AccScience Publishing / AN / Volume 3 / Issue 1 / DOI: 10.36922/an.2258
ORIGINAL RESEARCH ARTICLE

Signatures of neurological adverse events after vaccination

Darrell O. Ricke1* Jessica Rose2
Show Less
1 Department of Research, Molecular BioInsights, Winchester, Massachusetts, United States of America
2 Independent Researcher, Ontario, Canada
Advanced Neurology 2024, 3(1), 2258 https://doi.org/10.36922/an.2258
Submitted: 16 November 2023 | Accepted: 15 February 2024 | Published: 12 March 2024
© 2024 by the Author (s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

There have been reports associated with the development of neurological adverse events (AEs) post-vaccination. Here, we retrospectively examine the Vaccine Adverse Events Reporting System (VAERS) database for neurological AEs reported following vaccination. Since VAERS is a passive reporting system, to minimize reporting bias and to reduce background events, this retrospective study examines both age-stratified AE reports made with onset within 24 h of immunization, and age-stratified AE reports regardless of timeframe from immunization. Immediate temporal onset data patterns for febrile convulsion, seizure, and syncope AEs were observed for multiple vaccines. For age-stratified AEs in infants up to 3 years of age, the following patterns of high association were observed: (i) Aphasia, autism spectrum disorder, and speech disorder were found to be highly associated with the measles, mumps, and rubella and hepatitis B (HepB) vaccines; (ii) febrile convulsion and syncope were found to be highly associated with the meningococcal group B vaccine; and (iii) seizures were found to be highly associated with diphtheria and tetanus toxoids and whole-cell pertussis (DTP) vaccines.

Keywords
Neurological diseases
Vaccines
COVID-19 vaccines
Febrile convulsion
Seizure
Syncope
Autism spectrum disorder
Funding
None.
References
  1. Sejvar JJ, Labutta RJ, Chapman LE, Grabenstein JD, Iskander J, Lane JM. Neurologic adverse events associated with smallpox vaccination in the United States, 2002-2004. JAMA. 2005;294(21):2744-2750. doi: 10.1001/jama.294.21.2744

 

  1. Okuyama M, Morino S, Tanaka K, et al. Vasovagal reactions after COVID-19 vaccination in Japan. Vaccine. 2022;40(41):5997-6000. doi: 10.1016/j.vaccine.2022.08.056

 

  1. Tri A, Mills K, Nilsen K. Pediatric COVID-19 vaccination: A description of adverse events or reactions reported in Kansans aged 6 to 17. Kans J Med. 2022;15(3):390-393. doi: 10.17161/kjm.vol15.18431

 

  1. Claes L, Ceulemans B, Audenaert D, et al. De novo SCN1A mutations are a major cause of severe myoclonic epilepsy of infancy. Hum Mutat. 2003;21(6):615-621. doi: 10.1002/humu.10217

 

  1. Hviid A. Measles-mumps-rubella-varicella combination vaccine increases risk of febrile seizure. J Pediatr. 2011;158(1):170. doi: 10.1016/j.jpeds.2010.09.075

 

  1. Ricke DO. Rare dizziness, syncope, loss of consciousness, seizure, and risk of falling after vaccination. AIMS Allergy Immunol. 2023;7(2):164-175. doi: 10.3934/Allergy.2023011

 

  1. Miller DL, Ross EM, Alderslade R, Bellman MH, Rawson NS. Pertussis immunisation and serious acute neurological illness in children. Br Med J (Clin Res Ed). 1981;282(6276):1595-1599. doi: 10.1136/bmj.282.6276.1595

 

  1. Barlow WE, Davis RL, Glasser JW, et al. The risk of seizures after receipt of whole-cell pertussis or measles, mumps, and rubella vaccine. N Engl J Med. 2001;345(9):656-661. doi: 10.1056/NEJMoa003077

 

  1. Pollock TM, Morris J. A 7-year survey of disorders attributed to vaccination in North West Thames region. Lancet. 1983;321(8327):753-757. doi: 10.1016/S0140-6736(83)92037-8

