi D, Teng MWL, Mandala M. PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux. Semin Cancer Biol. 2017;48:91-103. doi: 10.1016/j.semcancer.2017.04.015

 

  1. Khatlani TS, Ma Z, Okuda M, Onishi T. Molecular cloning and sequencing of canine T-cell costimulatory molecule (CD28). Vet Immunol Immunopathol. 2001;78(3-4):341-348. doi: 10.1016/s0165-2427(01)00238-0

 

  1. Koorella C, Nair JR, Murray ME, Carlson LM, Watkins SK, Lee KP. Novel regulation of CD80/CD86- induced phosphatidylinositol 3-kinase signaling by NOTCH1 protein in interleukin-6 and indoleamine 2,3-dioxygenase production by dendritic cells. J Biol Chem. 2014;289(11):7747-7762. doi: 10.1074/jbc.M113.519686

 

  1. Moskowitz MA, Lo EH, Iadecola C. The science of stroke: Mechanisms in search of treatments. Neuron. 2010;67(2):181-198. doi: 10.1016/j.neuron.2010.07.002

 

  1. Eltzschig HK, Eckle T. Ischemia and reperfusion-from mechanism to translation. Nat Med. 2011;17(11):1391-1401. doi: 10.1038/nm.2507

 

  1. Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17(7):796-808. doi: 10.1038/nm.2399

 

  1. Shichita T, Sugiyama Y, Ooboshi H, et al. Pivotal role of cerebral interleukin-17-producing gamma delta T cells in the delayed phase of ischemic brain injury. Nat Med. 2009;15(8):946-950. doi: 10.1038/nm.1999

 

  1. Zheng Z, Yenari MA. Post-ischemic inflammation: Molecular mechanisms and therapeutic implications. Neurol Res. 2004;26(8):884-892. doi: 10.1179/016164104X2357

 

  1. Clarkson BDS, Ling C, Shi Y, et al. T cell-derived interleukin (IL)-21 promotes brain injury following stroke in mice. J Exp Med. 2014;211(4):595-604. doi: 10.1084/jem.20131377

 

  1. Coll RC, Schroder K, Pelegrin P. NLRP3 and pyroptosis blockers for treating inflammatory diseases. Trends Pharmacol Sci. 2022;43(8):653-668. doi: 10.1016/j.tips.2022.04.003

 

  1. Keller M, Rüegg A, Werner S, Beer HB. Active caspase-1 is a regulator of unconventional protein secretion. Cell. 2008;132(5):818-831. doi: 10.1016/j.cell.2007.12.040

 

  1. Keestra-Gounder AM, Nagao PE. Inflammasome activation by Gram-positive bacteria: Mechanisms of activation and regulation. Front Immunol. 2023;14:1075834. doi: 10.3389/fimmu.2023.1075834

 

  1. Strowig T, Henao-Mejia J, Elinav E, Flavell R. Inflammasomes in health and disease. Nature. 2012;481(7381):278-286. doi: 10.1038/nature10759

 

  1. Cavalli G, Colafrancesco S, Emmi G, et al. Interleukin 1α: A comprehensive review on the role of IL-1α in the pathogenesis and treatment of autoimmune and inflammatory diseases. Autoimmun Rev. 2021;20(3):102763. doi: 10.1016/j.autrev.2021.102763

 

  1. Yang F, Wang Z, Wei X, et al., 2014, NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke. J Cereb Blood Flow Metab. 2014;34(4):660-667. doi: 10.1038/jcbfm.2011.183

 

  1. Franke M, Bieber M, Kraft P, Weber ANR, Stoll G, Schuhmann MK. The NLRP3 inflammasome drives inflammation in ischemia/reperfusion injury after transient middle cerebral artery occlusion in mice. Brain Behav Immun. 2021;92:223-233. doi: 10.1016/j.bbi.2020.12.009

 

  1. Ito M, Shichita T, Okada M, et al. Bruton’s tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury. Nat Commun. 2015;6:7360. doi: 10.1038/ncomms8360

 

  1. Jin L, Mo Y, Yue EL, Liu Y, Liu KY. Ibrutinib ameliorates cerebral ischemia/reperfusion injury through autophagy activation and PI3K/Akt/mTOR signaling pathway in diabetic mice. Bioengineered. 2021;12(1):7432-7445. doi: 10.1080/21655979.2021.1974810

 

  1. Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol. 2007;8(2):101-112. doi: 10.1038/nrm2101

 

  1. Delport A, Hewer R. The amyloid precursor protein: A converging point in Alzheimer’s disease. Mol Neurobiol. 2022;59(7):4501-4516. doi: 10.1007/s12035-022-02863-x

 

  1. O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci. 2011;34:185-204. doi: 10.1146/annurev-neuro-061010-113613

 

  1. Nam Y, Joo B, Lee JY, et al. ALWPs improve cognitive function and regulate aβ plaque and tau hyperphosphorylation in a mouse model of Alzheimer’s disease. Front Mol Neurosci. 2019;12:192. doi: 10.3389/fnmol.2019.00192

 

  1. Lee HJ, Jeon SG, Kim J, et al. Ibrutinib modulates Abeta/ tau pathology, neuroinflammation, and cognitive function in mouse models of Alzheimer’s disease. Aging Cell. 2021;20(3):e13332. doi: 10.1111/acel.13332
Conflict of interest
The authors declare that they have no competing interests.
Share
Back to top
Advanced Neurology, Electronic ISSN: 2810-9619 Published by AccScience Publishing