AccScience Publishing / AIH / Volume 1 / Issue 4 / DOI: 10.36922/aih.3543
ORIGINAL RESEARCH ARTICLE

Heartbeat classification using various machine learning models: A comparative study

Marc Nshimiyimana1 Jovial Niyogisubizo2* Jean de Dieu Ninteretse3
Show Less
1 Department of Bridge, Tunnel and Underground Engineering, School of Civil Engineering, Southeast University, Nanjing, China
2 Shenzhen Key Laboratory of Intelligent Bioinformatics and Center for High-Performance Computing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
3 Department of Construction and Real Estate, School of Civil Engineering, Southeast University, Nanjing, China
AIH 2024, 1(4), 61–72; https://doi.org/10.36922/aih.3543
Submitted: 30 April 2024 | Accepted: 3 September 2024 | Published: 14 October 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Cardiac arrhythmias, known as irregular heartbeats, pose a notable health threat that necessitates prompt diagnosis, as untreated arrhythmias can lead to severe heart complications. Among the various methods for arrhythmia detection, electrocardiography is the most prevalent due to its non-invasive monitoring of heart activity. However, manual electrocardiogram (ECG) analysis is inefficient and prone to errors, prompting the exploration of machine learning (ML) models for ECG feature recognition. Integrating ML models with ECG analysis can revolutionize cardiac diagnostics by improving healthcare efficiency and outcomes by enhancing the accuracy and consistency of existing approaches as well as their processing speed for large datasets. Unfortunately, current ML methods encounter two key limitations: prolonged training times and the need for manual feature selection. To address these issues, we propose using ML models enhanced with innovative techniques such as the Fourier transform (FT) and Gaussian noise injection for improved cardiac health assessment. To validate this approach, we utilized statistical tools, including Pearson correlation and p-values, to uncover relationships within the data. In addition, we employed the FT technique to extract and analyze frequency-domain features. Our comparative study of different ML models relied on metrics such as accuracy, precision, recall, F1 score, and receiver operating characteristic area under the receiver operating characteristic curve, demonstrating XGBoost’s impressive average recall of 0.956 with 99.96% overall accuracy. An average precision of 0.956 further underscored the accuracy of XGBoost’s predictions, indicating its high level of reliability in distinguishing various cardiac conditions. These results highlight the considerable potential of ML techniques for precise ECG-based clinical diagnoses, helping healthcare professionals make more accurate and timely decisions in patient care.

Keywords
Electrocardiogram
Fourier transform
Gaussian noise
Heartbeat classification
Machine learning
Pearson correlation
Funding
None.
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Periyaswamy T, Balasubramanian M. Ambulatory cardiac bio-signals: From mirage to clinical reality through a decade of progress. Int J Med Inform. 2019;130:103928. doi:10.1016/j.ijmedinf.2019.07.007

 

  1. Siontis KC, Noseworthy PA, Attia ZI, Friedman PA. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat Rev Cardiol. 2021;18(7):465-478. doi: 10.1038/s41569-020-00503-2

 

  1. Goudis CA, Konstantinidis AK, Ntalas IV, Korantzopoulos P. Electrocardiographic abnormalities and cardiac arrhythmias in chronic obstructive pulmonary disease. Int J Cardiol. 2015;199:264-273. doi: 10.1016/j.ijcard.2015.06.096

 

  1. Teymouri N, Mesbah S, Navabian SMH, et al. ECG frequency changes in potassium disorders: A narrative review. Am J Cardiovasc Dis. 2022;12(3):112.

 

  1. Faruk N, Abdulkarim A, Emmanuel I, et al. A comprehensive survey on low-cost ECG acquisition systems: Advances on design specifications, challenges and future direction. Biocybernetics Biomed Eng. 2021;41(2):474-502. doi: 10.1016/j.bbe.2021.02.007

 

  1. Acharya UR, Oh SL, Hagiwara Y, et al. A deep convolutional neural network model to classify heartbeats. Comput Biol Med. 2017;89:389-396. doi: 10.1016/j.compbiomed.2017.08.022

 

  1. Luz EJS, Schwartz WR, Cámara-Chávez G, Menotti D. ECG-based heartbeat classification for arrhythmia detection: A survey. Comput Methods Programs Biomed. 2016;127:144-164. doi: 10.1016/j.cmpb.2015.12.008

 

  1. Rajpurkar P, Hannun AY, Haghpanahi M, Bourn C, Ng AY. Cardiologist-level arrhythmia detection with convolutional neural networks. arXiv preprint arXiv:170701836; 2017. doi: 10.48550/arXiv.1707.01836

 

  1. Krasteva V, Jekova I, Leber R, Schmid R, Abächerli R. Superiority of classification tree versus cluster, fuzzy and discriminant models in a heartbeat classification system. PLoS One. 2015;10(10):e0140123. doi: 10.1371/journal.pone.0140123