 

  1. McAlpine LS, Zubair AS. Neurological sequelae of vaccines. Neurol Sci. 2023;44(5):1505-1513. doi: 10.1007/s10072-022-06581-z

 

  1. Piyasirisilp S, Hemachudha T. Neurological adverse events associated with vaccination. Curr Opin Neurol. 2002;15(3):333-338. doi: 10.1097/00019052-200206000-00018

 

  1. Fenichel GM. Neurological complications of immunization. Ann Neurol. 1982;12(2):119-128. doi: 10.1002/ana.410120202

 

  1. Garg RK, Paliwal VK. Spectrum of neurological complications following COVID-19 vaccination. Neurol Sci. 2022;43(1):3-40. doi: 10.1007/s10072-021-05662-9

 

  1. Mohseni Afshar Z, Sharma A, Babazadeh A, et al. A review of the potential neurological adverse events of COVID-19 vaccines. Acta Neurol Belg. 2023;123(1):9-44. doi: 10.1007/s13760-022-02137-2

 

  1. Chatterjee A, Chakravarty A. Neurological complications following COVID-19 vaccination. Curr Neurol Neurosci Rep. 2023;23(1):1-14. doi: 10.1007/s11910-022-01247-x

 

  1. Hosseini R, Askari N. A review of neurological side effects of COVID-19 vaccination. Eur J Med Res. 2023;28(1):102. doi: 10.1186/s40001-023-00992-0

 

  1. Geier DA, Geier MR. A meta-analysis epidemiological assessment of neurodevelopmental disorders following vaccines administered from 1994 through 2000 in the United States. Neuro Endocrinol Lett. 2006;27(4):401-413.

 

  1. Geier DA, Hooker BS, Kern JK, King PG, Sykes LK, Geier MR. A two-phase study evaluating the relationship between thimerosal-containing vaccine administration and the risk for an autism spectrum disorder diagnosis in the United States. Transl Neurodegener. 2013;2(1):25. doi: 10.1186/2047-9158-2-25

 

  1. Vaccine Adverse Event Reporting System. U.S. Department of Health and Human Services; 2021. Available from: https://vaers.hhs.gov/data/datasets.html [Last accessed on 2023 Nov 10].

 

  1. Lazarus R. Electronic Support for Public Health-Vaccine Adverse Event Reporting System (ESP: VAERS)-Final Report; 2010. Available from: https://digital.ahrq.gov/ahrq-funded-projects/electronic-support-public-health-vaccine-adverse-event-reporting-system/final-report [Last accessed on 2024 Jan 30].

 

  1. Eggertson L. Lancet retracts 12-year-old article linking autism to MMR vaccines. CMAJ. 2010;182(4):E199-E200. doi: 10.1503/cmaj.109-3179

 

  1. Madsen KM, Hviid A, Vestergaard M, et al. A population-based study of measles, mumps, and rubella vaccination and autism. N Engl J Med. 2002;347(19):1477-1482. doi: 10.1056/NEJMoa021134

 

  1. Kaye JA, del Mar Melero-Montes M, Jick H. Mumps, measles, and rubella vaccine and the incidence of autism recorded by general practitioners: A time trend analysis. BMJ. 2001;322(7284):460-463. doi: 10.1136/bmj.322.7284.460

 

  1. Dales L, Hammer SJ, Smith NJ. Time trends in autism and in MMR immunization coverage in California. JAMA. 2001;285(9):1183-1185. doi: 10.1001/jama.285.9.1183

 

  1. Hviid A, Hansen JV, Frisch M, Melbye M. Measles, mumps, rubella vaccination and autism. Ann Intern Med. 2019;170(8):513-520. doi: 10.7326/M18-2101

 

  1. De Rubeis S, He X, Goldberg AP, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515(7526):209-215. doi: 10.1038/nature13772

 

  1. Fernandez BA, Scherer SW. Syndromic autism spectrum disorders: Moving from a clinically defined to a molecularly defined approach. Dialogues Clin Neurosci. 2017;19(4):353-371. doi: 10.31887/DCNS.2017.19.4/sscherer

 

  1. Turner TN, Hormozdiari F, Duyzend MH, et al. Genome sequencing of autism-affected families reveals disruption of putative noncoding regulatory DNA. Am J Hum Genet. 2016;98(1):58-74. doi: 10.1016/j.ajhg.2015.11.023

 

  1. Zhou X, Feliciano P, Shu C, et al. Integrating de novo and inherited variants in 42,607 autism cases identifies mutations in new moderate-risk genes. Nat Genet. 2022;54(9):1305-1319. doi: 10.1038/s41588-022-01148-2

 

  1. Bernier R, Golzio C, Xiong B, et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell. 2014;158(2):263-276. doi: 10.1016/j.cell.2014.06.017

 

  1. Sanders SJ, Murtha MT, Gupta AR, et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature. 2012;485(7397):237-241. doi: 10.1038/nature10945

 

  1. Ben-Shalom R, Keeshen CM, Berrios KN, An JY, Sanders SJ, Bender KJ. Opposing effects on NaV1.2 function underlie differences between SCN2A variants observed in individuals with autism spectrum disorder or infantile seizures. Biol Psychiatry. 2017;82(3):224-232. doi: 10.1016/j.biopsych.2017.01.009

 

  1. Neale BM, Kou Y, Liu L, et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature. 2012;485(7397):242-245. doi: 10.1038/nature11011

 

  1. Tourbah A, Gout O, Liblau R, et al. Encephalitis after hepatitis B vaccination: Recurrent disseminated encephalitis or MS? Neurology. 1999;53(2):396-401. doi: 10.1212/WNL.53.2.396

 

  1. Pordeus V, Szyper-Kravitz M, Levy RA, Vaz NM, Shoenfeld Y. Infections and autoimmunity: A panorama. Clin Rev Allergy Immunol. 2008;34(3):283-299. doi: 10.1007/s12016-007-8048-8

 

  1. Berkovic SF, Harkin L, McMahon JM, et al. De-novo mutations of the sodium channel gene SCN1A in alleged vaccine encephalopathy: A retrospective study. Lancet Neurol. 2006;5(6):488-492. doi: 10.1016/S1474-4422(06)70446-X

 

  1. Ricke DO. Immediate onset signatures of autoimmune diseases after vaccination. Glob Transl Med. 2023;2(3):1455. doi: 10.36922/gtm.1455

 

  1. Charzewska A, Terczyńska I, Lipiec A, et al. Genetic risk factors for neurological disorders in children with adverse events following immunization: A descriptive study of a polish case series. Int J Mol Sci. 2023;24(2):1117. doi: 10.3390/ijms24021117

 

  1. Deng L, Wood N, Danchin M. Seizures following vaccination in children: Risks, outcomes and management of subsequent revaccination. Aust J Gen Pract. 2020;49(10):644-649. doi: 10.31128/AJGP-02-20-5236

 

  1. Duffy J, Weintraub E, Hambidge SJ, et al. Febrile seizure risk after vaccination in children 6 to 23 months. Pediatrics. 2016;138(1):e20160320. doi: 10.1542/peds.2016-0320

 

  1. Vestergaard M, Hviid A, Madsen KM, et al. MMR vaccination and febrile seizures: Evaluation of susceptible subgroups and long-term prognosis. JAMA. 2004;292(3):351-357. doi: 10.1001/jama.292.3.351

 

  1. Ma SJ, Xiong YQ, Jiang LN, Chen Q. Risk of febrile seizure after measles-mumps-rubella-varicella vaccine: A systematic review and meta-analysis. Vaccine. 2015;33(31):3636-3649. doi: 10.1016/j.vaccine.2015.06.009

 

  1. Medical Dictonary for Regulatory Archives; 2024. Available from: https://www.meddra.org [Last accessed on 2024 Jan 30].