 

  1. Syama S, Sweta GS, Kavyasree P, Reddy KJM. Classification of ECG Signal using Machine Learning Techniques. In: 2019 2nd International Conference on Power and Embedded Drive Control (ICPEDC): IEEE; 2019. p. 122-128. doi: 10.1109/ICPEDC47771.2019.9036613

 

  1. Jambukia SH, Dabhi VK, Prajapati HB. Classification of ECG Signals Using Machine Learning Techniques: A Survey. In: 2015 International Conference on Advances in Computer Engineering and Applications: IEEE; 2015. p. 714-721. doi: 10.1109/ICACEA.2015.7164783

 

  1. Xue J, Yu L. Applications of machine learning in ambulatory ECG. Hearts. 2021;2(4):472-494. doi: 10.3390/hearts2040037

 

  1. Zulfiqar R, Majeed F, Irfan R, Rauf HT, Benkhelifa E, Belkacem AN. Abnormal respiratory sounds classification using deep CNN through artificial noise addition. Front Med (Lausanne). 2021;8:714811. doi: 10.3389/fmed.2021.714811

 

  1. Liu S, Shao J, Kong T, Malekian R. ECG arrhythmia classification using high order spectrum and 2D graph Fourier transform. Appl Sci. 2020;10(14):4741. doi: 10.3390/app10144741

 

  1. Bhattacharyya S, Majumder S, Debnath P, Chanda M. Arrhythmic heartbeat classification using ensemble of random forest and support vector machine algorithm. IEEE Trans Artif Intell. 2021;2(3):260-268. doi: 10.1109/TAI.2021.3083689

 

  1. Marinho LB, Nascimento NMM, Souza JWM, Gurgel MV, Rebouças Filho PP, de Albuquerque VHC. A novel electrocardiogram feature extraction approach for cardiac arrhythmia classification. Future Generation Comput Syst. 2019;97:564-577. doi: 10.1016/j.future.2019.03.025

 

  1. Irfan S, Anjum N, Althobaiti T, Alotaibi AA, Siddiqui AB, Ramzan N. Heartbeat classification and arrhythmia detection using a multi-model deep-learning technique. Sensors (Basel). 2022;22(15):5606. doi: 10.3390/s22155606

 

  1. Ahmad Z, Tabassum A, Guan L, Khan NM. ECG heartbeat classification using multimodal fusion. IEEE Access. 2021;9:100615-100626. doi: 10.1109/ACCESS.2021.3097614

 

  1. Wu X, Zheng Y, Chu CH, He Z. Extracting deep features from short ECG signals for early atrial fibrillation detection. Artif Intell Med. 2020;109:101896. doi: 10.1016/j.artmed.2020.101896

 

  1. Müller KR, Mika S, Tsuda K, Schölkopf K. An introduction to kernel-based learning algorithms. In: Handbook of Neural Network Signal Processing. United States: CRC Press; 2018. p. 4-1-4-40. doi: 10.1201/9781315220413-4

 

  1. Rahmani AM, Yousefpoor E, Yousefpoor MS, et al. Machine learning (ML) in medicine: Review, applications, and challenges. Mathematics. 2021;9(22):2970. doi: 10.3390/math9222970

 

  1. Zdravevski E, Lameski P, Trajkovik V, et al. Improving activity recognition accuracy in ambient-assisted living systems by automated feature engineering. IEEE Access. 2017;5:5262-5280. doi: 10.1109/ACCESS.2017.2684913

 

  1. Mushtaq S, Faizi N, Amin SS, Adil M, Mohtashim M. Impact on quality of life in patients with dermatophytosis. Australas J Dermatol. 2020;61(2):e184-e188. doi: 10.1111/ajd.13191

 

  1. Sari BG, Lúcio ADC, Santana CS, Krysczun DK, Tischler AL, Drebes L. Sample size for estimation of the Pearson correlation coefficient in cherry tomato tests. Ciên Rural. 2017;47:e20170116. doi: 10.1590/0103-8478cr20170116

 

  1. Villavicencio CN, Macrohon JJ, Inbaraj XA, Jeng JH, Hsieh JG. Development of a machine learning based web application for early diagnosis of COVID-19 based on symptoms. Diagnostics (Basel). 2022;12(4):821. doi: 10.3390/diagnostics12040821

 

  1. George A, Stead TS, Ganti L. What’s the risk: Differentiating risk ratios, odds ratios, and hazard ratios? Cureus. 2020;12(8):e10047. doi: 10.7759/cureus.10047

 

  1. Ramlee N, Ismail N. Analysis COVID-19 death cases in pulau pinang using multiple linear regression. Proc Sci Math. 2022;8:102-108.

 

  1. Sabiri B, Asri B El, Rhanoui M. Mechanism of overfitting avoidance techniques for training deep neural networks[J/ OL]. In Proceedings of the 24th International Conference on Enterprise Information Systems. 2022;1:418-427.

 

  1. Nair V, Chatterjee M, Tavakoli N, Namin AS, Snoeyink C. Fast Fourier transformation for optimizing convolutional neural networks in object recognition. 2020. doi: 10.48550/arXiv.2010.04257

 

  1. Chughtai BR, Jalal A. Traffic Surveillance System: Robust Multiclass Vehicle Detection and Classification. In: 2024 5th International Conference on Advancements in Computational Sciences (ICACS): IEEE; 2024. p. 1-8. doi: 10.1109/ICACS60934.2024.10473304

 

  1. Pathirana VK. Nearest Neighbor Foreign Exchange Rate Forecasting with Mahalanobis Distance. Graduate Theses and Dissertations; 2015.

 

  1. Mucherino A, Papajorgji PJ, Pardalos PM. K-nearest neighbor classification. In: Data Mining in Agriculture. Berlin: Springer; 2009. p. 83-106. doi: 10.1007/978-0-387-88615-2_4

 

  1. James G, Witten D, Hastie T, Tibshirani R. Linear regression. In: An Introduction to Statistical Learning. Berlin: Springer; 2013. p. 59-126. doi: 10.1007/978-1-4614-7138-7_3

 

  1. Fox EW, Hill RA, Leibowitz SG, Olsen AR, Thornbrugh DJ, Weber MH. Assessing the accuracy and stability of variable selection methods for random forest modeling in ecology. Environ Monit Assess. 2017;189:316. doi: 10.1007/s10661-017-6025-0

 

  1. Shafiq M, Tian Z, Bashir AK, Jolfaei A, Yu X. Data mining and machine learning methods for sustainable smart cities traffic classification: A survey. Sustain Cities Soc. 2020;60:102177. doi: 10.1016/j.scs.2020.102177

 

  1. Jiawei Han M, Pei J. Data Mining: Concepts and Techniques. Amsterdam: Elsevier; 2011.

 

  1. Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, Lopez A. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing. 2020;408:189-215. doi: 10.1016/j.neucom.2019.10.118

 

  1. Chen T, Guestrin C. XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016. p. 785-794. doi: 10.1145/2939672.2939785

 

  1. Niyogisubizo J, Liao L, Nziyumva E, Murwanashyaka E, Nshimyumukiza PC. Predicting student’s dropout in university classes using two-layer ensemble machine learning approach: A novel stacked generalization. Comput Educ Artif Intell. 2022;3:100066. doi: 10.1016/j.caeai.2022.100066

 

  1. Jin Y, Biscontin G, Gardoni P. A Bayesian definition of “most probable” parameters. Geotechnical Res. 2018;5(3):130-142. doi: 10.1680/jgere.18.00027

 

  1. Houlsby N, Houlsby G. Statistical fitting of undrained strength data. Géotechnique. 2013;63(14):1253-1263. doi: 10.1680/geot.13.P.007

 

  1. Niyogisubizo J, Liao L, Zou F, et al. Predicting traffic crash severity using hybrid of balanced bagging classification and light gradient boosting machine. Intell Data Anal. 2023;27(1):79-101. doi: 10.3233/IDA-216398

 

  1. Powers DM. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv preprint arXiv:201016061; 2020. doi: 10.48550/arXiv.2010.16061

 

  1. Arbateni K, Benzaoui A. Enhancing heartbeat classification through cascading next generation and conventional reservoir computing. Appl Sci. 2024;14(7):3030. doi: 10.3390/app14073030

 

  1. Zhou F, Fang D. Multimodal ECG heartbeat classification method based on a convolutional neural network embedded with FCA. Sci Rep. 2024;14(1):8804. doi: 10.1038/s41598-024-59311-0

 

  1. Subba T, Chingtham T. Comparative analysis of machine learning algorithms with advanced feature extraction for ECG signal classification. IEEE Access. 2024;12:57727-57740. doi: 10.1109/ACCESS.2024.3387041

 

  1. Gao J, Zhang H, Lu P, Wang Z. An effective LSTM recurrent network to detect arrhythmia on imbalanced ECG dataset. J Healthc Eng. 2019;2019(1):6320651. doi: 10.1155/2019/6320651

 

  1. Chen TM, Huang CH, Shih ES, Hu YF, Hwang MJ. Detection and classification of cardiac arrhythmias by a challenge-best deep learning neural network model. iScience. 2020;23(3):100886. doi: 10.1016/j.isci.2020.100886

 

  1. Sun L, Wang Y, Qu Z, Xiong NN. BeatClass: A sustainable ECG classification system in IoT-based eHealth. IEEE Internet Things J. 2021;9(10):7178-7195. doi: 10.1109/JIOT.2021.3108792
Share
Back to top
Artificial Intelligence in Health, Electronic ISSN: 3029-2387 Print ISSN: 3041-0894, Published by AccScience Publishing