 

  1. Ricke DO. VAERS-Tools; 2022. Available from: https:// github.com/doricke/vaers-tools [Last accessed on 2023 Dec 28].

 

  1. Sutherland A, Izurieta HS, Ball R, et al. Syncope after vaccination--United States, January 2005-July 2007. MMWR Morb Mortal Wkly Rep. 2008;57(17):457-460.

 

  1. Geier DA, Geier MR. An evaluation of serious neurological disorders following immunization: A comparison of whole-cell pertussis and acellular pertussis vaccines. Brain Dev. 2004;26(5):296-300. doi: 10.1016/S0387-7604(03)00169-4

 

  1. Child and Adolescent Immunization Schedule by Age; 2023. Available from: https://www.cdc.gov/vaccines/ schedules/hcp/imz/child-adolescent.html [Last accessed on 2023 Nov 01].

 

  1. Wan EYF, Ng VWS, Chang RSK, et al. Association between the risk of seizure and COVID-19 vaccinations: A self-controlled case-series study. Epilepsia. 2022;63(12):3100-3110. doi: 10.1111/epi.17436

 

  1. Roman-Urrestarazu A, Yang JC, van Kessel R, et al. Autism incidence and spatial analysis in more than 7 million pupils in English schools: A retrospective, longitudinal, school registry study. Lancet Child Adolesc Health. 2022;6(12):857-868. doi: 10.1016/S2352-4642(22)00247-4

 

  1. Autism Spectrum Disorder (ASD); 2024. Available from: https://www.nimh.nih.gov/health/statistics/autism-spectrum-disorder-asd [Last accessed on 2024 Jan 12].

 

  1. Geier MR, Stanbro H, Merril CR. Endotoxins in commercial vaccines. Appl Environ Microbiol. 1978;36(3):445-449. doi: 10.1128/aem.36.3.445-449.1978

 

  1. Chandler RE, Juhlin K, Fransson J, Caster O, Edwards IR, Norén GN. Current safety concerns with human papillomavirus vaccine: A cluster analysis of reports in VigiBase®. Drug Saf. 2017;40(1):81-90. doi: 10.1007/s40264-016-0456-3

 

  1. Stefanizzi P, Bianchi FP, Spinelli G, et al. Postmarketing surveillance of adverse events following meningococcal B vaccination: Data from Apulia region, 2014-19. Hum Vaccin Immunother. 2022;18(1):1-6. doi: 10.1080/21645515.2021.1963171

 

  1. Shafiq A, Salameh MA, Laswi I, et al. Neurological immune-related adverse events after COVID-19 vaccination: A systematic review. J Clin Pharmacol. 2022;62(3):291-303. doi: 10.1002/jcph.2017

 

  1. Frontera JA, Tamborska AA, Doheim MF, et al. Neurological events reported after COVID-19 vaccines: An analysis of VAERS. Ann Neurol. 2022;91(6):756-771. doi: 10.1002/ana.26339

 

  1. Harris DA, Hayes KN, Zullo AR, et al. Comparative risks of potential adverse events following COVID-19 mRNA vaccination among older US adults. JAMA Netw Open. 2023;6(8):e2326852. doi: 10.1001/jamanetworkopen.2023.26852

 

  1. Ahmed SH, Waseem S, Shaikh TG, et al. SARS-CoV-2 vaccine-associated-tinnitus: A review. Ann Med Surg (Lond). 2022;75:103293. doi: 10.1016/j.amsu.2022.103293

 

  1. Eslait-Olaciregui S, Llinás-Caballero K, Patiño-Manjarrés D, Urbina-Ariza T, Cediel-Becerra JF, Domínguez- Domínguez CA. Serious neurological adverse events following immunization against SARS-CoV-2: A narrative review of the literature. Ther Adv Drug Saf. 2023;14. doi: 10.1177/20420986231165674
Conflict of interest
The author declares they have no competing interests.
Share
Back to top
Advanced Neurology, Electronic ISSN: 2810-9619 Published by AccScience Publishing